Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/memory/blockOffsetTable.hpp
32285 views
1
/*
2
* Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
26
#define SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
27
28
#include "memory/memRegion.hpp"
29
#include "runtime/virtualspace.hpp"
30
#include "utilities/globalDefinitions.hpp"
31
32
// The CollectedHeap type requires subtypes to implement a method
33
// "block_start". For some subtypes, notably generational
34
// systems using card-table-based write barriers, the efficiency of this
35
// operation may be important. Implementations of the "BlockOffsetArray"
36
// class may be useful in providing such efficient implementations.
37
//
38
// BlockOffsetTable (abstract)
39
// - BlockOffsetArray (abstract)
40
// - BlockOffsetArrayNonContigSpace
41
// - BlockOffsetArrayContigSpace
42
//
43
44
class ContiguousSpace;
45
46
//////////////////////////////////////////////////////////////////////////
47
// The BlockOffsetTable "interface"
48
//////////////////////////////////////////////////////////////////////////
49
class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
50
friend class VMStructs;
51
protected:
52
// These members describe the region covered by the table.
53
54
// The space this table is covering.
55
HeapWord* _bottom; // == reserved.start
56
HeapWord* _end; // End of currently allocated region.
57
58
public:
59
// Initialize the table to cover the given space.
60
// The contents of the initial table are undefined.
61
BlockOffsetTable(HeapWord* bottom, HeapWord* end):
62
_bottom(bottom), _end(end) {
63
assert(_bottom <= _end, "arguments out of order");
64
}
65
66
// Note that the committed size of the covered space may have changed,
67
// so the table size might also wish to change.
68
virtual void resize(size_t new_word_size) = 0;
69
70
virtual void set_bottom(HeapWord* new_bottom) {
71
assert(new_bottom <= _end, "new_bottom > _end");
72
_bottom = new_bottom;
73
resize(pointer_delta(_end, _bottom));
74
}
75
76
// Requires "addr" to be contained by a block, and returns the address of
77
// the start of that block.
78
virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
79
80
// Returns the address of the start of the block containing "addr", or
81
// else "null" if it is covered by no block.
82
HeapWord* block_start(const void* addr) const;
83
};
84
85
//////////////////////////////////////////////////////////////////////////
86
// One implementation of "BlockOffsetTable," the BlockOffsetArray,
87
// divides the covered region into "N"-word subregions (where
88
// "N" = 2^"LogN". An array with an entry for each such subregion
89
// indicates how far back one must go to find the start of the
90
// chunk that includes the first word of the subregion.
91
//
92
// Each BlockOffsetArray is owned by a Space. However, the actual array
93
// may be shared by several BlockOffsetArrays; this is useful
94
// when a single resizable area (such as a generation) is divided up into
95
// several spaces in which contiguous allocation takes place. (Consider,
96
// for example, the garbage-first generation.)
97
98
// Here is the shared array type.
99
//////////////////////////////////////////////////////////////////////////
100
// BlockOffsetSharedArray
101
//////////////////////////////////////////////////////////////////////////
102
class BlockOffsetSharedArray: public CHeapObj<mtGC> {
103
friend class BlockOffsetArray;
104
friend class BlockOffsetArrayNonContigSpace;
105
friend class BlockOffsetArrayContigSpace;
106
friend class VMStructs;
107
108
private:
109
enum SomePrivateConstants {
110
LogN = 9,
111
LogN_words = LogN - LogHeapWordSize,
112
N_bytes = 1 << LogN,
113
N_words = 1 << LogN_words
114
};
115
116
bool _init_to_zero;
117
118
// The reserved region covered by the shared array.
119
MemRegion _reserved;
120
121
// End of the current committed region.
122
HeapWord* _end;
123
124
// Array for keeping offsets for retrieving object start fast given an
125
// address.
126
VirtualSpace _vs;
127
u_char* _offset_array; // byte array keeping backwards offsets
128
129
protected:
130
// Bounds checking accessors:
131
// For performance these have to devolve to array accesses in product builds.
132
u_char offset_array(size_t index) const {
133
assert(index < _vs.committed_size(), "index out of range");
134
return _offset_array[index];
135
}
136
// An assertion-checking helper method for the set_offset_array() methods below.
137
void check_reducing_assertion(bool reducing);
138
139
void set_offset_array(size_t index, u_char offset, bool reducing = false) {
140
check_reducing_assertion(reducing);
141
assert(index < _vs.committed_size(), "index out of range");
142
assert(!reducing || _offset_array[index] >= offset, "Not reducing");
143
_offset_array[index] = offset;
144
}
145
146
void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
147
check_reducing_assertion(reducing);
148
assert(index < _vs.committed_size(), "index out of range");
149
assert(high >= low, "addresses out of order");
150
assert(pointer_delta(high, low) <= N_words, "offset too large");
151
assert(!reducing || _offset_array[index] >= (u_char)pointer_delta(high, low),
152
"Not reducing");
153
_offset_array[index] = (u_char)pointer_delta(high, low);
154
}
155
156
void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
157
check_reducing_assertion(reducing);
158
assert(index_for(right - 1) < _vs.committed_size(),
159
"right address out of range");
160
assert(left < right, "Heap addresses out of order");
161
size_t num_cards = pointer_delta(right, left) >> LogN_words;
162
163
// Below, we may use an explicit loop instead of memset()
164
// because on certain platforms memset() can give concurrent
165
// readers "out-of-thin-air," phantom zeros; see 6948537.
166
if (UseMemSetInBOT) {
167
memset(&_offset_array[index_for(left)], offset, num_cards);
168
} else {
169
size_t i = index_for(left);
170
const size_t end = i + num_cards;
171
for (; i < end; i++) {
172
// Elided until CR 6977974 is fixed properly.
173
// assert(!reducing || _offset_array[i] >= offset, "Not reducing");
174
_offset_array[i] = offset;
175
}
176
}
177
}
178
179
void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
180
check_reducing_assertion(reducing);
181
assert(right < _vs.committed_size(), "right address out of range");
182
assert(left <= right, "indexes out of order");
183
size_t num_cards = right - left + 1;
184
185
// Below, we may use an explicit loop instead of memset
186
// because on certain platforms memset() can give concurrent
187
// readers "out-of-thin-air," phantom zeros; see 6948537.
188
if (UseMemSetInBOT) {
189
memset(&_offset_array[left], offset, num_cards);
190
} else {
191
size_t i = left;
192
const size_t end = i + num_cards;
193
for (; i < end; i++) {
194
// Elided until CR 6977974 is fixed properly.
195
// assert(!reducing || _offset_array[i] >= offset, "Not reducing");
196
_offset_array[i] = offset;
197
}
198
}
199
}
200
201
void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
202
assert(index < _vs.committed_size(), "index out of range");
203
assert(high >= low, "addresses out of order");
204
assert(pointer_delta(high, low) <= N_words, "offset too large");
205
assert(_offset_array[index] == pointer_delta(high, low),
206
"Wrong offset");
207
}
208
209
bool is_card_boundary(HeapWord* p) const;
210
211
// Return the number of slots needed for an offset array
212
// that covers mem_region_words words.
213
// We always add an extra slot because if an object
214
// ends on a card boundary we put a 0 in the next
215
// offset array slot, so we want that slot always
216
// to be reserved.
217
218
size_t compute_size(size_t mem_region_words) {
219
size_t number_of_slots = (mem_region_words / N_words) + 1;
220
return ReservedSpace::allocation_align_size_up(number_of_slots);
221
}
222
223
public:
224
// Initialize the table to cover from "base" to (at least)
225
// "base + init_word_size". In the future, the table may be expanded
226
// (see "resize" below) up to the size of "_reserved" (which must be at
227
// least "init_word_size".) The contents of the initial table are
228
// undefined; it is the responsibility of the constituent
229
// BlockOffsetTable(s) to initialize cards.
230
BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
231
232
// Notes a change in the committed size of the region covered by the
233
// table. The "new_word_size" may not be larger than the size of the
234
// reserved region this table covers.
235
void resize(size_t new_word_size);
236
237
void set_bottom(HeapWord* new_bottom);
238
239
// Whether entries should be initialized to zero. Used currently only for
240
// error checking.
241
void set_init_to_zero(bool val) { _init_to_zero = val; }
242
bool init_to_zero() { return _init_to_zero; }
243
244
// Updates all the BlockOffsetArray's sharing this shared array to
245
// reflect the current "top"'s of their spaces.
246
void update_offset_arrays(); // Not yet implemented!
247
248
// Return the appropriate index into "_offset_array" for "p".
249
size_t index_for(const void* p) const;
250
251
// Return the address indicating the start of the region corresponding to
252
// "index" in "_offset_array".
253
HeapWord* address_for_index(size_t index) const;
254
255
// Return the address "p" incremented by the size of
256
// a region. This method does not align the address
257
// returned to the start of a region. It is a simple
258
// primitive.
259
HeapWord* inc_by_region_size(HeapWord* p) const { return p + N_words; }
260
};
261
262
//////////////////////////////////////////////////////////////////////////
263
// The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
264
//////////////////////////////////////////////////////////////////////////
265
class BlockOffsetArray: public BlockOffsetTable {
266
friend class VMStructs;
267
friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
268
protected:
269
// The following enums are used by do_block_internal() below
270
enum Action {
271
Action_single, // BOT records a single block (see single_block())
272
Action_mark, // BOT marks the start of a block (see mark_block())
273
Action_check // Check that BOT records block correctly
274
// (see verify_single_block()).
275
};
276
277
enum SomePrivateConstants {
278
N_words = BlockOffsetSharedArray::N_words,
279
LogN = BlockOffsetSharedArray::LogN,
280
// entries "e" of at least N_words mean "go back by Base^(e-N_words)."
281
// All entries are less than "N_words + N_powers".
282
LogBase = 4,
283
Base = (1 << LogBase),
284
N_powers = 14
285
};
286
287
static size_t power_to_cards_back(uint i) {
288
return (size_t)1 << (LogBase * i);
289
}
290
static size_t power_to_words_back(uint i) {
291
return power_to_cards_back(i) * N_words;
292
}
293
static size_t entry_to_cards_back(u_char entry) {
294
assert(entry >= N_words, "Precondition");
295
return power_to_cards_back(entry - N_words);
296
}
297
static size_t entry_to_words_back(u_char entry) {
298
assert(entry >= N_words, "Precondition");
299
return power_to_words_back(entry - N_words);
300
}
301
302
// The shared array, which is shared with other BlockOffsetArray's
303
// corresponding to different spaces within a generation or span of
304
// memory.
305
BlockOffsetSharedArray* _array;
306
307
// The space that owns this subregion.
308
Space* _sp;
309
310
// If true, array entries are initialized to 0; otherwise, they are
311
// initialized to point backwards to the beginning of the covered region.
312
bool _init_to_zero;
313
314
// An assertion-checking helper method for the set_remainder*() methods below.
315
void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
316
317
// Sets the entries
318
// corresponding to the cards starting at "start" and ending at "end"
319
// to point back to the card before "start": the interval [start, end)
320
// is right-open. The last parameter, reducing, indicates whether the
321
// updates to individual entries always reduce the entry from a higher
322
// to a lower value. (For example this would hold true during a temporal
323
// regime during which only block splits were updating the BOT.
324
void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
325
// Same as above, except that the args here are a card _index_ interval
326
// that is closed: [start_index, end_index]
327
void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
328
329
// A helper function for BOT adjustment/verification work
330
void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
331
332
public:
333
// The space may not have its bottom and top set yet, which is why the
334
// region is passed as a parameter. If "init_to_zero" is true, the
335
// elements of the array are initialized to zero. Otherwise, they are
336
// initialized to point backwards to the beginning.
337
BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
338
bool init_to_zero_);
339
340
// Note: this ought to be part of the constructor, but that would require
341
// "this" to be passed as a parameter to a member constructor for
342
// the containing concrete subtype of Space.
343
// This would be legal C++, but MS VC++ doesn't allow it.
344
void set_space(Space* sp) { _sp = sp; }
345
346
// Resets the covered region to the given "mr".
347
void set_region(MemRegion mr) {
348
_bottom = mr.start();
349
_end = mr.end();
350
}
351
352
// Note that the committed size of the covered space may have changed,
353
// so the table size might also wish to change.
354
virtual void resize(size_t new_word_size) {
355
HeapWord* new_end = _bottom + new_word_size;
356
if (_end < new_end && !init_to_zero()) {
357
// verify that the old and new boundaries are also card boundaries
358
assert(_array->is_card_boundary(_end),
359
"_end not a card boundary");
360
assert(_array->is_card_boundary(new_end),
361
"new _end would not be a card boundary");
362
// set all the newly added cards
363
_array->set_offset_array(_end, new_end, N_words);
364
}
365
_end = new_end; // update _end
366
}
367
368
// Adjust the BOT to show that it has a single block in the
369
// range [blk_start, blk_start + size). All necessary BOT
370
// cards are adjusted, but _unallocated_block isn't.
371
void single_block(HeapWord* blk_start, HeapWord* blk_end);
372
void single_block(HeapWord* blk, size_t size) {
373
single_block(blk, blk + size);
374
}
375
376
// When the alloc_block() call returns, the block offset table should
377
// have enough information such that any subsequent block_start() call
378
// with an argument equal to an address that is within the range
379
// [blk_start, blk_end) would return the value blk_start, provided
380
// there have been no calls in between that reset this information
381
// (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
382
// for an appropriate range covering the said interval).
383
// These methods expect to be called with [blk_start, blk_end)
384
// representing a block of memory in the heap.
385
virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
386
void alloc_block(HeapWord* blk, size_t size) {
387
alloc_block(blk, blk + size);
388
}
389
390
// If true, initialize array slots with no allocated blocks to zero.
391
// Otherwise, make them point back to the front.
392
bool init_to_zero() { return _init_to_zero; }
393
// Corresponding setter
394
void set_init_to_zero(bool val) {
395
_init_to_zero = val;
396
assert(_array != NULL, "_array should be non-NULL");
397
_array->set_init_to_zero(val);
398
}
399
400
// Debugging
401
// Return the index of the last entry in the "active" region.
402
virtual size_t last_active_index() const = 0;
403
// Verify the block offset table
404
void verify() const;
405
void check_all_cards(size_t left_card, size_t right_card) const;
406
};
407
408
////////////////////////////////////////////////////////////////////////////
409
// A subtype of BlockOffsetArray that takes advantage of the fact
410
// that its underlying space is a NonContiguousSpace, so that some
411
// specialized interfaces can be made available for spaces that
412
// manipulate the table.
413
////////////////////////////////////////////////////////////////////////////
414
class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
415
friend class VMStructs;
416
private:
417
// The portion [_unallocated_block, _sp.end()) of the space that
418
// is a single block known not to contain any objects.
419
// NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
420
HeapWord* _unallocated_block;
421
422
public:
423
BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
424
BlockOffsetArray(array, mr, false),
425
_unallocated_block(_bottom) { }
426
427
// accessor
428
HeapWord* unallocated_block() const {
429
assert(BlockOffsetArrayUseUnallocatedBlock,
430
"_unallocated_block is not being maintained");
431
return _unallocated_block;
432
}
433
434
void set_unallocated_block(HeapWord* block) {
435
assert(BlockOffsetArrayUseUnallocatedBlock,
436
"_unallocated_block is not being maintained");
437
assert(block >= _bottom && block <= _end, "out of range");
438
_unallocated_block = block;
439
}
440
441
// These methods expect to be called with [blk_start, blk_end)
442
// representing a block of memory in the heap.
443
void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
444
void alloc_block(HeapWord* blk, size_t size) {
445
alloc_block(blk, blk + size);
446
}
447
448
// The following methods are useful and optimized for a
449
// non-contiguous space.
450
451
// Given a block [blk_start, blk_start + full_blk_size), and
452
// a left_blk_size < full_blk_size, adjust the BOT to show two
453
// blocks [blk_start, blk_start + left_blk_size) and
454
// [blk_start + left_blk_size, blk_start + full_blk_size).
455
// It is assumed (and verified in the non-product VM) that the
456
// BOT was correct for the original block.
457
void split_block(HeapWord* blk_start, size_t full_blk_size,
458
size_t left_blk_size);
459
460
// Adjust BOT to show that it has a block in the range
461
// [blk_start, blk_start + size). Only the first card
462
// of BOT is touched. It is assumed (and verified in the
463
// non-product VM) that the remaining cards of the block
464
// are correct.
465
void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
466
void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
467
mark_block(blk, blk + size, reducing);
468
}
469
470
// Adjust _unallocated_block to indicate that a particular
471
// block has been newly allocated or freed. It is assumed (and
472
// verified in the non-product VM) that the BOT is correct for
473
// the given block.
474
void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
475
// Verify that the BOT shows [blk, blk + blk_size) to be one block.
476
verify_single_block(blk_start, blk_end);
477
if (BlockOffsetArrayUseUnallocatedBlock) {
478
_unallocated_block = MAX2(_unallocated_block, blk_end);
479
}
480
}
481
482
void allocated(HeapWord* blk, size_t size, bool reducing = false) {
483
allocated(blk, blk + size, reducing);
484
}
485
486
void freed(HeapWord* blk_start, HeapWord* blk_end);
487
void freed(HeapWord* blk, size_t size);
488
489
HeapWord* block_start_unsafe(const void* addr) const;
490
491
// Requires "addr" to be the start of a card and returns the
492
// start of the block that contains the given address.
493
HeapWord* block_start_careful(const void* addr) const;
494
495
// Verification & debugging: ensure that the offset table reflects
496
// the fact that the block [blk_start, blk_end) or [blk, blk + size)
497
// is a single block of storage. NOTE: can't const this because of
498
// call to non-const do_block_internal() below.
499
void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
500
PRODUCT_RETURN;
501
void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
502
503
// Verify that the given block is before _unallocated_block
504
void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
505
const PRODUCT_RETURN;
506
void verify_not_unallocated(HeapWord* blk, size_t size)
507
const PRODUCT_RETURN;
508
509
// Debugging support
510
virtual size_t last_active_index() const;
511
};
512
513
////////////////////////////////////////////////////////////////////////////
514
// A subtype of BlockOffsetArray that takes advantage of the fact
515
// that its underlying space is a ContiguousSpace, so that its "active"
516
// region can be more efficiently tracked (than for a non-contiguous space).
517
////////////////////////////////////////////////////////////////////////////
518
class BlockOffsetArrayContigSpace: public BlockOffsetArray {
519
friend class VMStructs;
520
private:
521
// allocation boundary at which offset array must be updated
522
HeapWord* _next_offset_threshold;
523
size_t _next_offset_index; // index corresponding to that boundary
524
525
// Work function when allocation start crosses threshold.
526
void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
527
528
public:
529
BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
530
BlockOffsetArray(array, mr, true) {
531
_next_offset_threshold = NULL;
532
_next_offset_index = 0;
533
}
534
535
void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
536
537
// Initialize the threshold for an empty heap.
538
HeapWord* initialize_threshold();
539
// Zero out the entry for _bottom (offset will be zero)
540
void zero_bottom_entry();
541
542
// Return the next threshold, the point at which the table should be
543
// updated.
544
HeapWord* threshold() const { return _next_offset_threshold; }
545
546
// In general, these methods expect to be called with
547
// [blk_start, blk_end) representing a block of memory in the heap.
548
// In this implementation, however, we are OK even if blk_start and/or
549
// blk_end are NULL because NULL is represented as 0, and thus
550
// never exceeds the "_next_offset_threshold".
551
void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
552
if (blk_end > _next_offset_threshold) {
553
alloc_block_work(blk_start, blk_end);
554
}
555
}
556
void alloc_block(HeapWord* blk, size_t size) {
557
alloc_block(blk, blk + size);
558
}
559
560
HeapWord* block_start_unsafe(const void* addr) const;
561
562
// Debugging support
563
virtual size_t last_active_index() const;
564
};
565
566
#endif // SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
567
568