Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/memory/cardTableModRefBS.cpp
32285 views
1
/*
2
* Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "memory/cardTableModRefBS.hpp"
28
#include "memory/cardTableRS.hpp"
29
#include "memory/sharedHeap.hpp"
30
#include "memory/space.hpp"
31
#include "memory/space.inline.hpp"
32
#include "memory/universe.hpp"
33
#include "runtime/java.hpp"
34
#include "runtime/mutexLocker.hpp"
35
#include "runtime/virtualspace.hpp"
36
#include "services/memTracker.hpp"
37
#include "utilities/macros.hpp"
38
#ifdef COMPILER1
39
#include "c1/c1_LIR.hpp"
40
#include "c1/c1_LIRGenerator.hpp"
41
#endif
42
43
// This kind of "BarrierSet" allows a "CollectedHeap" to detect and
44
// enumerate ref fields that have been modified (since the last
45
// enumeration.)
46
47
size_t CardTableModRefBS::compute_byte_map_size()
48
{
49
assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
50
"unitialized, check declaration order");
51
assert(_page_size != 0, "unitialized, check declaration order");
52
const size_t granularity = os::vm_allocation_granularity();
53
return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
54
}
55
56
CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
57
int max_covered_regions):
58
ModRefBarrierSet(max_covered_regions),
59
_whole_heap(whole_heap),
60
_guard_index(0),
61
_guard_region(),
62
_last_valid_index(0),
63
_page_size(os::vm_page_size()),
64
_byte_map_size(0),
65
_covered(NULL),
66
_committed(NULL),
67
_cur_covered_regions(0),
68
_byte_map(NULL),
69
byte_map_base(NULL),
70
// LNC functionality
71
_lowest_non_clean(NULL),
72
_lowest_non_clean_chunk_size(NULL),
73
_lowest_non_clean_base_chunk_index(NULL),
74
_last_LNC_resizing_collection(NULL)
75
{
76
_kind = BarrierSet::CardTableModRef;
77
78
assert((uintptr_t(_whole_heap.start()) & (card_size - 1)) == 0, "heap must start at card boundary");
79
assert((uintptr_t(_whole_heap.end()) & (card_size - 1)) == 0, "heap must end at card boundary");
80
81
assert(card_size <= 512, "card_size must be less than 512"); // why?
82
83
_covered = new MemRegion[_max_covered_regions];
84
if (_covered == NULL) {
85
vm_exit_during_initialization("Could not allocate card table covered region set.");
86
}
87
}
88
89
void CardTableModRefBS::initialize() {
90
_guard_index = cards_required(_whole_heap.word_size()) - 1;
91
_last_valid_index = _guard_index - 1;
92
93
_byte_map_size = compute_byte_map_size();
94
95
HeapWord* low_bound = _whole_heap.start();
96
HeapWord* high_bound = _whole_heap.end();
97
98
_cur_covered_regions = 0;
99
_committed = new MemRegion[_max_covered_regions];
100
if (_committed == NULL) {
101
vm_exit_during_initialization("Could not allocate card table committed region set.");
102
}
103
104
const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
105
MAX2(_page_size, (size_t) os::vm_allocation_granularity());
106
ReservedSpace heap_rs(_byte_map_size, rs_align, false);
107
108
MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
109
110
os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
111
_page_size, heap_rs.base(), heap_rs.size());
112
if (!heap_rs.is_reserved()) {
113
vm_exit_during_initialization("Could not reserve enough space for the "
114
"card marking array");
115
}
116
117
// The assember store_check code will do an unsigned shift of the oop,
118
// then add it to byte_map_base, i.e.
119
//
120
// _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
121
_byte_map = (jbyte*) heap_rs.base();
122
byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
123
assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
124
assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
125
126
jbyte* guard_card = &_byte_map[_guard_index];
127
uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
128
_guard_region = MemRegion((HeapWord*)guard_page, _page_size);
129
os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size,
130
!ExecMem, "card table last card");
131
*guard_card = last_card;
132
133
_lowest_non_clean =
134
NEW_C_HEAP_ARRAY(CardArr, _max_covered_regions, mtGC);
135
_lowest_non_clean_chunk_size =
136
NEW_C_HEAP_ARRAY(size_t, _max_covered_regions, mtGC);
137
_lowest_non_clean_base_chunk_index =
138
NEW_C_HEAP_ARRAY(uintptr_t, _max_covered_regions, mtGC);
139
_last_LNC_resizing_collection =
140
NEW_C_HEAP_ARRAY(int, _max_covered_regions, mtGC);
141
if (_lowest_non_clean == NULL
142
|| _lowest_non_clean_chunk_size == NULL
143
|| _lowest_non_clean_base_chunk_index == NULL
144
|| _last_LNC_resizing_collection == NULL)
145
vm_exit_during_initialization("couldn't allocate an LNC array.");
146
for (int i = 0; i < _max_covered_regions; i++) {
147
_lowest_non_clean[i] = NULL;
148
_lowest_non_clean_chunk_size[i] = 0;
149
_last_LNC_resizing_collection[i] = -1;
150
}
151
152
if (TraceCardTableModRefBS) {
153
gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
154
gclog_or_tty->print_cr(" "
155
" &_byte_map[0]: " INTPTR_FORMAT
156
" &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
157
p2i(&_byte_map[0]),
158
p2i(&_byte_map[_last_valid_index]));
159
gclog_or_tty->print_cr(" "
160
" byte_map_base: " INTPTR_FORMAT,
161
p2i(byte_map_base));
162
}
163
}
164
165
CardTableModRefBS::~CardTableModRefBS() {
166
if (_covered) {
167
delete[] _covered;
168
_covered = NULL;
169
}
170
if (_committed) {
171
delete[] _committed;
172
_committed = NULL;
173
}
174
if (_lowest_non_clean) {
175
FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean, mtGC);
176
_lowest_non_clean = NULL;
177
}
178
if (_lowest_non_clean_chunk_size) {
179
FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size, mtGC);
180
_lowest_non_clean_chunk_size = NULL;
181
}
182
if (_lowest_non_clean_base_chunk_index) {
183
FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index, mtGC);
184
_lowest_non_clean_base_chunk_index = NULL;
185
}
186
if (_last_LNC_resizing_collection) {
187
FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection, mtGC);
188
_last_LNC_resizing_collection = NULL;
189
}
190
}
191
192
int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
193
int i;
194
for (i = 0; i < _cur_covered_regions; i++) {
195
if (_covered[i].start() == base) return i;
196
if (_covered[i].start() > base) break;
197
}
198
// If we didn't find it, create a new one.
199
assert(_cur_covered_regions < _max_covered_regions,
200
"too many covered regions");
201
// Move the ones above up, to maintain sorted order.
202
for (int j = _cur_covered_regions; j > i; j--) {
203
_covered[j] = _covered[j-1];
204
_committed[j] = _committed[j-1];
205
}
206
int res = i;
207
_cur_covered_regions++;
208
_covered[res].set_start(base);
209
_covered[res].set_word_size(0);
210
jbyte* ct_start = byte_for(base);
211
uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
212
_committed[res].set_start((HeapWord*)ct_start_aligned);
213
_committed[res].set_word_size(0);
214
return res;
215
}
216
217
int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
218
for (int i = 0; i < _cur_covered_regions; i++) {
219
if (_covered[i].contains(addr)) {
220
return i;
221
}
222
}
223
assert(0, "address outside of heap?");
224
return -1;
225
}
226
227
HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
228
HeapWord* max_end = NULL;
229
for (int j = 0; j < ind; j++) {
230
HeapWord* this_end = _committed[j].end();
231
if (this_end > max_end) max_end = this_end;
232
}
233
return max_end;
234
}
235
236
MemRegion CardTableModRefBS::committed_unique_to_self(int self,
237
MemRegion mr) const {
238
MemRegion result = mr;
239
for (int r = 0; r < _cur_covered_regions; r += 1) {
240
if (r != self) {
241
result = result.minus(_committed[r]);
242
}
243
}
244
// Never include the guard page.
245
result = result.minus(_guard_region);
246
return result;
247
}
248
249
void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
250
// We don't change the start of a region, only the end.
251
assert(_whole_heap.contains(new_region),
252
"attempt to cover area not in reserved area");
253
debug_only(verify_guard();)
254
// collided is true if the expansion would push into another committed region
255
debug_only(bool collided = false;)
256
int const ind = find_covering_region_by_base(new_region.start());
257
MemRegion const old_region = _covered[ind];
258
assert(old_region.start() == new_region.start(), "just checking");
259
if (new_region.word_size() != old_region.word_size()) {
260
// Commit new or uncommit old pages, if necessary.
261
MemRegion cur_committed = _committed[ind];
262
// Extend the end of this _commited region
263
// to cover the end of any lower _committed regions.
264
// This forms overlapping regions, but never interior regions.
265
HeapWord* const max_prev_end = largest_prev_committed_end(ind);
266
if (max_prev_end > cur_committed.end()) {
267
cur_committed.set_end(max_prev_end);
268
}
269
// Align the end up to a page size (starts are already aligned).
270
jbyte* const new_end = byte_after(new_region.last());
271
HeapWord* new_end_aligned =
272
(HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
273
assert(new_end_aligned >= (HeapWord*) new_end,
274
"align up, but less");
275
// Check the other regions (excludes "ind") to ensure that
276
// the new_end_aligned does not intrude onto the committed
277
// space of another region.
278
int ri = 0;
279
for (ri = 0; ri < _cur_covered_regions; ri++) {
280
if (ri != ind) {
281
if (_committed[ri].contains(new_end_aligned)) {
282
// The prior check included in the assert
283
// (new_end_aligned >= _committed[ri].start())
284
// is redundant with the "contains" test.
285
// Any region containing the new end
286
// should start at or beyond the region found (ind)
287
// for the new end (committed regions are not expected to
288
// be proper subsets of other committed regions).
289
assert(_committed[ri].start() >= _committed[ind].start(),
290
"New end of committed region is inconsistent");
291
new_end_aligned = _committed[ri].start();
292
// new_end_aligned can be equal to the start of its
293
// committed region (i.e., of "ind") if a second
294
// region following "ind" also start at the same location
295
// as "ind".
296
assert(new_end_aligned >= _committed[ind].start(),
297
"New end of committed region is before start");
298
debug_only(collided = true;)
299
// Should only collide with 1 region
300
break;
301
}
302
}
303
}
304
#ifdef ASSERT
305
for (++ri; ri < _cur_covered_regions; ri++) {
306
assert(!_committed[ri].contains(new_end_aligned),
307
"New end of committed region is in a second committed region");
308
}
309
#endif
310
// The guard page is always committed and should not be committed over.
311
// "guarded" is used for assertion checking below and recalls the fact
312
// that the would-be end of the new committed region would have
313
// penetrated the guard page.
314
HeapWord* new_end_for_commit = new_end_aligned;
315
316
DEBUG_ONLY(bool guarded = false;)
317
if (new_end_for_commit > _guard_region.start()) {
318
new_end_for_commit = _guard_region.start();
319
DEBUG_ONLY(guarded = true;)
320
}
321
322
if (new_end_for_commit > cur_committed.end()) {
323
// Must commit new pages.
324
MemRegion const new_committed =
325
MemRegion(cur_committed.end(), new_end_for_commit);
326
327
assert(!new_committed.is_empty(), "Region should not be empty here");
328
os::commit_memory_or_exit((char*)new_committed.start(),
329
new_committed.byte_size(), _page_size,
330
!ExecMem, "card table expansion");
331
// Use new_end_aligned (as opposed to new_end_for_commit) because
332
// the cur_committed region may include the guard region.
333
} else if (new_end_aligned < cur_committed.end()) {
334
// Must uncommit pages.
335
MemRegion const uncommit_region =
336
committed_unique_to_self(ind, MemRegion(new_end_aligned,
337
cur_committed.end()));
338
if (!uncommit_region.is_empty()) {
339
// It is not safe to uncommit cards if the boundary between
340
// the generations is moving. A shrink can uncommit cards
341
// owned by generation A but being used by generation B.
342
if (!UseAdaptiveGCBoundary) {
343
if (!os::uncommit_memory((char*)uncommit_region.start(),
344
uncommit_region.byte_size())) {
345
assert(false, "Card table contraction failed");
346
// The call failed so don't change the end of the
347
// committed region. This is better than taking the
348
// VM down.
349
new_end_aligned = _committed[ind].end();
350
}
351
} else {
352
new_end_aligned = _committed[ind].end();
353
}
354
}
355
}
356
// In any case, we can reset the end of the current committed entry.
357
_committed[ind].set_end(new_end_aligned);
358
359
#ifdef ASSERT
360
// Check that the last card in the new region is committed according
361
// to the tables.
362
bool covered = false;
363
for (int cr = 0; cr < _cur_covered_regions; cr++) {
364
if (_committed[cr].contains(new_end - 1)) {
365
covered = true;
366
break;
367
}
368
}
369
assert(covered, "Card for end of new region not committed");
370
#endif
371
372
// The default of 0 is not necessarily clean cards.
373
jbyte* entry;
374
if (old_region.last() < _whole_heap.start()) {
375
entry = byte_for(_whole_heap.start());
376
} else {
377
entry = byte_after(old_region.last());
378
}
379
assert(index_for(new_region.last()) < _guard_index,
380
"The guard card will be overwritten");
381
// This line commented out cleans the newly expanded region and
382
// not the aligned up expanded region.
383
// jbyte* const end = byte_after(new_region.last());
384
jbyte* const end = (jbyte*) new_end_for_commit;
385
assert((end >= byte_after(new_region.last())) || collided || guarded,
386
"Expect to be beyond new region unless impacting another region");
387
// do nothing if we resized downward.
388
#ifdef ASSERT
389
for (int ri = 0; ri < _cur_covered_regions; ri++) {
390
if (ri != ind) {
391
// The end of the new committed region should not
392
// be in any existing region unless it matches
393
// the start of the next region.
394
assert(!_committed[ri].contains(end) ||
395
(_committed[ri].start() == (HeapWord*) end),
396
"Overlapping committed regions");
397
}
398
}
399
#endif
400
if (entry < end) {
401
memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
402
}
403
}
404
// In any case, the covered size changes.
405
_covered[ind].set_word_size(new_region.word_size());
406
if (TraceCardTableModRefBS) {
407
gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
408
gclog_or_tty->print_cr(" "
409
" _covered[%d].start(): " INTPTR_FORMAT
410
" _covered[%d].last(): " INTPTR_FORMAT,
411
ind, p2i(_covered[ind].start()),
412
ind, p2i(_covered[ind].last()));
413
gclog_or_tty->print_cr(" "
414
" _committed[%d].start(): " INTPTR_FORMAT
415
" _committed[%d].last(): " INTPTR_FORMAT,
416
ind, p2i(_committed[ind].start()),
417
ind, p2i(_committed[ind].last()));
418
gclog_or_tty->print_cr(" "
419
" byte_for(start): " INTPTR_FORMAT
420
" byte_for(last): " INTPTR_FORMAT,
421
p2i(byte_for(_covered[ind].start())),
422
p2i(byte_for(_covered[ind].last())));
423
gclog_or_tty->print_cr(" "
424
" addr_for(start): " INTPTR_FORMAT
425
" addr_for(last): " INTPTR_FORMAT,
426
p2i(addr_for((jbyte*) _committed[ind].start())),
427
p2i(addr_for((jbyte*) _committed[ind].last())));
428
}
429
// Touch the last card of the covered region to show that it
430
// is committed (or SEGV).
431
debug_only((void) (*byte_for(_covered[ind].last()));)
432
debug_only(verify_guard();)
433
}
434
435
// Note that these versions are precise! The scanning code has to handle the
436
// fact that the write barrier may be either precise or imprecise.
437
438
void CardTableModRefBS::write_ref_field_work(void* field, oop newVal, bool release) {
439
inline_write_ref_field(field, newVal, release);
440
}
441
442
443
void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
444
MemRegion mr,
445
OopsInGenClosure* cl,
446
CardTableRS* ct) {
447
if (!mr.is_empty()) {
448
// Caller (process_roots()) claims that all GC threads
449
// execute this call. With UseDynamicNumberOfGCThreads now all
450
// active GC threads execute this call. The number of active GC
451
// threads needs to be passed to par_non_clean_card_iterate_work()
452
// to get proper partitioning and termination.
453
//
454
// This is an example of where n_par_threads() is used instead
455
// of workers()->active_workers(). n_par_threads can be set to 0 to
456
// turn off parallelism. For example when this code is called as
457
// part of verification and SharedHeap::process_roots() is being
458
// used, then n_par_threads() may have been set to 0. active_workers
459
// is not overloaded with the meaning that it is a switch to disable
460
// parallelism and so keeps the meaning of the number of
461
// active gc workers. If parallelism has not been shut off by
462
// setting n_par_threads to 0, then n_par_threads should be
463
// equal to active_workers. When a different mechanism for shutting
464
// off parallelism is used, then active_workers can be used in
465
// place of n_par_threads.
466
// This is an example of a path where n_par_threads is
467
// set to 0 to turn off parallism.
468
// [7] CardTableModRefBS::non_clean_card_iterate()
469
// [8] CardTableRS::younger_refs_in_space_iterate()
470
// [9] Generation::younger_refs_in_space_iterate()
471
// [10] OneContigSpaceCardGeneration::younger_refs_iterate()
472
// [11] CompactingPermGenGen::younger_refs_iterate()
473
// [12] CardTableRS::younger_refs_iterate()
474
// [13] SharedHeap::process_strong_roots()
475
// [14] G1CollectedHeap::verify()
476
// [15] Universe::verify()
477
// [16] G1CollectedHeap::do_collection_pause_at_safepoint()
478
//
479
int n_threads = SharedHeap::heap()->n_par_threads();
480
bool is_par = n_threads > 0;
481
if (is_par) {
482
#if INCLUDE_ALL_GCS
483
assert(SharedHeap::heap()->n_par_threads() ==
484
SharedHeap::heap()->workers()->active_workers(), "Mismatch");
485
non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
486
#else // INCLUDE_ALL_GCS
487
fatal("Parallel gc not supported here.");
488
#endif // INCLUDE_ALL_GCS
489
} else {
490
// We do not call the non_clean_card_iterate_serial() version below because
491
// we want to clear the cards (which non_clean_card_iterate_serial() does not
492
// do for us): clear_cl here does the work of finding contiguous dirty ranges
493
// of cards to process and clear.
494
495
DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
496
cl->gen_boundary());
497
ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
498
499
clear_cl.do_MemRegion(mr);
500
}
501
}
502
}
503
504
// The iterator itself is not MT-aware, but
505
// MT-aware callers and closures can use this to
506
// accomplish dirty card iteration in parallel. The
507
// iterator itself does not clear the dirty cards, or
508
// change their values in any manner.
509
void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
510
MemRegionClosure* cl) {
511
bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
512
assert(!is_par ||
513
(SharedHeap::heap()->n_par_threads() ==
514
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
515
for (int i = 0; i < _cur_covered_regions; i++) {
516
MemRegion mri = mr.intersection(_covered[i]);
517
if (mri.word_size() > 0) {
518
jbyte* cur_entry = byte_for(mri.last());
519
jbyte* limit = byte_for(mri.start());
520
while (cur_entry >= limit) {
521
jbyte* next_entry = cur_entry - 1;
522
if (*cur_entry != clean_card) {
523
size_t non_clean_cards = 1;
524
// Should the next card be included in this range of dirty cards.
525
while (next_entry >= limit && *next_entry != clean_card) {
526
non_clean_cards++;
527
cur_entry = next_entry;
528
next_entry--;
529
}
530
// The memory region may not be on a card boundary. So that
531
// objects beyond the end of the region are not processed, make
532
// cur_cards precise with regard to the end of the memory region.
533
MemRegion cur_cards(addr_for(cur_entry),
534
non_clean_cards * card_size_in_words);
535
MemRegion dirty_region = cur_cards.intersection(mri);
536
cl->do_MemRegion(dirty_region);
537
}
538
cur_entry = next_entry;
539
}
540
}
541
}
542
}
543
544
void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
545
assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
546
assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
547
jbyte* cur = byte_for(mr.start());
548
jbyte* last = byte_after(mr.last());
549
while (cur < last) {
550
*cur = dirty_card;
551
cur++;
552
}
553
}
554
555
void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
556
assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
557
assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
558
for (int i = 0; i < _cur_covered_regions; i++) {
559
MemRegion mri = mr.intersection(_covered[i]);
560
if (!mri.is_empty()) dirty_MemRegion(mri);
561
}
562
}
563
564
void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
565
// Be conservative: only clean cards entirely contained within the
566
// region.
567
jbyte* cur;
568
if (mr.start() == _whole_heap.start()) {
569
cur = byte_for(mr.start());
570
} else {
571
assert(mr.start() > _whole_heap.start(), "mr is not covered.");
572
cur = byte_after(mr.start() - 1);
573
}
574
jbyte* last = byte_after(mr.last());
575
memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
576
}
577
578
void CardTableModRefBS::clear(MemRegion mr) {
579
for (int i = 0; i < _cur_covered_regions; i++) {
580
MemRegion mri = mr.intersection(_covered[i]);
581
if (!mri.is_empty()) clear_MemRegion(mri);
582
}
583
}
584
585
void CardTableModRefBS::dirty(MemRegion mr) {
586
jbyte* first = byte_for(mr.start());
587
jbyte* last = byte_after(mr.last());
588
memset(first, dirty_card, last-first);
589
}
590
591
// Unlike several other card table methods, dirty_card_iterate()
592
// iterates over dirty cards ranges in increasing address order.
593
void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
594
MemRegionClosure* cl) {
595
for (int i = 0; i < _cur_covered_regions; i++) {
596
MemRegion mri = mr.intersection(_covered[i]);
597
if (!mri.is_empty()) {
598
jbyte *cur_entry, *next_entry, *limit;
599
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
600
cur_entry <= limit;
601
cur_entry = next_entry) {
602
next_entry = cur_entry + 1;
603
if (*cur_entry == dirty_card) {
604
size_t dirty_cards;
605
// Accumulate maximal dirty card range, starting at cur_entry
606
for (dirty_cards = 1;
607
next_entry <= limit && *next_entry == dirty_card;
608
dirty_cards++, next_entry++);
609
MemRegion cur_cards(addr_for(cur_entry),
610
dirty_cards*card_size_in_words);
611
cl->do_MemRegion(cur_cards);
612
}
613
}
614
}
615
}
616
}
617
618
MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
619
bool reset,
620
int reset_val) {
621
for (int i = 0; i < _cur_covered_regions; i++) {
622
MemRegion mri = mr.intersection(_covered[i]);
623
if (!mri.is_empty()) {
624
jbyte* cur_entry, *next_entry, *limit;
625
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
626
cur_entry <= limit;
627
cur_entry = next_entry) {
628
next_entry = cur_entry + 1;
629
if (*cur_entry == dirty_card) {
630
size_t dirty_cards;
631
// Accumulate maximal dirty card range, starting at cur_entry
632
for (dirty_cards = 1;
633
next_entry <= limit && *next_entry == dirty_card;
634
dirty_cards++, next_entry++);
635
MemRegion cur_cards(addr_for(cur_entry),
636
dirty_cards*card_size_in_words);
637
if (reset) {
638
for (size_t i = 0; i < dirty_cards; i++) {
639
cur_entry[i] = reset_val;
640
}
641
}
642
return cur_cards;
643
}
644
}
645
}
646
}
647
return MemRegion(mr.end(), mr.end());
648
}
649
650
uintx CardTableModRefBS::ct_max_alignment_constraint() {
651
return card_size * os::vm_page_size();
652
}
653
654
void CardTableModRefBS::verify_guard() {
655
// For product build verification
656
guarantee(_byte_map[_guard_index] == last_card,
657
"card table guard has been modified");
658
}
659
660
void CardTableModRefBS::verify() {
661
verify_guard();
662
}
663
664
#ifndef PRODUCT
665
void CardTableModRefBS::verify_region(MemRegion mr,
666
jbyte val, bool val_equals) {
667
jbyte* start = byte_for(mr.start());
668
jbyte* end = byte_for(mr.last());
669
bool failures = false;
670
for (jbyte* curr = start; curr <= end; ++curr) {
671
jbyte curr_val = *curr;
672
bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
673
if (failed) {
674
if (!failures) {
675
tty->cr();
676
tty->print_cr("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]", p2i(start), p2i(end));
677
tty->print_cr("== %sexpecting value: %d",
678
(val_equals) ? "" : "not ", val);
679
failures = true;
680
}
681
tty->print_cr("== card " PTR_FORMAT " [" PTR_FORMAT "," PTR_FORMAT "], "
682
"val: %d", p2i(curr), p2i(addr_for(curr)),
683
p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)),
684
(int) curr_val);
685
}
686
}
687
guarantee(!failures, "there should not have been any failures");
688
}
689
690
void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) {
691
verify_region(mr, dirty_card, false /* val_equals */);
692
}
693
694
void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
695
verify_region(mr, dirty_card, true /* val_equals */);
696
}
697
#endif
698
699
void CardTableModRefBS::print_on(outputStream* st) const {
700
st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT,
701
p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(byte_map_base));
702
}
703
704
bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
705
return
706
CardTableModRefBS::card_will_be_scanned(cv) ||
707
_rs->is_prev_nonclean_card_val(cv);
708
};
709
710
bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
711
return
712
cv != clean_card &&
713
(CardTableModRefBS::card_may_have_been_dirty(cv) ||
714
CardTableRS::youngergen_may_have_been_dirty(cv));
715
};
716
717