Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/memory/defNewGeneration.cpp
32285 views
1
/*
2
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc_implementation/shared/collectorCounters.hpp"
27
#include "gc_implementation/shared/gcPolicyCounters.hpp"
28
#include "gc_implementation/shared/gcHeapSummary.hpp"
29
#include "gc_implementation/shared/gcTimer.hpp"
30
#include "gc_implementation/shared/gcTraceTime.hpp"
31
#include "gc_implementation/shared/gcTrace.hpp"
32
#include "gc_implementation/shared/spaceDecorator.hpp"
33
#include "memory/defNewGeneration.inline.hpp"
34
#include "memory/gcLocker.inline.hpp"
35
#include "memory/genCollectedHeap.hpp"
36
#include "memory/genOopClosures.inline.hpp"
37
#include "memory/genRemSet.hpp"
38
#include "memory/generationSpec.hpp"
39
#include "memory/iterator.hpp"
40
#include "memory/referencePolicy.hpp"
41
#include "memory/space.inline.hpp"
42
#include "oops/instanceRefKlass.hpp"
43
#include "oops/oop.inline.hpp"
44
#include "runtime/java.hpp"
45
#include "runtime/prefetch.inline.hpp"
46
#include "runtime/thread.inline.hpp"
47
#include "utilities/copy.hpp"
48
#include "utilities/stack.inline.hpp"
49
50
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
51
52
//
53
// DefNewGeneration functions.
54
55
// Methods of protected closure types.
56
57
DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
58
assert(g->level() == 0, "Optimized for youngest gen.");
59
}
60
bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
61
return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
62
}
63
64
DefNewGeneration::KeepAliveClosure::
65
KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
66
GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
67
assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
68
_rs = (CardTableRS*)rs;
69
}
70
71
void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
72
void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
73
74
75
DefNewGeneration::FastKeepAliveClosure::
76
FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
77
DefNewGeneration::KeepAliveClosure(cl) {
78
_boundary = g->reserved().end();
79
}
80
81
void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
82
void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
83
84
DefNewGeneration::EvacuateFollowersClosure::
85
EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
86
ScanClosure* cur, ScanClosure* older) :
87
_gch(gch), _level(level),
88
_scan_cur_or_nonheap(cur), _scan_older(older)
89
{}
90
91
void DefNewGeneration::EvacuateFollowersClosure::do_void() {
92
do {
93
_gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
94
_scan_older);
95
} while (!_gch->no_allocs_since_save_marks(_level));
96
}
97
98
DefNewGeneration::FastEvacuateFollowersClosure::
99
FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
100
DefNewGeneration* gen,
101
FastScanClosure* cur, FastScanClosure* older) :
102
_gch(gch), _level(level), _gen(gen),
103
_scan_cur_or_nonheap(cur), _scan_older(older)
104
{}
105
106
void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
107
do {
108
_gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
109
_scan_older);
110
} while (!_gch->no_allocs_since_save_marks(_level));
111
guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
112
}
113
114
ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
115
OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
116
{
117
assert(_g->level() == 0, "Optimized for youngest generation");
118
_boundary = _g->reserved().end();
119
}
120
121
void ScanClosure::do_oop(oop* p) { ScanClosure::do_oop_work(p); }
122
void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
123
124
FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
125
OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
126
{
127
assert(_g->level() == 0, "Optimized for youngest generation");
128
_boundary = _g->reserved().end();
129
}
130
131
void FastScanClosure::do_oop(oop* p) { FastScanClosure::do_oop_work(p); }
132
void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
133
134
void KlassScanClosure::do_klass(Klass* klass) {
135
#ifndef PRODUCT
136
if (TraceScavenge) {
137
ResourceMark rm;
138
gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
139
klass,
140
klass->external_name(),
141
klass->has_modified_oops() ? "true" : "false");
142
}
143
#endif
144
145
// If the klass has not been dirtied we know that there's
146
// no references into the young gen and we can skip it.
147
if (klass->has_modified_oops()) {
148
if (_accumulate_modified_oops) {
149
klass->accumulate_modified_oops();
150
}
151
152
// Clear this state since we're going to scavenge all the metadata.
153
klass->clear_modified_oops();
154
155
// Tell the closure which Klass is being scanned so that it can be dirtied
156
// if oops are left pointing into the young gen.
157
_scavenge_closure->set_scanned_klass(klass);
158
159
klass->oops_do(_scavenge_closure);
160
161
_scavenge_closure->set_scanned_klass(NULL);
162
}
163
}
164
165
ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
166
_g(g)
167
{
168
assert(_g->level() == 0, "Optimized for youngest generation");
169
_boundary = _g->reserved().end();
170
}
171
172
void ScanWeakRefClosure::do_oop(oop* p) { ScanWeakRefClosure::do_oop_work(p); }
173
void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
174
175
void FilteringClosure::do_oop(oop* p) { FilteringClosure::do_oop_work(p); }
176
void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
177
178
KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
179
KlassRemSet* klass_rem_set)
180
: _scavenge_closure(scavenge_closure),
181
_accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
182
183
184
DefNewGeneration::DefNewGeneration(ReservedSpace rs,
185
size_t initial_size,
186
int level,
187
const char* policy)
188
: Generation(rs, initial_size, level),
189
_promo_failure_drain_in_progress(false),
190
_should_allocate_from_space(false)
191
{
192
MemRegion cmr((HeapWord*)_virtual_space.low(),
193
(HeapWord*)_virtual_space.high());
194
Universe::heap()->barrier_set()->resize_covered_region(cmr);
195
196
if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
197
_eden_space = new ConcEdenSpace(this);
198
} else {
199
_eden_space = new EdenSpace(this);
200
}
201
_from_space = new ContiguousSpace();
202
_to_space = new ContiguousSpace();
203
204
if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
205
vm_exit_during_initialization("Could not allocate a new gen space");
206
207
// Compute the maximum eden and survivor space sizes. These sizes
208
// are computed assuming the entire reserved space is committed.
209
// These values are exported as performance counters.
210
uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
211
uintx size = _virtual_space.reserved_size();
212
_max_survivor_size = compute_survivor_size(size, alignment);
213
_max_eden_size = size - (2*_max_survivor_size);
214
215
// allocate the performance counters
216
217
// Generation counters -- generation 0, 3 subspaces
218
_gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
219
_gc_counters = new CollectorCounters(policy, 0);
220
221
_eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
222
_gen_counters);
223
_from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
224
_gen_counters);
225
_to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
226
_gen_counters);
227
228
compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
229
update_counters();
230
_next_gen = NULL;
231
_tenuring_threshold = MaxTenuringThreshold;
232
_pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
233
234
_gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
235
}
236
237
void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
238
bool clear_space,
239
bool mangle_space) {
240
uintx alignment =
241
GenCollectedHeap::heap()->collector_policy()->space_alignment();
242
243
// If the spaces are being cleared (only done at heap initialization
244
// currently), the survivor spaces need not be empty.
245
// Otherwise, no care is taken for used areas in the survivor spaces
246
// so check.
247
assert(clear_space || (to()->is_empty() && from()->is_empty()),
248
"Initialization of the survivor spaces assumes these are empty");
249
250
// Compute sizes
251
uintx size = _virtual_space.committed_size();
252
uintx survivor_size = compute_survivor_size(size, alignment);
253
uintx eden_size = size - (2*survivor_size);
254
assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
255
256
if (eden_size < minimum_eden_size) {
257
// May happen due to 64Kb rounding, if so adjust eden size back up
258
minimum_eden_size = align_size_up(minimum_eden_size, alignment);
259
uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
260
uintx unaligned_survivor_size =
261
align_size_down(maximum_survivor_size, alignment);
262
survivor_size = MAX2(unaligned_survivor_size, alignment);
263
eden_size = size - (2*survivor_size);
264
assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
265
assert(eden_size >= minimum_eden_size, "just checking");
266
}
267
268
char *eden_start = _virtual_space.low();
269
char *from_start = eden_start + eden_size;
270
char *to_start = from_start + survivor_size;
271
char *to_end = to_start + survivor_size;
272
273
assert(to_end == _virtual_space.high(), "just checking");
274
assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
275
assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
276
assert(Space::is_aligned((HeapWord*)to_start), "checking alignment");
277
278
MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
279
MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
280
MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
281
282
// A minimum eden size implies that there is a part of eden that
283
// is being used and that affects the initialization of any
284
// newly formed eden.
285
bool live_in_eden = minimum_eden_size > 0;
286
287
// If not clearing the spaces, do some checking to verify that
288
// the space are already mangled.
289
if (!clear_space) {
290
// Must check mangling before the spaces are reshaped. Otherwise,
291
// the bottom or end of one space may have moved into another
292
// a failure of the check may not correctly indicate which space
293
// is not properly mangled.
294
if (ZapUnusedHeapArea) {
295
HeapWord* limit = (HeapWord*) _virtual_space.high();
296
eden()->check_mangled_unused_area(limit);
297
from()->check_mangled_unused_area(limit);
298
to()->check_mangled_unused_area(limit);
299
}
300
}
301
302
// Reset the spaces for their new regions.
303
eden()->initialize(edenMR,
304
clear_space && !live_in_eden,
305
SpaceDecorator::Mangle);
306
// If clear_space and live_in_eden, we will not have cleared any
307
// portion of eden above its top. This can cause newly
308
// expanded space not to be mangled if using ZapUnusedHeapArea.
309
// We explicitly do such mangling here.
310
if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
311
eden()->mangle_unused_area();
312
}
313
from()->initialize(fromMR, clear_space, mangle_space);
314
to()->initialize(toMR, clear_space, mangle_space);
315
316
// Set next compaction spaces.
317
eden()->set_next_compaction_space(from());
318
// The to-space is normally empty before a compaction so need
319
// not be considered. The exception is during promotion
320
// failure handling when to-space can contain live objects.
321
from()->set_next_compaction_space(NULL);
322
}
323
324
void DefNewGeneration::swap_spaces() {
325
ContiguousSpace* s = from();
326
_from_space = to();
327
_to_space = s;
328
eden()->set_next_compaction_space(from());
329
// The to-space is normally empty before a compaction so need
330
// not be considered. The exception is during promotion
331
// failure handling when to-space can contain live objects.
332
from()->set_next_compaction_space(NULL);
333
334
if (UsePerfData) {
335
CSpaceCounters* c = _from_counters;
336
_from_counters = _to_counters;
337
_to_counters = c;
338
}
339
}
340
341
bool DefNewGeneration::expand(size_t bytes) {
342
MutexLocker x(ExpandHeap_lock);
343
HeapWord* prev_high = (HeapWord*) _virtual_space.high();
344
bool success = _virtual_space.expand_by(bytes);
345
if (success && ZapUnusedHeapArea) {
346
// Mangle newly committed space immediately because it
347
// can be done here more simply that after the new
348
// spaces have been computed.
349
HeapWord* new_high = (HeapWord*) _virtual_space.high();
350
MemRegion mangle_region(prev_high, new_high);
351
SpaceMangler::mangle_region(mangle_region);
352
}
353
354
// Do not attempt an expand-to-the reserve size. The
355
// request should properly observe the maximum size of
356
// the generation so an expand-to-reserve should be
357
// unnecessary. Also a second call to expand-to-reserve
358
// value potentially can cause an undue expansion.
359
// For example if the first expand fail for unknown reasons,
360
// but the second succeeds and expands the heap to its maximum
361
// value.
362
if (GC_locker::is_active()) {
363
if (PrintGC && Verbose) {
364
gclog_or_tty->print_cr("Garbage collection disabled, "
365
"expanded heap instead");
366
}
367
}
368
369
return success;
370
}
371
372
373
void DefNewGeneration::compute_new_size() {
374
// This is called after a gc that includes the following generation
375
// (which is required to exist.) So from-space will normally be empty.
376
// Note that we check both spaces, since if scavenge failed they revert roles.
377
// If not we bail out (otherwise we would have to relocate the objects)
378
if (!from()->is_empty() || !to()->is_empty()) {
379
return;
380
}
381
382
int next_level = level() + 1;
383
GenCollectedHeap* gch = GenCollectedHeap::heap();
384
assert(next_level < gch->_n_gens,
385
"DefNewGeneration cannot be an oldest gen");
386
387
Generation* next_gen = gch->_gens[next_level];
388
size_t old_size = next_gen->capacity();
389
size_t new_size_before = _virtual_space.committed_size();
390
size_t min_new_size = spec()->init_size();
391
size_t max_new_size = reserved().byte_size();
392
assert(min_new_size <= new_size_before &&
393
new_size_before <= max_new_size,
394
"just checking");
395
// All space sizes must be multiples of Generation::GenGrain.
396
size_t alignment = Generation::GenGrain;
397
398
// Compute desired new generation size based on NewRatio and
399
// NewSizeThreadIncrease
400
size_t desired_new_size = old_size/NewRatio;
401
int threads_count = Threads::number_of_non_daemon_threads();
402
size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
403
desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
404
405
// Adjust new generation size
406
desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
407
assert(desired_new_size <= max_new_size, "just checking");
408
409
bool changed = false;
410
if (desired_new_size > new_size_before) {
411
size_t change = desired_new_size - new_size_before;
412
assert(change % alignment == 0, "just checking");
413
if (expand(change)) {
414
changed = true;
415
}
416
// If the heap failed to expand to the desired size,
417
// "changed" will be false. If the expansion failed
418
// (and at this point it was expected to succeed),
419
// ignore the failure (leaving "changed" as false).
420
}
421
if (desired_new_size < new_size_before && eden()->is_empty()) {
422
// bail out of shrinking if objects in eden
423
size_t change = new_size_before - desired_new_size;
424
assert(change % alignment == 0, "just checking");
425
_virtual_space.shrink_by(change);
426
changed = true;
427
}
428
if (changed) {
429
// The spaces have already been mangled at this point but
430
// may not have been cleared (set top = bottom) and should be.
431
// Mangling was done when the heap was being expanded.
432
compute_space_boundaries(eden()->used(),
433
SpaceDecorator::Clear,
434
SpaceDecorator::DontMangle);
435
MemRegion cmr((HeapWord*)_virtual_space.low(),
436
(HeapWord*)_virtual_space.high());
437
Universe::heap()->barrier_set()->resize_covered_region(cmr);
438
if (Verbose && PrintGC) {
439
size_t new_size_after = _virtual_space.committed_size();
440
size_t eden_size_after = eden()->capacity();
441
size_t survivor_size_after = from()->capacity();
442
gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
443
SIZE_FORMAT "K [eden="
444
SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
445
new_size_before/K, new_size_after/K,
446
eden_size_after/K, survivor_size_after/K);
447
if (WizardMode) {
448
gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
449
thread_increase_size/K, threads_count);
450
}
451
gclog_or_tty->cr();
452
}
453
}
454
}
455
456
void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
457
assert(false, "NYI -- are you sure you want to call this?");
458
}
459
460
461
size_t DefNewGeneration::capacity() const {
462
return eden()->capacity()
463
+ from()->capacity(); // to() is only used during scavenge
464
}
465
466
467
size_t DefNewGeneration::used() const {
468
return eden()->used()
469
+ from()->used(); // to() is only used during scavenge
470
}
471
472
473
size_t DefNewGeneration::free() const {
474
return eden()->free()
475
+ from()->free(); // to() is only used during scavenge
476
}
477
478
size_t DefNewGeneration::max_capacity() const {
479
const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
480
const size_t reserved_bytes = reserved().byte_size();
481
return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
482
}
483
484
size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
485
return eden()->free();
486
}
487
488
size_t DefNewGeneration::capacity_before_gc() const {
489
return eden()->capacity();
490
}
491
492
size_t DefNewGeneration::contiguous_available() const {
493
return eden()->free();
494
}
495
496
497
HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
498
HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
499
500
void DefNewGeneration::object_iterate(ObjectClosure* blk) {
501
eden()->object_iterate(blk);
502
from()->object_iterate(blk);
503
}
504
505
506
void DefNewGeneration::space_iterate(SpaceClosure* blk,
507
bool usedOnly) {
508
blk->do_space(eden());
509
blk->do_space(from());
510
blk->do_space(to());
511
}
512
513
// The last collection bailed out, we are running out of heap space,
514
// so we try to allocate the from-space, too.
515
HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
516
HeapWord* result = NULL;
517
if (Verbose && PrintGCDetails) {
518
gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
519
" will_fail: %s"
520
" heap_lock: %s"
521
" free: " SIZE_FORMAT,
522
size,
523
GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
524
"true" : "false",
525
Heap_lock->is_locked() ? "locked" : "unlocked",
526
from()->free());
527
}
528
if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
529
if (Heap_lock->owned_by_self() ||
530
(SafepointSynchronize::is_at_safepoint() &&
531
Thread::current()->is_VM_thread())) {
532
// If the Heap_lock is not locked by this thread, this will be called
533
// again later with the Heap_lock held.
534
result = from()->allocate(size);
535
} else if (PrintGC && Verbose) {
536
gclog_or_tty->print_cr(" Heap_lock is not owned by self");
537
}
538
} else if (PrintGC && Verbose) {
539
gclog_or_tty->print_cr(" should_allocate_from_space: NOT");
540
}
541
if (PrintGC && Verbose) {
542
gclog_or_tty->print_cr(" returns %s", result == NULL ? "NULL" : "object");
543
}
544
return result;
545
}
546
547
HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
548
bool is_tlab,
549
bool parallel) {
550
// We don't attempt to expand the young generation (but perhaps we should.)
551
return allocate(size, is_tlab);
552
}
553
554
void DefNewGeneration::adjust_desired_tenuring_threshold(GCTracer &tracer) {
555
// Set the desired survivor size to half the real survivor space
556
_tenuring_threshold =
557
age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, tracer);
558
}
559
560
void DefNewGeneration::collect(bool full,
561
bool clear_all_soft_refs,
562
size_t size,
563
bool is_tlab) {
564
assert(full || size > 0, "otherwise we don't want to collect");
565
566
GenCollectedHeap* gch = GenCollectedHeap::heap();
567
568
_gc_timer->register_gc_start();
569
DefNewTracer gc_tracer;
570
gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
571
572
_next_gen = gch->next_gen(this);
573
574
// If the next generation is too full to accommodate promotion
575
// from this generation, pass on collection; let the next generation
576
// do it.
577
if (!collection_attempt_is_safe()) {
578
if (Verbose && PrintGCDetails) {
579
gclog_or_tty->print(" :: Collection attempt not safe :: ");
580
}
581
gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
582
return;
583
}
584
assert(to()->is_empty(), "Else not collection_attempt_is_safe");
585
586
init_assuming_no_promotion_failure();
587
588
GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
589
// Capture heap used before collection (for printing).
590
size_t gch_prev_used = gch->used();
591
592
gch->trace_heap_before_gc(&gc_tracer);
593
594
SpecializationStats::clear();
595
596
// These can be shared for all code paths
597
IsAliveClosure is_alive(this);
598
ScanWeakRefClosure scan_weak_ref(this);
599
600
age_table()->clear();
601
to()->clear(SpaceDecorator::Mangle);
602
603
gch->rem_set()->prepare_for_younger_refs_iterate(false);
604
605
assert(gch->no_allocs_since_save_marks(0),
606
"save marks have not been newly set.");
607
608
// Not very pretty.
609
CollectorPolicy* cp = gch->collector_policy();
610
611
FastScanClosure fsc_with_no_gc_barrier(this, false);
612
FastScanClosure fsc_with_gc_barrier(this, true);
613
614
KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
615
gch->rem_set()->klass_rem_set());
616
CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
617
&fsc_with_no_gc_barrier,
618
false);
619
620
set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
621
FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
622
&fsc_with_no_gc_barrier,
623
&fsc_with_gc_barrier);
624
625
assert(gch->no_allocs_since_save_marks(0),
626
"save marks have not been newly set.");
627
628
gch->gen_process_roots(_level,
629
true, // Process younger gens, if any,
630
// as strong roots.
631
true, // activate StrongRootsScope
632
GenCollectedHeap::SO_ScavengeCodeCache,
633
GenCollectedHeap::StrongAndWeakRoots,
634
&fsc_with_no_gc_barrier,
635
&fsc_with_gc_barrier,
636
&cld_scan_closure);
637
638
// "evacuate followers".
639
evacuate_followers.do_void();
640
641
FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
642
ReferenceProcessor* rp = ref_processor();
643
rp->setup_policy(clear_all_soft_refs);
644
const ReferenceProcessorStats& stats =
645
rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
646
NULL, _gc_timer, gc_tracer.gc_id());
647
gc_tracer.report_gc_reference_stats(stats);
648
649
if (!_promotion_failed) {
650
// Swap the survivor spaces.
651
eden()->clear(SpaceDecorator::Mangle);
652
from()->clear(SpaceDecorator::Mangle);
653
if (ZapUnusedHeapArea) {
654
// This is now done here because of the piece-meal mangling which
655
// can check for valid mangling at intermediate points in the
656
// collection(s). When a minor collection fails to collect
657
// sufficient space resizing of the young generation can occur
658
// an redistribute the spaces in the young generation. Mangle
659
// here so that unzapped regions don't get distributed to
660
// other spaces.
661
to()->mangle_unused_area();
662
}
663
swap_spaces();
664
665
assert(to()->is_empty(), "to space should be empty now");
666
667
adjust_desired_tenuring_threshold(gc_tracer);
668
669
// A successful scavenge should restart the GC time limit count which is
670
// for full GC's.
671
AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
672
size_policy->reset_gc_overhead_limit_count();
673
if (PrintGC && !PrintGCDetails) {
674
gch->print_heap_change(gch_prev_used);
675
}
676
assert(!gch->incremental_collection_failed(), "Should be clear");
677
} else {
678
assert(_promo_failure_scan_stack.is_empty(), "post condition");
679
_promo_failure_scan_stack.clear(true); // Clear cached segments.
680
681
remove_forwarding_pointers();
682
if (PrintGCDetails) {
683
gclog_or_tty->print(" (promotion failed) ");
684
}
685
// Add to-space to the list of space to compact
686
// when a promotion failure has occurred. In that
687
// case there can be live objects in to-space
688
// as a result of a partial evacuation of eden
689
// and from-space.
690
swap_spaces(); // For uniformity wrt ParNewGeneration.
691
from()->set_next_compaction_space(to());
692
gch->set_incremental_collection_failed();
693
694
// Inform the next generation that a promotion failure occurred.
695
_next_gen->promotion_failure_occurred();
696
gc_tracer.report_promotion_failed(_promotion_failed_info);
697
698
// Reset the PromotionFailureALot counters.
699
NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
700
}
701
// set new iteration safe limit for the survivor spaces
702
from()->set_concurrent_iteration_safe_limit(from()->top());
703
to()->set_concurrent_iteration_safe_limit(to()->top());
704
SpecializationStats::print();
705
706
// We need to use a monotonically non-decreasing time in ms
707
// or we will see time-warp warnings and os::javaTimeMillis()
708
// does not guarantee monotonicity.
709
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
710
update_time_of_last_gc(now);
711
712
gch->trace_heap_after_gc(&gc_tracer);
713
gc_tracer.report_tenuring_threshold(tenuring_threshold());
714
715
_gc_timer->register_gc_end();
716
717
gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
718
}
719
720
class RemoveForwardPointerClosure: public ObjectClosure {
721
public:
722
void do_object(oop obj) {
723
obj->init_mark();
724
}
725
};
726
727
void DefNewGeneration::init_assuming_no_promotion_failure() {
728
_promotion_failed = false;
729
_promotion_failed_info.reset();
730
from()->set_next_compaction_space(NULL);
731
}
732
733
void DefNewGeneration::remove_forwarding_pointers() {
734
RemoveForwardPointerClosure rspc;
735
eden()->object_iterate(&rspc);
736
from()->object_iterate(&rspc);
737
738
// Now restore saved marks, if any.
739
assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
740
"should be the same");
741
while (!_objs_with_preserved_marks.is_empty()) {
742
oop obj = _objs_with_preserved_marks.pop();
743
markOop m = _preserved_marks_of_objs.pop();
744
obj->set_mark(m);
745
}
746
_objs_with_preserved_marks.clear(true);
747
_preserved_marks_of_objs.clear(true);
748
}
749
750
void DefNewGeneration::preserve_mark(oop obj, markOop m) {
751
assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
752
"Oversaving!");
753
_objs_with_preserved_marks.push(obj);
754
_preserved_marks_of_objs.push(m);
755
}
756
757
void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
758
if (m->must_be_preserved_for_promotion_failure(obj)) {
759
preserve_mark(obj, m);
760
}
761
}
762
763
void DefNewGeneration::handle_promotion_failure(oop old) {
764
if (PrintPromotionFailure && !_promotion_failed) {
765
gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
766
old->size());
767
}
768
_promotion_failed = true;
769
_promotion_failed_info.register_copy_failure(old->size());
770
preserve_mark_if_necessary(old, old->mark());
771
// forward to self
772
old->forward_to(old);
773
774
_promo_failure_scan_stack.push(old);
775
776
if (!_promo_failure_drain_in_progress) {
777
// prevent recursion in copy_to_survivor_space()
778
_promo_failure_drain_in_progress = true;
779
drain_promo_failure_scan_stack();
780
_promo_failure_drain_in_progress = false;
781
}
782
}
783
784
oop DefNewGeneration::copy_to_survivor_space(oop old) {
785
assert(is_in_reserved(old) && !old->is_forwarded(),
786
"shouldn't be scavenging this oop");
787
size_t s = old->size();
788
oop obj = NULL;
789
790
// Try allocating obj in to-space (unless too old)
791
if (old->age() < tenuring_threshold()) {
792
obj = (oop) to()->allocate_aligned(s);
793
}
794
795
// Otherwise try allocating obj tenured
796
if (obj == NULL) {
797
obj = _next_gen->promote(old, s);
798
if (obj == NULL) {
799
handle_promotion_failure(old);
800
return old;
801
}
802
} else {
803
// Prefetch beyond obj
804
const intx interval = PrefetchCopyIntervalInBytes;
805
Prefetch::write(obj, interval);
806
807
// Copy obj
808
Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
809
810
// Increment age if obj still in new generation
811
obj->incr_age();
812
age_table()->add(obj, s);
813
}
814
815
// Done, insert forward pointer to obj in this header
816
old->forward_to(obj);
817
818
return obj;
819
}
820
821
void DefNewGeneration::drain_promo_failure_scan_stack() {
822
while (!_promo_failure_scan_stack.is_empty()) {
823
oop obj = _promo_failure_scan_stack.pop();
824
obj->oop_iterate(_promo_failure_scan_stack_closure);
825
}
826
}
827
828
void DefNewGeneration::save_marks() {
829
eden()->set_saved_mark();
830
to()->set_saved_mark();
831
from()->set_saved_mark();
832
}
833
834
835
void DefNewGeneration::reset_saved_marks() {
836
eden()->reset_saved_mark();
837
to()->reset_saved_mark();
838
from()->reset_saved_mark();
839
}
840
841
842
bool DefNewGeneration::no_allocs_since_save_marks() {
843
assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
844
assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
845
return to()->saved_mark_at_top();
846
}
847
848
#define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
849
\
850
void DefNewGeneration:: \
851
oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
852
cl->set_generation(this); \
853
eden()->oop_since_save_marks_iterate##nv_suffix(cl); \
854
to()->oop_since_save_marks_iterate##nv_suffix(cl); \
855
from()->oop_since_save_marks_iterate##nv_suffix(cl); \
856
cl->reset_generation(); \
857
save_marks(); \
858
}
859
860
ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
861
862
#undef DefNew_SINCE_SAVE_MARKS_DEFN
863
864
void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
865
size_t max_alloc_words) {
866
if (requestor == this || _promotion_failed) return;
867
assert(requestor->level() > level(), "DefNewGeneration must be youngest");
868
869
/* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
870
if (to_space->top() > to_space->bottom()) {
871
trace("to_space not empty when contribute_scratch called");
872
}
873
*/
874
875
ContiguousSpace* to_space = to();
876
assert(to_space->end() >= to_space->top(), "pointers out of order");
877
size_t free_words = pointer_delta(to_space->end(), to_space->top());
878
if (free_words >= MinFreeScratchWords) {
879
ScratchBlock* sb = (ScratchBlock*)to_space->top();
880
sb->num_words = free_words;
881
sb->next = list;
882
list = sb;
883
}
884
}
885
886
void DefNewGeneration::reset_scratch() {
887
// If contributing scratch in to_space, mangle all of
888
// to_space if ZapUnusedHeapArea. This is needed because
889
// top is not maintained while using to-space as scratch.
890
if (ZapUnusedHeapArea) {
891
to()->mangle_unused_area_complete();
892
}
893
}
894
895
bool DefNewGeneration::collection_attempt_is_safe() {
896
if (!to()->is_empty()) {
897
if (Verbose && PrintGCDetails) {
898
gclog_or_tty->print(" :: to is not empty :: ");
899
}
900
return false;
901
}
902
if (_next_gen == NULL) {
903
GenCollectedHeap* gch = GenCollectedHeap::heap();
904
_next_gen = gch->next_gen(this);
905
}
906
return _next_gen->promotion_attempt_is_safe(used());
907
}
908
909
void DefNewGeneration::gc_epilogue(bool full) {
910
DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
911
912
assert(!GC_locker::is_active(), "We should not be executing here");
913
// Check if the heap is approaching full after a collection has
914
// been done. Generally the young generation is empty at
915
// a minimum at the end of a collection. If it is not, then
916
// the heap is approaching full.
917
GenCollectedHeap* gch = GenCollectedHeap::heap();
918
if (full) {
919
DEBUG_ONLY(seen_incremental_collection_failed = false;)
920
if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
921
if (Verbose && PrintGCDetails) {
922
gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
923
GCCause::to_string(gch->gc_cause()));
924
}
925
gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
926
set_should_allocate_from_space(); // we seem to be running out of space
927
} else {
928
if (Verbose && PrintGCDetails) {
929
gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
930
GCCause::to_string(gch->gc_cause()));
931
}
932
gch->clear_incremental_collection_failed(); // We just did a full collection
933
clear_should_allocate_from_space(); // if set
934
}
935
} else {
936
#ifdef ASSERT
937
// It is possible that incremental_collection_failed() == true
938
// here, because an attempted scavenge did not succeed. The policy
939
// is normally expected to cause a full collection which should
940
// clear that condition, so we should not be here twice in a row
941
// with incremental_collection_failed() == true without having done
942
// a full collection in between.
943
if (!seen_incremental_collection_failed &&
944
gch->incremental_collection_failed()) {
945
if (Verbose && PrintGCDetails) {
946
gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
947
GCCause::to_string(gch->gc_cause()));
948
}
949
seen_incremental_collection_failed = true;
950
} else if (seen_incremental_collection_failed) {
951
if (Verbose && PrintGCDetails) {
952
gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
953
GCCause::to_string(gch->gc_cause()));
954
}
955
assert(gch->gc_cause() == GCCause::_scavenge_alot ||
956
(gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
957
!gch->incremental_collection_failed(),
958
"Twice in a row");
959
seen_incremental_collection_failed = false;
960
}
961
#endif // ASSERT
962
}
963
964
if (ZapUnusedHeapArea) {
965
eden()->check_mangled_unused_area_complete();
966
from()->check_mangled_unused_area_complete();
967
to()->check_mangled_unused_area_complete();
968
}
969
970
if (!CleanChunkPoolAsync) {
971
Chunk::clean_chunk_pool();
972
}
973
974
// update the generation and space performance counters
975
update_counters();
976
gch->collector_policy()->counters()->update_counters();
977
}
978
979
void DefNewGeneration::record_spaces_top() {
980
assert(ZapUnusedHeapArea, "Not mangling unused space");
981
eden()->set_top_for_allocations();
982
to()->set_top_for_allocations();
983
from()->set_top_for_allocations();
984
}
985
986
void DefNewGeneration::ref_processor_init() {
987
Generation::ref_processor_init();
988
}
989
990
991
void DefNewGeneration::update_counters() {
992
if (UsePerfData) {
993
_eden_counters->update_all();
994
_from_counters->update_all();
995
_to_counters->update_all();
996
_gen_counters->update_all();
997
}
998
}
999
1000
void DefNewGeneration::verify() {
1001
eden()->verify();
1002
from()->verify();
1003
to()->verify();
1004
}
1005
1006
void DefNewGeneration::print_on(outputStream* st) const {
1007
Generation::print_on(st);
1008
st->print(" eden");
1009
eden()->print_on(st);
1010
st->print(" from");
1011
from()->print_on(st);
1012
st->print(" to ");
1013
to()->print_on(st);
1014
}
1015
1016
1017
const char* DefNewGeneration::name() const {
1018
return "def new generation";
1019
}
1020
1021
// Moved from inline file as they are not called inline
1022
CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1023
return eden();
1024
}
1025
1026
HeapWord* DefNewGeneration::allocate(size_t word_size,
1027
bool is_tlab) {
1028
// This is the slow-path allocation for the DefNewGeneration.
1029
// Most allocations are fast-path in compiled code.
1030
// We try to allocate from the eden. If that works, we are happy.
1031
// Note that since DefNewGeneration supports lock-free allocation, we
1032
// have to use it here, as well.
1033
HeapWord* result = eden()->par_allocate(word_size);
1034
if (result != NULL) {
1035
if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1036
_next_gen->sample_eden_chunk();
1037
}
1038
return result;
1039
}
1040
do {
1041
HeapWord* old_limit = eden()->soft_end();
1042
if (old_limit < eden()->end()) {
1043
// Tell the next generation we reached a limit.
1044
HeapWord* new_limit =
1045
next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
1046
if (new_limit != NULL) {
1047
Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
1048
} else {
1049
assert(eden()->soft_end() == eden()->end(),
1050
"invalid state after allocation_limit_reached returned null");
1051
}
1052
} else {
1053
// The allocation failed and the soft limit is equal to the hard limit,
1054
// there are no reasons to do an attempt to allocate
1055
assert(old_limit == eden()->end(), "sanity check");
1056
break;
1057
}
1058
// Try to allocate until succeeded or the soft limit can't be adjusted
1059
result = eden()->par_allocate(word_size);
1060
} while (result == NULL);
1061
1062
// If the eden is full and the last collection bailed out, we are running
1063
// out of heap space, and we try to allocate the from-space, too.
1064
// allocate_from_space can't be inlined because that would introduce a
1065
// circular dependency at compile time.
1066
if (result == NULL) {
1067
result = allocate_from_space(word_size);
1068
} else if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1069
_next_gen->sample_eden_chunk();
1070
}
1071
return result;
1072
}
1073
1074
HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1075
bool is_tlab) {
1076
HeapWord* res = eden()->par_allocate(word_size);
1077
if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1078
_next_gen->sample_eden_chunk();
1079
}
1080
return res;
1081
}
1082
1083
void DefNewGeneration::gc_prologue(bool full) {
1084
// Ensure that _end and _soft_end are the same in eden space.
1085
eden()->set_soft_end(eden()->end());
1086
}
1087
1088
size_t DefNewGeneration::tlab_capacity() const {
1089
return eden()->capacity();
1090
}
1091
1092
size_t DefNewGeneration::tlab_used() const {
1093
return eden()->used();
1094
}
1095
1096
size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1097
return unsafe_max_alloc_nogc();
1098
}
1099
1100