Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/memory/cardTableRS.cpp
32285 views
1
/*
2
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "memory/cardTableRS.hpp"
28
#include "memory/genCollectedHeap.hpp"
29
#include "memory/generation.hpp"
30
#include "memory/space.hpp"
31
#include "oops/oop.inline.hpp"
32
#include "runtime/java.hpp"
33
#include "runtime/os.hpp"
34
#include "utilities/macros.hpp"
35
#if INCLUDE_ALL_GCS
36
#include "gc_implementation/g1/concurrentMark.hpp"
37
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
38
#endif // INCLUDE_ALL_GCS
39
40
CardTableRS::CardTableRS(MemRegion whole_heap,
41
int max_covered_regions) :
42
GenRemSet(),
43
_cur_youngergen_card_val(youngergenP1_card),
44
_regions_to_iterate(max_covered_regions - 1)
45
{
46
#if INCLUDE_ALL_GCS
47
if (UseG1GC) {
48
_ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
49
max_covered_regions);
50
} else {
51
_ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
52
}
53
#else
54
_ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
55
#endif
56
_ct_bs->initialize();
57
set_bs(_ct_bs);
58
_last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(jbyte, GenCollectedHeap::max_gens + 1,
59
mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
60
if (_last_cur_val_in_gen == NULL) {
61
vm_exit_during_initialization("Could not create last_cur_val_in_gen array.");
62
}
63
for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
64
_last_cur_val_in_gen[i] = clean_card_val();
65
}
66
_ct_bs->set_CTRS(this);
67
}
68
69
CardTableRS::~CardTableRS() {
70
if (_ct_bs) {
71
delete _ct_bs;
72
_ct_bs = NULL;
73
}
74
if (_last_cur_val_in_gen) {
75
FREE_C_HEAP_ARRAY(jbyte, _last_cur_val_in_gen, mtInternal);
76
}
77
}
78
79
void CardTableRS::resize_covered_region(MemRegion new_region) {
80
_ct_bs->resize_covered_region(new_region);
81
}
82
83
jbyte CardTableRS::find_unused_youngergenP_card_value() {
84
for (jbyte v = youngergenP1_card;
85
v < cur_youngergen_and_prev_nonclean_card;
86
v++) {
87
bool seen = false;
88
for (int g = 0; g < _regions_to_iterate; g++) {
89
if (_last_cur_val_in_gen[g] == v) {
90
seen = true;
91
break;
92
}
93
}
94
if (!seen) return v;
95
}
96
ShouldNotReachHere();
97
return 0;
98
}
99
100
void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
101
// Parallel or sequential, we must always set the prev to equal the
102
// last one written.
103
if (parallel) {
104
// Find a parallel value to be used next.
105
jbyte next_val = find_unused_youngergenP_card_value();
106
set_cur_youngergen_card_val(next_val);
107
108
} else {
109
// In an sequential traversal we will always write youngergen, so that
110
// the inline barrier is correct.
111
set_cur_youngergen_card_val(youngergen_card);
112
}
113
}
114
115
void CardTableRS::younger_refs_iterate(Generation* g,
116
OopsInGenClosure* blk) {
117
_last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
118
g->younger_refs_iterate(blk);
119
}
120
121
inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
122
if (_is_par) {
123
return clear_card_parallel(entry);
124
} else {
125
return clear_card_serial(entry);
126
}
127
}
128
129
inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
130
while (true) {
131
// In the parallel case, we may have to do this several times.
132
jbyte entry_val = *entry;
133
assert(entry_val != CardTableRS::clean_card_val(),
134
"We shouldn't be looking at clean cards, and this should "
135
"be the only place they get cleaned.");
136
if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
137
|| _ct->is_prev_youngergen_card_val(entry_val)) {
138
jbyte res =
139
Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
140
if (res == entry_val) {
141
break;
142
} else {
143
assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
144
"The CAS above should only fail if another thread did "
145
"a GC write barrier.");
146
}
147
} else if (entry_val ==
148
CardTableRS::cur_youngergen_and_prev_nonclean_card) {
149
// Parallelism shouldn't matter in this case. Only the thread
150
// assigned to scan the card should change this value.
151
*entry = _ct->cur_youngergen_card_val();
152
break;
153
} else {
154
assert(entry_val == _ct->cur_youngergen_card_val(),
155
"Should be the only possibility.");
156
// In this case, the card was clean before, and become
157
// cur_youngergen only because of processing of a promoted object.
158
// We don't have to look at the card.
159
return false;
160
}
161
}
162
return true;
163
}
164
165
166
inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
167
jbyte entry_val = *entry;
168
assert(entry_val != CardTableRS::clean_card_val(),
169
"We shouldn't be looking at clean cards, and this should "
170
"be the only place they get cleaned.");
171
assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
172
"This should be possible in the sequential case.");
173
*entry = CardTableRS::clean_card_val();
174
return true;
175
}
176
177
ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
178
DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
179
_dirty_card_closure(dirty_card_closure), _ct(ct) {
180
// Cannot yet substitute active_workers for n_par_threads
181
// in the case where parallelism is being turned off by
182
// setting n_par_threads to 0.
183
_is_par = (SharedHeap::heap()->n_par_threads() > 0);
184
assert(!_is_par ||
185
(SharedHeap::heap()->n_par_threads() ==
186
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
187
}
188
189
bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
190
return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
191
}
192
193
void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
194
assert(mr.word_size() > 0, "Error");
195
assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
196
// mr.end() may not necessarily be card aligned.
197
jbyte* cur_entry = _ct->byte_for(mr.last());
198
const jbyte* limit = _ct->byte_for(mr.start());
199
HeapWord* end_of_non_clean = mr.end();
200
HeapWord* start_of_non_clean = end_of_non_clean;
201
while (cur_entry >= limit) {
202
HeapWord* cur_hw = _ct->addr_for(cur_entry);
203
if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
204
// Continue the dirty range by opening the
205
// dirty window one card to the left.
206
start_of_non_clean = cur_hw;
207
} else {
208
// We hit a "clean" card; process any non-empty
209
// "dirty" range accumulated so far.
210
if (start_of_non_clean < end_of_non_clean) {
211
const MemRegion mrd(start_of_non_clean, end_of_non_clean);
212
_dirty_card_closure->do_MemRegion(mrd);
213
}
214
215
// fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
216
if (is_word_aligned(cur_entry)) {
217
jbyte* cur_row = cur_entry - BytesPerWord;
218
while (cur_row >= limit && *((intptr_t*)cur_row) == CardTableRS::clean_card_row()) {
219
cur_row -= BytesPerWord;
220
}
221
cur_entry = cur_row + BytesPerWord;
222
cur_hw = _ct->addr_for(cur_entry);
223
}
224
225
// Reset the dirty window, while continuing to look
226
// for the next dirty card that will start a
227
// new dirty window.
228
end_of_non_clean = cur_hw;
229
start_of_non_clean = cur_hw;
230
}
231
// Note that "cur_entry" leads "start_of_non_clean" in
232
// its leftward excursion after this point
233
// in the loop and, when we hit the left end of "mr",
234
// will point off of the left end of the card-table
235
// for "mr".
236
cur_entry--;
237
}
238
// If the first card of "mr" was dirty, we will have
239
// been left with a dirty window, co-initial with "mr",
240
// which we now process.
241
if (start_of_non_clean < end_of_non_clean) {
242
const MemRegion mrd(start_of_non_clean, end_of_non_clean);
243
_dirty_card_closure->do_MemRegion(mrd);
244
}
245
}
246
247
// clean (by dirty->clean before) ==> cur_younger_gen
248
// dirty ==> cur_youngergen_and_prev_nonclean_card
249
// precleaned ==> cur_youngergen_and_prev_nonclean_card
250
// prev-younger-gen ==> cur_youngergen_and_prev_nonclean_card
251
// cur-younger-gen ==> cur_younger_gen
252
// cur_youngergen_and_prev_nonclean_card ==> no change.
253
void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
254
jbyte* entry = ct_bs()->byte_for(field);
255
do {
256
jbyte entry_val = *entry;
257
// We put this first because it's probably the most common case.
258
if (entry_val == clean_card_val()) {
259
// No threat of contention with cleaning threads.
260
*entry = cur_youngergen_card_val();
261
return;
262
} else if (card_is_dirty_wrt_gen_iter(entry_val)
263
|| is_prev_youngergen_card_val(entry_val)) {
264
// Mark it as both cur and prev youngergen; card cleaning thread will
265
// eventually remove the previous stuff.
266
jbyte new_val = cur_youngergen_and_prev_nonclean_card;
267
jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
268
// Did the CAS succeed?
269
if (res == entry_val) return;
270
// Otherwise, retry, to see the new value.
271
continue;
272
} else {
273
assert(entry_val == cur_youngergen_and_prev_nonclean_card
274
|| entry_val == cur_youngergen_card_val(),
275
"should be only possibilities.");
276
return;
277
}
278
} while (true);
279
}
280
281
void CardTableRS::younger_refs_in_space_iterate(Space* sp,
282
OopsInGenClosure* cl) {
283
const MemRegion urasm = sp->used_region_at_save_marks();
284
#ifdef ASSERT
285
// Convert the assertion check to a warning if we are running
286
// CMS+ParNew until related bug is fixed.
287
MemRegion ur = sp->used_region();
288
assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
289
err_msg("Did you forget to call save_marks()? "
290
"[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
291
"[" PTR_FORMAT ", " PTR_FORMAT ")",
292
p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end())));
293
// In the case of CMS+ParNew, issue a warning
294
if (!ur.contains(urasm)) {
295
assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
296
warning("CMS+ParNew: Did you forget to call save_marks()? "
297
"[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
298
"[" PTR_FORMAT ", " PTR_FORMAT ")",
299
p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
300
MemRegion ur2 = sp->used_region();
301
MemRegion urasm2 = sp->used_region_at_save_marks();
302
if (!ur.equals(ur2)) {
303
warning("CMS+ParNew: Flickering used_region()!!");
304
}
305
if (!urasm.equals(urasm2)) {
306
warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
307
}
308
ShouldNotReachHere();
309
}
310
#endif
311
_ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
312
}
313
314
void CardTableRS::clear_into_younger(Generation* old_gen) {
315
assert(old_gen->level() == 1, "Should only be called for the old generation");
316
// The card tables for the youngest gen need never be cleared.
317
// There's a bit of subtlety in the clear() and invalidate()
318
// methods that we exploit here and in invalidate_or_clear()
319
// below to avoid missing cards at the fringes. If clear() or
320
// invalidate() are changed in the future, this code should
321
// be revisited. 20040107.ysr
322
clear(old_gen->prev_used_region());
323
}
324
325
void CardTableRS::invalidate_or_clear(Generation* old_gen) {
326
assert(old_gen->level() == 1, "Should only be called for the old generation");
327
// Invalidate the cards for the currently occupied part of
328
// the old generation and clear the cards for the
329
// unoccupied part of the generation (if any, making use
330
// of that generation's prev_used_region to determine that
331
// region). No need to do anything for the youngest
332
// generation. Also see note#20040107.ysr above.
333
MemRegion used_mr = old_gen->used_region();
334
MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr);
335
if (!to_be_cleared_mr.is_empty()) {
336
clear(to_be_cleared_mr);
337
}
338
invalidate(used_mr);
339
}
340
341
342
class VerifyCleanCardClosure: public OopClosure {
343
private:
344
HeapWord* _boundary;
345
HeapWord* _begin;
346
HeapWord* _end;
347
protected:
348
template <class T> void do_oop_work(T* p) {
349
HeapWord* jp = (HeapWord*)p;
350
assert(jp >= _begin && jp < _end,
351
err_msg("Error: jp " PTR_FORMAT " should be within "
352
"[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
353
p2i(jp), p2i(_begin), p2i(_end)));
354
oop obj = oopDesc::load_decode_heap_oop(p);
355
guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
356
err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
357
"clean card crosses boundary" PTR_FORMAT,
358
p2i((HeapWord*)obj), p2i(jp), p2i(_boundary)));
359
}
360
361
public:
362
VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
363
_boundary(b), _begin(begin), _end(end) {
364
assert(b <= begin,
365
err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
366
p2i(b), p2i(begin)));
367
assert(begin <= end,
368
err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
369
p2i(begin), p2i(end)));
370
}
371
372
virtual void do_oop(oop* p) { VerifyCleanCardClosure::do_oop_work(p); }
373
virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
374
};
375
376
class VerifyCTSpaceClosure: public SpaceClosure {
377
private:
378
CardTableRS* _ct;
379
HeapWord* _boundary;
380
public:
381
VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
382
_ct(ct), _boundary(boundary) {}
383
virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
384
};
385
386
class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
387
CardTableRS* _ct;
388
public:
389
VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
390
void do_generation(Generation* gen) {
391
// Skip the youngest generation.
392
if (gen->level() == 0) return;
393
// Normally, we're interested in pointers to younger generations.
394
VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
395
gen->space_iterate(&blk, true);
396
}
397
};
398
399
void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
400
// We don't need to do young-gen spaces.
401
if (s->end() <= gen_boundary) return;
402
MemRegion used = s->used_region();
403
404
jbyte* cur_entry = byte_for(used.start());
405
jbyte* limit = byte_after(used.last());
406
while (cur_entry < limit) {
407
if (*cur_entry == CardTableModRefBS::clean_card) {
408
jbyte* first_dirty = cur_entry+1;
409
while (first_dirty < limit &&
410
*first_dirty == CardTableModRefBS::clean_card) {
411
first_dirty++;
412
}
413
// If the first object is a regular object, and it has a
414
// young-to-old field, that would mark the previous card.
415
HeapWord* boundary = addr_for(cur_entry);
416
HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
417
HeapWord* boundary_block = s->block_start(boundary);
418
HeapWord* begin = boundary; // Until proven otherwise.
419
HeapWord* start_block = boundary_block; // Until proven otherwise.
420
if (boundary_block < boundary) {
421
if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
422
oop boundary_obj = oop(boundary_block);
423
if (!boundary_obj->is_objArray() &&
424
!boundary_obj->is_typeArray()) {
425
guarantee(cur_entry > byte_for(used.start()),
426
"else boundary would be boundary_block");
427
if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
428
begin = boundary_block + s->block_size(boundary_block);
429
start_block = begin;
430
}
431
}
432
}
433
}
434
// Now traverse objects until end.
435
if (begin < end) {
436
MemRegion mr(begin, end);
437
VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
438
for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
439
if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
440
oop(cur)->oop_iterate_no_header(&verify_blk, mr);
441
}
442
}
443
}
444
cur_entry = first_dirty;
445
} else {
446
// We'd normally expect that cur_youngergen_and_prev_nonclean_card
447
// is a transient value, that cannot be in the card table
448
// except during GC, and thus assert that:
449
// guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
450
// "Illegal CT value");
451
// That however, need not hold, as will become clear in the
452
// following...
453
454
// We'd normally expect that if we are in the parallel case,
455
// we can't have left a prev value (which would be different
456
// from the current value) in the card table, and so we'd like to
457
// assert that:
458
// guarantee(cur_youngergen_card_val() == youngergen_card
459
// || !is_prev_youngergen_card_val(*cur_entry),
460
// "Illegal CT value");
461
// That, however, may not hold occasionally, because of
462
// CMS or MSC in the old gen. To wit, consider the
463
// following two simple illustrative scenarios:
464
// (a) CMS: Consider the case where a large object L
465
// spanning several cards is allocated in the old
466
// gen, and has a young gen reference stored in it, dirtying
467
// some interior cards. A young collection scans the card,
468
// finds a young ref and installs a youngergenP_n value.
469
// L then goes dead. Now a CMS collection starts,
470
// finds L dead and sweeps it up. Assume that L is
471
// abutting _unallocated_blk, so _unallocated_blk is
472
// adjusted down to (below) L. Assume further that
473
// no young collection intervenes during this CMS cycle.
474
// The next young gen cycle will not get to look at this
475
// youngergenP_n card since it lies in the unoccupied
476
// part of the space.
477
// Some young collections later the blocks on this
478
// card can be re-allocated either due to direct allocation
479
// or due to absorbing promotions. At this time, the
480
// before-gc verification will fail the above assert.
481
// (b) MSC: In this case, an object L with a young reference
482
// is on a card that (therefore) holds a youngergen_n value.
483
// Suppose also that L lies towards the end of the used
484
// the used space before GC. An MSC collection
485
// occurs that compacts to such an extent that this
486
// card is no longer in the occupied part of the space.
487
// Since current code in MSC does not always clear cards
488
// in the unused part of old gen, this stale youngergen_n
489
// value is left behind and can later be covered by
490
// an object when promotion or direct allocation
491
// re-allocates that part of the heap.
492
//
493
// Fortunately, the presence of such stale card values is
494
// "only" a minor annoyance in that subsequent young collections
495
// might needlessly scan such cards, but would still never corrupt
496
// the heap as a result. However, it's likely not to be a significant
497
// performance inhibitor in practice. For instance,
498
// some recent measurements with unoccupied cards eagerly cleared
499
// out to maintain this invariant, showed next to no
500
// change in young collection times; of course one can construct
501
// degenerate examples where the cost can be significant.)
502
// Note, in particular, that if the "stale" card is modified
503
// after re-allocation, it would be dirty, not "stale". Thus,
504
// we can never have a younger ref in such a card and it is
505
// safe not to scan that card in any collection. [As we see
506
// below, we do some unnecessary scanning
507
// in some cases in the current parallel scanning algorithm.]
508
//
509
// The main point below is that the parallel card scanning code
510
// deals correctly with these stale card values. There are two main
511
// cases to consider where we have a stale "younger gen" value and a
512
// "derivative" case to consider, where we have a stale
513
// "cur_younger_gen_and_prev_non_clean" value, as will become
514
// apparent in the case analysis below.
515
// o Case 1. If the stale value corresponds to a younger_gen_n
516
// value other than the cur_younger_gen value then the code
517
// treats this as being tantamount to a prev_younger_gen
518
// card. This means that the card may be unnecessarily scanned.
519
// There are two sub-cases to consider:
520
// o Case 1a. Let us say that the card is in the occupied part
521
// of the generation at the time the collection begins. In
522
// that case the card will be either cleared when it is scanned
523
// for young pointers, or will be set to cur_younger_gen as a
524
// result of promotion. (We have elided the normal case where
525
// the scanning thread and the promoting thread interleave
526
// possibly resulting in a transient
527
// cur_younger_gen_and_prev_non_clean value before settling
528
// to cur_younger_gen. [End Case 1a.]
529
// o Case 1b. Consider now the case when the card is in the unoccupied
530
// part of the space which becomes occupied because of promotions
531
// into it during the current young GC. In this case the card
532
// will never be scanned for young references. The current
533
// code will set the card value to either
534
// cur_younger_gen_and_prev_non_clean or leave
535
// it with its stale value -- because the promotions didn't
536
// result in any younger refs on that card. Of these two
537
// cases, the latter will be covered in Case 1a during
538
// a subsequent scan. To deal with the former case, we need
539
// to further consider how we deal with a stale value of
540
// cur_younger_gen_and_prev_non_clean in our case analysis
541
// below. This we do in Case 3 below. [End Case 1b]
542
// [End Case 1]
543
// o Case 2. If the stale value corresponds to cur_younger_gen being
544
// a value not necessarily written by a current promotion, the
545
// card will not be scanned by the younger refs scanning code.
546
// (This is OK since as we argued above such cards cannot contain
547
// any younger refs.) The result is that this value will be
548
// treated as a prev_younger_gen value in a subsequent collection,
549
// which is addressed in Case 1 above. [End Case 2]
550
// o Case 3. We here consider the "derivative" case from Case 1b. above
551
// because of which we may find a stale
552
// cur_younger_gen_and_prev_non_clean card value in the table.
553
// Once again, as in Case 1, we consider two subcases, depending
554
// on whether the card lies in the occupied or unoccupied part
555
// of the space at the start of the young collection.
556
// o Case 3a. Let us say the card is in the occupied part of
557
// the old gen at the start of the young collection. In that
558
// case, the card will be scanned by the younger refs scanning
559
// code which will set it to cur_younger_gen. In a subsequent
560
// scan, the card will be considered again and get its final
561
// correct value. [End Case 3a]
562
// o Case 3b. Now consider the case where the card is in the
563
// unoccupied part of the old gen, and is occupied as a result
564
// of promotions during thus young gc. In that case,
565
// the card will not be scanned for younger refs. The presence
566
// of newly promoted objects on the card will then result in
567
// its keeping the value cur_younger_gen_and_prev_non_clean
568
// value, which we have dealt with in Case 3 here. [End Case 3b]
569
// [End Case 3]
570
//
571
// (Please refer to the code in the helper class
572
// ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
573
//
574
// The informal arguments above can be tightened into a formal
575
// correctness proof and it behooves us to write up such a proof,
576
// or to use model checking to prove that there are no lingering
577
// concerns.
578
//
579
// Clearly because of Case 3b one cannot bound the time for
580
// which a card will retain what we have called a "stale" value.
581
// However, one can obtain a Loose upper bound on the redundant
582
// work as a result of such stale values. Note first that any
583
// time a stale card lies in the occupied part of the space at
584
// the start of the collection, it is scanned by younger refs
585
// code and we can define a rank function on card values that
586
// declines when this is so. Note also that when a card does not
587
// lie in the occupied part of the space at the beginning of a
588
// young collection, its rank can either decline or stay unchanged.
589
// In this case, no extra work is done in terms of redundant
590
// younger refs scanning of that card.
591
// Then, the case analysis above reveals that, in the worst case,
592
// any such stale card will be scanned unnecessarily at most twice.
593
//
594
// It is nonethelss advisable to try and get rid of some of this
595
// redundant work in a subsequent (low priority) re-design of
596
// the card-scanning code, if only to simplify the underlying
597
// state machine analysis/proof. ysr 1/28/2002. XXX
598
cur_entry++;
599
}
600
}
601
}
602
603
void CardTableRS::verify() {
604
// At present, we only know how to verify the card table RS for
605
// generational heaps.
606
VerifyCTGenClosure blk(this);
607
CollectedHeap* ch = Universe::heap();
608
609
if (ch->kind() == CollectedHeap::GenCollectedHeap) {
610
GenCollectedHeap::heap()->generation_iterate(&blk, false);
611
_ct_bs->verify();
612
}
613
}
614
615
616
void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
617
if (!mr.is_empty()) {
618
jbyte* cur_entry = byte_for(mr.start());
619
jbyte* limit = byte_after(mr.last());
620
// The region mr may not start on a card boundary so
621
// the first card may reflect a write to the space
622
// just prior to mr.
623
if (!is_aligned(mr.start())) {
624
cur_entry++;
625
}
626
for (;cur_entry < limit; cur_entry++) {
627
guarantee(*cur_entry == CardTableModRefBS::clean_card,
628
"Unexpected dirty card found");
629
}
630
}
631
}
632
633