Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/memory/genCollectedHeap.cpp
32285 views
1
/*
2
* Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/symbolTable.hpp"
27
#include "classfile/systemDictionary.hpp"
28
#include "classfile/vmSymbols.hpp"
29
#include "code/codeCache.hpp"
30
#include "code/icBuffer.hpp"
31
#include "gc_implementation/shared/collectorCounters.hpp"
32
#include "gc_implementation/shared/gcTrace.hpp"
33
#include "gc_implementation/shared/gcTraceTime.hpp"
34
#include "gc_implementation/shared/vmGCOperations.hpp"
35
#include "gc_interface/collectedHeap.inline.hpp"
36
#include "memory/filemap.hpp"
37
#include "memory/gcLocker.inline.hpp"
38
#include "memory/genCollectedHeap.hpp"
39
#include "memory/genOopClosures.inline.hpp"
40
#include "memory/generation.inline.hpp"
41
#include "memory/generationSpec.hpp"
42
#include "memory/resourceArea.hpp"
43
#include "memory/sharedHeap.hpp"
44
#include "memory/space.hpp"
45
#include "oops/oop.inline.hpp"
46
#include "oops/oop.inline2.hpp"
47
#include "runtime/biasedLocking.hpp"
48
#include "runtime/fprofiler.hpp"
49
#include "runtime/handles.hpp"
50
#include "runtime/handles.inline.hpp"
51
#include "runtime/java.hpp"
52
#include "runtime/vmThread.hpp"
53
#include "services/management.hpp"
54
#include "services/memoryService.hpp"
55
#include "utilities/vmError.hpp"
56
#include "utilities/workgroup.hpp"
57
#include "utilities/macros.hpp"
58
#if INCLUDE_ALL_GCS
59
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
60
#include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
61
#endif // INCLUDE_ALL_GCS
62
#if INCLUDE_JFR
63
#include "jfr/jfr.hpp"
64
#endif // INCLUDE_JFR
65
66
GenCollectedHeap* GenCollectedHeap::_gch;
67
NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
68
69
// The set of potentially parallel tasks in root scanning.
70
enum GCH_strong_roots_tasks {
71
GCH_PS_Universe_oops_do,
72
GCH_PS_JNIHandles_oops_do,
73
GCH_PS_ObjectSynchronizer_oops_do,
74
GCH_PS_FlatProfiler_oops_do,
75
GCH_PS_Management_oops_do,
76
GCH_PS_SystemDictionary_oops_do,
77
GCH_PS_ClassLoaderDataGraph_oops_do,
78
GCH_PS_jvmti_oops_do,
79
GCH_PS_CodeCache_oops_do,
80
GCH_PS_younger_gens,
81
// Leave this one last.
82
GCH_PS_NumElements
83
};
84
85
GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
86
SharedHeap(policy),
87
_gen_policy(policy),
88
_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
89
_full_collections_completed(0)
90
{
91
assert(policy != NULL, "Sanity check");
92
}
93
94
jint GenCollectedHeap::initialize() {
95
CollectedHeap::pre_initialize();
96
97
int i;
98
_n_gens = gen_policy()->number_of_generations();
99
100
// While there are no constraints in the GC code that HeapWordSize
101
// be any particular value, there are multiple other areas in the
102
// system which believe this to be true (e.g. oop->object_size in some
103
// cases incorrectly returns the size in wordSize units rather than
104
// HeapWordSize).
105
guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
106
107
// The heap must be at least as aligned as generations.
108
size_t gen_alignment = Generation::GenGrain;
109
110
_gen_specs = gen_policy()->generations();
111
112
// Make sure the sizes are all aligned.
113
for (i = 0; i < _n_gens; i++) {
114
_gen_specs[i]->align(gen_alignment);
115
}
116
117
// Allocate space for the heap.
118
119
char* heap_address;
120
size_t total_reserved = 0;
121
int n_covered_regions = 0;
122
ReservedSpace heap_rs;
123
124
size_t heap_alignment = collector_policy()->heap_alignment();
125
126
heap_address = allocate(heap_alignment, &total_reserved,
127
&n_covered_regions, &heap_rs);
128
129
if (!heap_rs.is_reserved()) {
130
vm_shutdown_during_initialization(
131
"Could not reserve enough space for object heap");
132
return JNI_ENOMEM;
133
}
134
135
_reserved = MemRegion((HeapWord*)heap_rs.base(),
136
(HeapWord*)(heap_rs.base() + heap_rs.size()));
137
138
// It is important to do this in a way such that concurrent readers can't
139
// temporarily think somethings in the heap. (Seen this happen in asserts.)
140
_reserved.set_word_size(0);
141
_reserved.set_start((HeapWord*)heap_rs.base());
142
size_t actual_heap_size = heap_rs.size();
143
_reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
144
145
_rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
146
set_barrier_set(rem_set()->bs());
147
148
_gch = this;
149
150
for (i = 0; i < _n_gens; i++) {
151
ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
152
_gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
153
heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
154
}
155
clear_incremental_collection_failed();
156
157
#if INCLUDE_ALL_GCS
158
// If we are running CMS, create the collector responsible
159
// for collecting the CMS generations.
160
if (collector_policy()->is_concurrent_mark_sweep_policy()) {
161
bool success = create_cms_collector();
162
if (!success) return JNI_ENOMEM;
163
}
164
#endif // INCLUDE_ALL_GCS
165
166
return JNI_OK;
167
}
168
169
170
char* GenCollectedHeap::allocate(size_t alignment,
171
size_t* _total_reserved,
172
int* _n_covered_regions,
173
ReservedSpace* heap_rs){
174
const char overflow_msg[] = "The size of the object heap + VM data exceeds "
175
"the maximum representable size";
176
177
// Now figure out the total size.
178
size_t total_reserved = 0;
179
int n_covered_regions = 0;
180
const size_t pageSize = UseLargePages ?
181
os::large_page_size() : os::vm_page_size();
182
183
assert(alignment % pageSize == 0, "Must be");
184
185
for (int i = 0; i < _n_gens; i++) {
186
total_reserved += _gen_specs[i]->max_size();
187
if (total_reserved < _gen_specs[i]->max_size()) {
188
vm_exit_during_initialization(overflow_msg);
189
}
190
n_covered_regions += _gen_specs[i]->n_covered_regions();
191
}
192
assert(total_reserved % alignment == 0,
193
err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
194
SIZE_FORMAT, total_reserved, alignment));
195
196
// Needed until the cardtable is fixed to have the right number
197
// of covered regions.
198
n_covered_regions += 2;
199
200
*_total_reserved = total_reserved;
201
*_n_covered_regions = n_covered_regions;
202
203
*heap_rs = Universe::reserve_heap(total_reserved, alignment);
204
return heap_rs->base();
205
}
206
207
208
void GenCollectedHeap::post_initialize() {
209
SharedHeap::post_initialize();
210
TwoGenerationCollectorPolicy *policy =
211
(TwoGenerationCollectorPolicy *)collector_policy();
212
guarantee(policy->is_two_generation_policy(), "Illegal policy type");
213
DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
214
assert(def_new_gen->kind() == Generation::DefNew ||
215
def_new_gen->kind() == Generation::ParNew ||
216
def_new_gen->kind() == Generation::ASParNew,
217
"Wrong generation kind");
218
219
Generation* old_gen = get_gen(1);
220
assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
221
old_gen->kind() == Generation::ASConcurrentMarkSweep ||
222
old_gen->kind() == Generation::MarkSweepCompact,
223
"Wrong generation kind");
224
225
policy->initialize_size_policy(def_new_gen->eden()->capacity(),
226
old_gen->capacity(),
227
def_new_gen->from()->capacity());
228
policy->initialize_gc_policy_counters();
229
}
230
231
void GenCollectedHeap::ref_processing_init() {
232
SharedHeap::ref_processing_init();
233
for (int i = 0; i < _n_gens; i++) {
234
_gens[i]->ref_processor_init();
235
}
236
}
237
238
size_t GenCollectedHeap::capacity() const {
239
size_t res = 0;
240
for (int i = 0; i < _n_gens; i++) {
241
res += _gens[i]->capacity();
242
}
243
return res;
244
}
245
246
size_t GenCollectedHeap::used() const {
247
size_t res = 0;
248
for (int i = 0; i < _n_gens; i++) {
249
res += _gens[i]->used();
250
}
251
return res;
252
}
253
254
// Save the "used_region" for generations level and lower.
255
void GenCollectedHeap::save_used_regions(int level) {
256
assert(level < _n_gens, "Illegal level parameter");
257
for (int i = level; i >= 0; i--) {
258
_gens[i]->save_used_region();
259
}
260
}
261
262
size_t GenCollectedHeap::max_capacity() const {
263
size_t res = 0;
264
for (int i = 0; i < _n_gens; i++) {
265
res += _gens[i]->max_capacity();
266
}
267
return res;
268
}
269
270
// Update the _full_collections_completed counter
271
// at the end of a stop-world full GC.
272
unsigned int GenCollectedHeap::update_full_collections_completed() {
273
MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
274
assert(_full_collections_completed <= _total_full_collections,
275
"Can't complete more collections than were started");
276
_full_collections_completed = _total_full_collections;
277
ml.notify_all();
278
return _full_collections_completed;
279
}
280
281
// Update the _full_collections_completed counter, as appropriate,
282
// at the end of a concurrent GC cycle. Note the conditional update
283
// below to allow this method to be called by a concurrent collector
284
// without synchronizing in any manner with the VM thread (which
285
// may already have initiated a STW full collection "concurrently").
286
unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
287
MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
288
assert((_full_collections_completed <= _total_full_collections) &&
289
(count <= _total_full_collections),
290
"Can't complete more collections than were started");
291
if (count > _full_collections_completed) {
292
_full_collections_completed = count;
293
ml.notify_all();
294
}
295
return _full_collections_completed;
296
}
297
298
299
#ifndef PRODUCT
300
// Override of memory state checking method in CollectedHeap:
301
// Some collectors (CMS for example) can't have badHeapWordVal written
302
// in the first two words of an object. (For instance , in the case of
303
// CMS these words hold state used to synchronize between certain
304
// (concurrent) GC steps and direct allocating mutators.)
305
// The skip_header_HeapWords() method below, allows us to skip
306
// over the requisite number of HeapWord's. Note that (for
307
// generational collectors) this means that those many words are
308
// skipped in each object, irrespective of the generation in which
309
// that object lives. The resultant loss of precision seems to be
310
// harmless and the pain of avoiding that imprecision appears somewhat
311
// higher than we are prepared to pay for such rudimentary debugging
312
// support.
313
void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
314
size_t size) {
315
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
316
// We are asked to check a size in HeapWords,
317
// but the memory is mangled in juint words.
318
juint* start = (juint*) (addr + skip_header_HeapWords());
319
juint* end = (juint*) (addr + size);
320
for (juint* slot = start; slot < end; slot += 1) {
321
assert(*slot == badHeapWordVal,
322
"Found non badHeapWordValue in pre-allocation check");
323
}
324
}
325
}
326
#endif
327
328
HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
329
bool is_tlab,
330
bool first_only) {
331
HeapWord* res;
332
for (int i = 0; i < _n_gens; i++) {
333
if (_gens[i]->should_allocate(size, is_tlab)) {
334
res = _gens[i]->allocate(size, is_tlab);
335
if (res != NULL) return res;
336
else if (first_only) break;
337
}
338
}
339
// Otherwise...
340
return NULL;
341
}
342
343
HeapWord* GenCollectedHeap::mem_allocate(size_t size,
344
bool* gc_overhead_limit_was_exceeded) {
345
return collector_policy()->mem_allocate_work(size,
346
false /* is_tlab */,
347
gc_overhead_limit_was_exceeded);
348
}
349
350
bool GenCollectedHeap::must_clear_all_soft_refs() {
351
return _gc_cause == GCCause::_last_ditch_collection;
352
}
353
354
bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
355
return UseConcMarkSweepGC &&
356
((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
357
(cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
358
}
359
360
void GenCollectedHeap::do_collection(bool full,
361
bool clear_all_soft_refs,
362
size_t size,
363
bool is_tlab,
364
int max_level) {
365
bool prepared_for_verification = false;
366
ResourceMark rm;
367
DEBUG_ONLY(Thread* my_thread = Thread::current();)
368
369
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
370
assert(my_thread->is_VM_thread() ||
371
my_thread->is_ConcurrentGC_thread(),
372
"incorrect thread type capability");
373
assert(Heap_lock->is_locked(),
374
"the requesting thread should have the Heap_lock");
375
guarantee(!is_gc_active(), "collection is not reentrant");
376
assert(max_level < n_gens(), "sanity check");
377
378
if (GC_locker::check_active_before_gc()) {
379
return; // GC is disabled (e.g. JNI GetXXXCritical operation)
380
}
381
382
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
383
collector_policy()->should_clear_all_soft_refs();
384
385
ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
386
387
const size_t metadata_prev_used = MetaspaceAux::used_bytes();
388
389
print_heap_before_gc();
390
391
{
392
FlagSetting fl(_is_gc_active, true);
393
394
bool complete = full && (max_level == (n_gens()-1));
395
const char* gc_cause_prefix = complete ? "Full GC" : "GC";
396
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
397
// The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
398
// so we can assume here that the next GC id is what we want.
399
GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
400
401
gc_prologue(complete);
402
increment_total_collections(complete);
403
404
size_t gch_prev_used = used();
405
406
int starting_level = 0;
407
if (full) {
408
// Search for the oldest generation which will collect all younger
409
// generations, and start collection loop there.
410
for (int i = max_level; i >= 0; i--) {
411
if (_gens[i]->full_collects_younger_generations()) {
412
starting_level = i;
413
break;
414
}
415
}
416
}
417
418
bool must_restore_marks_for_biased_locking = false;
419
420
int max_level_collected = starting_level;
421
for (int i = starting_level; i <= max_level; i++) {
422
if (_gens[i]->should_collect(full, size, is_tlab)) {
423
if (i == n_gens() - 1) { // a major collection is to happen
424
if (!complete) {
425
// The full_collections increment was missed above.
426
increment_total_full_collections();
427
}
428
pre_full_gc_dump(NULL); // do any pre full gc dumps
429
}
430
// Timer for individual generations. Last argument is false: no CR
431
// FIXME: We should try to start the timing earlier to cover more of the GC pause
432
// The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
433
// so we can assume here that the next GC id is what we want.
434
GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL, GCId::peek());
435
TraceCollectorStats tcs(_gens[i]->counters());
436
TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
437
438
size_t prev_used = _gens[i]->used();
439
_gens[i]->stat_record()->invocations++;
440
_gens[i]->stat_record()->accumulated_time.start();
441
442
// Must be done anew before each collection because
443
// a previous collection will do mangling and will
444
// change top of some spaces.
445
record_gen_tops_before_GC();
446
447
if (PrintGC && Verbose) {
448
gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
449
i,
450
_gens[i]->stat_record()->invocations,
451
size*HeapWordSize);
452
}
453
454
if (VerifyBeforeGC && i >= VerifyGCLevel &&
455
total_collections() >= VerifyGCStartAt) {
456
HandleMark hm; // Discard invalid handles created during verification
457
if (!prepared_for_verification) {
458
prepare_for_verify();
459
prepared_for_verification = true;
460
}
461
Universe::verify(" VerifyBeforeGC:");
462
}
463
COMPILER2_PRESENT(DerivedPointerTable::clear());
464
465
if (!must_restore_marks_for_biased_locking &&
466
_gens[i]->performs_in_place_marking()) {
467
// We perform this mark word preservation work lazily
468
// because it's only at this point that we know whether we
469
// absolutely have to do it; we want to avoid doing it for
470
// scavenge-only collections where it's unnecessary
471
must_restore_marks_for_biased_locking = true;
472
BiasedLocking::preserve_marks();
473
}
474
475
// Do collection work
476
{
477
// Note on ref discovery: For what appear to be historical reasons,
478
// GCH enables and disabled (by enqueing) refs discovery.
479
// In the future this should be moved into the generation's
480
// collect method so that ref discovery and enqueueing concerns
481
// are local to a generation. The collect method could return
482
// an appropriate indication in the case that notification on
483
// the ref lock was needed. This will make the treatment of
484
// weak refs more uniform (and indeed remove such concerns
485
// from GCH). XXX
486
487
HandleMark hm; // Discard invalid handles created during gc
488
save_marks(); // save marks for all gens
489
// We want to discover references, but not process them yet.
490
// This mode is disabled in process_discovered_references if the
491
// generation does some collection work, or in
492
// enqueue_discovered_references if the generation returns
493
// without doing any work.
494
ReferenceProcessor* rp = _gens[i]->ref_processor();
495
// If the discovery of ("weak") refs in this generation is
496
// atomic wrt other collectors in this configuration, we
497
// are guaranteed to have empty discovered ref lists.
498
if (rp->discovery_is_atomic()) {
499
rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
500
rp->setup_policy(do_clear_all_soft_refs);
501
} else {
502
// collect() below will enable discovery as appropriate
503
}
504
_gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
505
if (!rp->enqueuing_is_done()) {
506
rp->enqueue_discovered_references();
507
} else {
508
rp->set_enqueuing_is_done(false);
509
}
510
rp->verify_no_references_recorded();
511
}
512
max_level_collected = i;
513
514
// Determine if allocation request was met.
515
if (size > 0) {
516
if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
517
if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
518
size = 0;
519
}
520
}
521
}
522
523
COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
524
525
_gens[i]->stat_record()->accumulated_time.stop();
526
527
update_gc_stats(i, full);
528
529
if (VerifyAfterGC && i >= VerifyGCLevel &&
530
total_collections() >= VerifyGCStartAt) {
531
HandleMark hm; // Discard invalid handles created during verification
532
Universe::verify(" VerifyAfterGC:");
533
}
534
535
if (PrintGCDetails) {
536
gclog_or_tty->print(":");
537
_gens[i]->print_heap_change(prev_used);
538
}
539
}
540
}
541
542
// Update "complete" boolean wrt what actually transpired --
543
// for instance, a promotion failure could have led to
544
// a whole heap collection.
545
complete = complete || (max_level_collected == n_gens() - 1);
546
547
if (complete) { // We did a "major" collection
548
// FIXME: See comment at pre_full_gc_dump call
549
post_full_gc_dump(NULL); // do any post full gc dumps
550
}
551
552
if (PrintGCDetails) {
553
print_heap_change(gch_prev_used);
554
555
// Print metaspace info for full GC with PrintGCDetails flag.
556
if (complete) {
557
MetaspaceAux::print_metaspace_change(metadata_prev_used);
558
}
559
}
560
561
for (int j = max_level_collected; j >= 0; j -= 1) {
562
// Adjust generation sizes.
563
_gens[j]->compute_new_size();
564
}
565
566
if (complete) {
567
// Delete metaspaces for unloaded class loaders and clean up loader_data graph
568
ClassLoaderDataGraph::purge();
569
MetaspaceAux::verify_metrics();
570
// Resize the metaspace capacity after full collections
571
MetaspaceGC::compute_new_size();
572
update_full_collections_completed();
573
}
574
575
// Track memory usage and detect low memory after GC finishes
576
MemoryService::track_memory_usage();
577
578
gc_epilogue(complete);
579
580
if (must_restore_marks_for_biased_locking) {
581
BiasedLocking::restore_marks();
582
}
583
}
584
585
AdaptiveSizePolicy* sp = gen_policy()->size_policy();
586
AdaptiveSizePolicyOutput(sp, total_collections());
587
588
print_heap_after_gc();
589
590
#ifdef TRACESPINNING
591
ParallelTaskTerminator::print_termination_counts();
592
#endif
593
}
594
595
HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
596
return collector_policy()->satisfy_failed_allocation(size, is_tlab);
597
}
598
599
void GenCollectedHeap::set_par_threads(uint t) {
600
SharedHeap::set_par_threads(t);
601
set_n_termination(t);
602
}
603
604
void GenCollectedHeap::set_n_termination(uint t) {
605
_process_strong_tasks->set_n_threads(t);
606
}
607
608
#ifdef ASSERT
609
class AssertNonScavengableClosure: public OopClosure {
610
public:
611
virtual void do_oop(oop* p) {
612
assert(!Universe::heap()->is_in_partial_collection(*p),
613
"Referent should not be scavengable."); }
614
virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
615
};
616
static AssertNonScavengableClosure assert_is_non_scavengable_closure;
617
#endif
618
619
void GenCollectedHeap::process_roots(bool activate_scope,
620
ScanningOption so,
621
OopClosure* strong_roots,
622
OopClosure* weak_roots,
623
CLDClosure* strong_cld_closure,
624
CLDClosure* weak_cld_closure,
625
CodeBlobToOopClosure* code_roots) {
626
StrongRootsScope srs(this, activate_scope);
627
628
// General roots.
629
assert(_strong_roots_parity != 0, "must have called prologue code");
630
assert(code_roots != NULL, "code root closure should always be set");
631
// _n_termination for _process_strong_tasks should be set up stream
632
// in a method not running in a GC worker. Otherwise the GC worker
633
// could be trying to change the termination condition while the task
634
// is executing in another GC worker.
635
636
if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
637
ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
638
}
639
640
// Some CLDs contained in the thread frames should be considered strong.
641
// Don't process them if they will be processed during the ClassLoaderDataGraph phase.
642
CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
643
// Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
644
CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
645
646
Threads::possibly_parallel_oops_do(strong_roots, roots_from_clds_p, roots_from_code_p);
647
648
if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
649
Universe::oops_do(strong_roots);
650
}
651
// Global (strong) JNI handles
652
if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
653
JNIHandles::oops_do(strong_roots);
654
}
655
656
if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
657
ObjectSynchronizer::oops_do(strong_roots);
658
}
659
if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
660
FlatProfiler::oops_do(strong_roots);
661
}
662
if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
663
Management::oops_do(strong_roots);
664
}
665
if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
666
JvmtiExport::oops_do(strong_roots);
667
}
668
669
if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
670
SystemDictionary::roots_oops_do(strong_roots, weak_roots);
671
}
672
673
// All threads execute the following. A specific chunk of buckets
674
// from the StringTable are the individual tasks.
675
if (weak_roots != NULL) {
676
if (CollectedHeap::use_parallel_gc_threads()) {
677
StringTable::possibly_parallel_oops_do(weak_roots);
678
} else {
679
StringTable::oops_do(weak_roots);
680
}
681
}
682
683
if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
684
if (so & SO_ScavengeCodeCache) {
685
assert(code_roots != NULL, "must supply closure for code cache");
686
687
// We only visit parts of the CodeCache when scavenging.
688
CodeCache::scavenge_root_nmethods_do(code_roots);
689
}
690
if (so & SO_AllCodeCache) {
691
assert(code_roots != NULL, "must supply closure for code cache");
692
693
// CMSCollector uses this to do intermediate-strength collections.
694
// We scan the entire code cache, since CodeCache::do_unloading is not called.
695
CodeCache::blobs_do(code_roots);
696
}
697
// Verify that the code cache contents are not subject to
698
// movement by a scavenging collection.
699
DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
700
DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
701
}
702
703
}
704
705
void GenCollectedHeap::gen_process_roots(int level,
706
bool younger_gens_as_roots,
707
bool activate_scope,
708
ScanningOption so,
709
bool only_strong_roots,
710
OopsInGenClosure* not_older_gens,
711
OopsInGenClosure* older_gens,
712
CLDClosure* cld_closure) {
713
const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
714
715
bool is_moving_collection = false;
716
if (level == 0 || is_adjust_phase) {
717
// young collections are always moving
718
is_moving_collection = true;
719
}
720
721
MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
722
OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
723
CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
724
725
process_roots(activate_scope, so,
726
not_older_gens, weak_roots,
727
cld_closure, weak_cld_closure,
728
&mark_code_closure);
729
730
if (younger_gens_as_roots) {
731
if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
732
for (int i = 0; i < level; i++) {
733
not_older_gens->set_generation(_gens[i]);
734
_gens[i]->oop_iterate(not_older_gens);
735
}
736
not_older_gens->reset_generation();
737
}
738
}
739
// When collection is parallel, all threads get to cooperate to do
740
// older-gen scanning.
741
for (int i = level+1; i < _n_gens; i++) {
742
older_gens->set_generation(_gens[i]);
743
rem_set()->younger_refs_iterate(_gens[i], older_gens);
744
older_gens->reset_generation();
745
}
746
747
_process_strong_tasks->all_tasks_completed();
748
}
749
750
751
void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
752
JNIHandles::weak_oops_do(root_closure);
753
JFR_ONLY(Jfr::weak_oops_do(root_closure));
754
for (int i = 0; i < _n_gens; i++) {
755
_gens[i]->ref_processor()->weak_oops_do(root_closure);
756
}
757
}
758
759
#define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \
760
void GenCollectedHeap:: \
761
oop_since_save_marks_iterate(int level, \
762
OopClosureType* cur, \
763
OopClosureType* older) { \
764
_gens[level]->oop_since_save_marks_iterate##nv_suffix(cur); \
765
for (int i = level+1; i < n_gens(); i++) { \
766
_gens[i]->oop_since_save_marks_iterate##nv_suffix(older); \
767
} \
768
}
769
770
ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
771
772
#undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
773
774
bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
775
for (int i = level; i < _n_gens; i++) {
776
if (!_gens[i]->no_allocs_since_save_marks()) return false;
777
}
778
return true;
779
}
780
781
bool GenCollectedHeap::supports_inline_contig_alloc() const {
782
return _gens[0]->supports_inline_contig_alloc();
783
}
784
785
HeapWord** GenCollectedHeap::top_addr() const {
786
return _gens[0]->top_addr();
787
}
788
789
HeapWord** GenCollectedHeap::end_addr() const {
790
return _gens[0]->end_addr();
791
}
792
793
// public collection interfaces
794
795
void GenCollectedHeap::collect(GCCause::Cause cause) {
796
if (should_do_concurrent_full_gc(cause)) {
797
#if INCLUDE_ALL_GCS
798
// mostly concurrent full collection
799
collect_mostly_concurrent(cause);
800
#else // INCLUDE_ALL_GCS
801
ShouldNotReachHere();
802
#endif // INCLUDE_ALL_GCS
803
} else if ((cause == GCCause::_wb_young_gc) ||
804
(cause == GCCause::_gc_locker)) {
805
// minor collection for WhiteBox or GCLocker.
806
// _gc_locker collections upgraded by GCLockerInvokesConcurrent
807
// are handled above and never discarded.
808
collect(cause, 0);
809
} else {
810
#ifdef ASSERT
811
if (cause == GCCause::_scavenge_alot) {
812
// minor collection only
813
collect(cause, 0);
814
} else {
815
// Stop-the-world full collection
816
collect(cause, n_gens() - 1);
817
}
818
#else
819
// Stop-the-world full collection
820
collect(cause, n_gens() - 1);
821
#endif
822
}
823
}
824
825
void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
826
// The caller doesn't have the Heap_lock
827
assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
828
MutexLocker ml(Heap_lock);
829
collect_locked(cause, max_level);
830
}
831
832
void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
833
// The caller has the Heap_lock
834
assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
835
collect_locked(cause, n_gens() - 1);
836
}
837
838
// this is the private collection interface
839
// The Heap_lock is expected to be held on entry.
840
841
void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
842
// Read the GC count while holding the Heap_lock
843
unsigned int gc_count_before = total_collections();
844
unsigned int full_gc_count_before = total_full_collections();
845
846
if (GC_locker::should_discard(cause, gc_count_before)) {
847
return;
848
}
849
850
{
851
MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
852
VM_GenCollectFull op(gc_count_before, full_gc_count_before,
853
cause, max_level);
854
VMThread::execute(&op);
855
}
856
}
857
858
#if INCLUDE_ALL_GCS
859
bool GenCollectedHeap::create_cms_collector() {
860
861
assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
862
(_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
863
"Unexpected generation kinds");
864
// Skip two header words in the block content verification
865
NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
866
CMSCollector* collector = new CMSCollector(
867
(ConcurrentMarkSweepGeneration*)_gens[1],
868
_rem_set->as_CardTableRS(),
869
(ConcurrentMarkSweepPolicy*) collector_policy());
870
871
if (collector == NULL || !collector->completed_initialization()) {
872
if (collector) {
873
delete collector; // Be nice in embedded situation
874
}
875
vm_shutdown_during_initialization("Could not create CMS collector");
876
return false;
877
}
878
return true; // success
879
}
880
881
void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
882
assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
883
884
MutexLocker ml(Heap_lock);
885
// Read the GC counts while holding the Heap_lock
886
unsigned int full_gc_count_before = total_full_collections();
887
unsigned int gc_count_before = total_collections();
888
{
889
MutexUnlocker mu(Heap_lock);
890
VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
891
VMThread::execute(&op);
892
}
893
}
894
#endif // INCLUDE_ALL_GCS
895
896
void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
897
do_full_collection(clear_all_soft_refs, _n_gens - 1);
898
}
899
900
void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
901
int max_level) {
902
903
do_collection(true /* full */,
904
clear_all_soft_refs /* clear_all_soft_refs */,
905
0 /* size */,
906
false /* is_tlab */,
907
max_level /* max_level */);
908
// Hack XXX FIX ME !!!
909
// A scavenge may not have been attempted, or may have
910
// been attempted and failed, because the old gen was too full
911
if (gc_cause() == GCCause::_gc_locker && incremental_collection_failed()) {
912
if (PrintGCDetails) {
913
gclog_or_tty->print_cr("GC locker: Trying a full collection "
914
"because scavenge failed");
915
}
916
// This time allow the old gen to be collected as well
917
do_collection(true /* full */,
918
clear_all_soft_refs /* clear_all_soft_refs */,
919
0 /* size */,
920
false /* is_tlab */,
921
n_gens() - 1 /* max_level */);
922
}
923
}
924
925
bool GenCollectedHeap::is_in_young(oop p) {
926
bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
927
assert(result == _gens[0]->is_in_reserved(p),
928
err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, p2i((void*)p)));
929
return result;
930
}
931
932
// Returns "TRUE" iff "p" points into the committed areas of the heap.
933
bool GenCollectedHeap::is_in(const void* p) const {
934
#ifndef ASSERT
935
guarantee(VerifyBeforeGC ||
936
VerifyDuringGC ||
937
VerifyBeforeExit ||
938
VerifyDuringStartup ||
939
PrintAssembly ||
940
tty->count() != 0 || // already printing
941
VerifyAfterGC ||
942
VMError::fatal_error_in_progress(), "too expensive");
943
944
#endif
945
// This might be sped up with a cache of the last generation that
946
// answered yes.
947
for (int i = 0; i < _n_gens; i++) {
948
if (_gens[i]->is_in(p)) return true;
949
}
950
// Otherwise...
951
return false;
952
}
953
954
#ifdef ASSERT
955
// Don't implement this by using is_in_young(). This method is used
956
// in some cases to check that is_in_young() is correct.
957
bool GenCollectedHeap::is_in_partial_collection(const void* p) {
958
assert(is_in_reserved(p) || p == NULL,
959
"Does not work if address is non-null and outside of the heap");
960
return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
961
}
962
#endif
963
964
void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
965
for (int i = 0; i < _n_gens; i++) {
966
_gens[i]->oop_iterate(cl);
967
}
968
}
969
970
void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
971
for (int i = 0; i < _n_gens; i++) {
972
_gens[i]->object_iterate(cl);
973
}
974
}
975
976
void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
977
for (int i = 0; i < _n_gens; i++) {
978
_gens[i]->safe_object_iterate(cl);
979
}
980
}
981
982
Space* GenCollectedHeap::space_containing(const void* addr) const {
983
for (int i = 0; i < _n_gens; i++) {
984
Space* res = _gens[i]->space_containing(addr);
985
if (res != NULL) return res;
986
}
987
// Otherwise...
988
assert(false, "Could not find containing space");
989
return NULL;
990
}
991
992
993
HeapWord* GenCollectedHeap::block_start(const void* addr) const {
994
assert(is_in_reserved(addr), "block_start of address outside of heap");
995
for (int i = 0; i < _n_gens; i++) {
996
if (_gens[i]->is_in_reserved(addr)) {
997
assert(_gens[i]->is_in(addr),
998
"addr should be in allocated part of generation");
999
return _gens[i]->block_start(addr);
1000
}
1001
}
1002
assert(false, "Some generation should contain the address");
1003
return NULL;
1004
}
1005
1006
size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1007
assert(is_in_reserved(addr), "block_size of address outside of heap");
1008
for (int i = 0; i < _n_gens; i++) {
1009
if (_gens[i]->is_in_reserved(addr)) {
1010
assert(_gens[i]->is_in(addr),
1011
"addr should be in allocated part of generation");
1012
return _gens[i]->block_size(addr);
1013
}
1014
}
1015
assert(false, "Some generation should contain the address");
1016
return 0;
1017
}
1018
1019
bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1020
assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1021
assert(block_start(addr) == addr, "addr must be a block start");
1022
for (int i = 0; i < _n_gens; i++) {
1023
if (_gens[i]->is_in_reserved(addr)) {
1024
return _gens[i]->block_is_obj(addr);
1025
}
1026
}
1027
assert(false, "Some generation should contain the address");
1028
return false;
1029
}
1030
1031
bool GenCollectedHeap::supports_tlab_allocation() const {
1032
for (int i = 0; i < _n_gens; i += 1) {
1033
if (_gens[i]->supports_tlab_allocation()) {
1034
return true;
1035
}
1036
}
1037
return false;
1038
}
1039
1040
size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1041
size_t result = 0;
1042
for (int i = 0; i < _n_gens; i += 1) {
1043
if (_gens[i]->supports_tlab_allocation()) {
1044
result += _gens[i]->tlab_capacity();
1045
}
1046
}
1047
return result;
1048
}
1049
1050
size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1051
size_t result = 0;
1052
for (int i = 0; i < _n_gens; i += 1) {
1053
if (_gens[i]->supports_tlab_allocation()) {
1054
result += _gens[i]->tlab_used();
1055
}
1056
}
1057
return result;
1058
}
1059
1060
size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1061
size_t result = 0;
1062
for (int i = 0; i < _n_gens; i += 1) {
1063
if (_gens[i]->supports_tlab_allocation()) {
1064
result += _gens[i]->unsafe_max_tlab_alloc();
1065
}
1066
}
1067
return result;
1068
}
1069
1070
HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1071
bool gc_overhead_limit_was_exceeded;
1072
return collector_policy()->mem_allocate_work(size /* size */,
1073
true /* is_tlab */,
1074
&gc_overhead_limit_was_exceeded);
1075
}
1076
1077
// Requires "*prev_ptr" to be non-NULL. Deletes and a block of minimal size
1078
// from the list headed by "*prev_ptr".
1079
static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1080
bool first = true;
1081
size_t min_size = 0; // "first" makes this conceptually infinite.
1082
ScratchBlock **smallest_ptr, *smallest;
1083
ScratchBlock *cur = *prev_ptr;
1084
while (cur) {
1085
assert(*prev_ptr == cur, "just checking");
1086
if (first || cur->num_words < min_size) {
1087
smallest_ptr = prev_ptr;
1088
smallest = cur;
1089
min_size = smallest->num_words;
1090
first = false;
1091
}
1092
prev_ptr = &cur->next;
1093
cur = cur->next;
1094
}
1095
smallest = *smallest_ptr;
1096
*smallest_ptr = smallest->next;
1097
return smallest;
1098
}
1099
1100
// Sort the scratch block list headed by res into decreasing size order,
1101
// and set "res" to the result.
1102
static void sort_scratch_list(ScratchBlock*& list) {
1103
ScratchBlock* sorted = NULL;
1104
ScratchBlock* unsorted = list;
1105
while (unsorted) {
1106
ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1107
smallest->next = sorted;
1108
sorted = smallest;
1109
}
1110
list = sorted;
1111
}
1112
1113
ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1114
size_t max_alloc_words) {
1115
ScratchBlock* res = NULL;
1116
for (int i = 0; i < _n_gens; i++) {
1117
_gens[i]->contribute_scratch(res, requestor, max_alloc_words);
1118
}
1119
sort_scratch_list(res);
1120
return res;
1121
}
1122
1123
void GenCollectedHeap::release_scratch() {
1124
for (int i = 0; i < _n_gens; i++) {
1125
_gens[i]->reset_scratch();
1126
}
1127
}
1128
1129
class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1130
void do_generation(Generation* gen) {
1131
gen->prepare_for_verify();
1132
}
1133
};
1134
1135
void GenCollectedHeap::prepare_for_verify() {
1136
ensure_parsability(false); // no need to retire TLABs
1137
GenPrepareForVerifyClosure blk;
1138
generation_iterate(&blk, false);
1139
}
1140
1141
1142
void GenCollectedHeap::generation_iterate(GenClosure* cl,
1143
bool old_to_young) {
1144
if (old_to_young) {
1145
for (int i = _n_gens-1; i >= 0; i--) {
1146
cl->do_generation(_gens[i]);
1147
}
1148
} else {
1149
for (int i = 0; i < _n_gens; i++) {
1150
cl->do_generation(_gens[i]);
1151
}
1152
}
1153
}
1154
1155
void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1156
for (int i = 0; i < _n_gens; i++) {
1157
_gens[i]->space_iterate(cl, true);
1158
}
1159
}
1160
1161
bool GenCollectedHeap::is_maximal_no_gc() const {
1162
for (int i = 0; i < _n_gens; i++) {
1163
if (!_gens[i]->is_maximal_no_gc()) {
1164
return false;
1165
}
1166
}
1167
return true;
1168
}
1169
1170
void GenCollectedHeap::save_marks() {
1171
for (int i = 0; i < _n_gens; i++) {
1172
_gens[i]->save_marks();
1173
}
1174
}
1175
1176
GenCollectedHeap* GenCollectedHeap::heap() {
1177
assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1178
assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1179
return _gch;
1180
}
1181
1182
1183
void GenCollectedHeap::prepare_for_compaction() {
1184
guarantee(_n_gens == 2, "Wrong number of generations");
1185
Generation* old_gen = _gens[1];
1186
// Start by compacting into same gen.
1187
CompactPoint cp(old_gen);
1188
old_gen->prepare_for_compaction(&cp);
1189
Generation* young_gen = _gens[0];
1190
young_gen->prepare_for_compaction(&cp);
1191
}
1192
1193
GCStats* GenCollectedHeap::gc_stats(int level) const {
1194
return _gens[level]->gc_stats();
1195
}
1196
1197
void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1198
for (int i = _n_gens-1; i >= 0; i--) {
1199
Generation* g = _gens[i];
1200
if (!silent) {
1201
gclog_or_tty->print("%s", g->name());
1202
gclog_or_tty->print(" ");
1203
}
1204
g->verify();
1205
}
1206
if (!silent) {
1207
gclog_or_tty->print("remset ");
1208
}
1209
rem_set()->verify();
1210
}
1211
1212
void GenCollectedHeap::print_on(outputStream* st) const {
1213
for (int i = 0; i < _n_gens; i++) {
1214
_gens[i]->print_on(st);
1215
}
1216
MetaspaceAux::print_on(st);
1217
}
1218
1219
void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1220
if (workers() != NULL) {
1221
workers()->threads_do(tc);
1222
}
1223
#if INCLUDE_ALL_GCS
1224
if (UseConcMarkSweepGC) {
1225
ConcurrentMarkSweepThread::threads_do(tc);
1226
}
1227
#endif // INCLUDE_ALL_GCS
1228
}
1229
1230
void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1231
#if INCLUDE_ALL_GCS
1232
if (UseParNewGC) {
1233
workers()->print_worker_threads_on(st);
1234
}
1235
if (UseConcMarkSweepGC) {
1236
ConcurrentMarkSweepThread::print_all_on(st);
1237
}
1238
#endif // INCLUDE_ALL_GCS
1239
}
1240
1241
void GenCollectedHeap::print_on_error(outputStream* st) const {
1242
this->CollectedHeap::print_on_error(st);
1243
1244
#if INCLUDE_ALL_GCS
1245
if (UseConcMarkSweepGC) {
1246
st->cr();
1247
CMSCollector::print_on_error(st);
1248
}
1249
#endif // INCLUDE_ALL_GCS
1250
}
1251
1252
void GenCollectedHeap::print_tracing_info() const {
1253
if (TraceGen0Time) {
1254
get_gen(0)->print_summary_info();
1255
}
1256
if (TraceGen1Time) {
1257
get_gen(1)->print_summary_info();
1258
}
1259
}
1260
1261
void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1262
if (PrintGCDetails && Verbose) {
1263
gclog_or_tty->print(" " SIZE_FORMAT
1264
"->" SIZE_FORMAT
1265
"(" SIZE_FORMAT ")",
1266
prev_used, used(), capacity());
1267
} else {
1268
gclog_or_tty->print(" " SIZE_FORMAT "K"
1269
"->" SIZE_FORMAT "K"
1270
"(" SIZE_FORMAT "K)",
1271
prev_used / K, used() / K, capacity() / K);
1272
}
1273
}
1274
1275
class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1276
private:
1277
bool _full;
1278
public:
1279
void do_generation(Generation* gen) {
1280
gen->gc_prologue(_full);
1281
}
1282
GenGCPrologueClosure(bool full) : _full(full) {};
1283
};
1284
1285
void GenCollectedHeap::gc_prologue(bool full) {
1286
assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1287
1288
always_do_update_barrier = false;
1289
// Fill TLAB's and such
1290
CollectedHeap::accumulate_statistics_all_tlabs();
1291
ensure_parsability(true); // retire TLABs
1292
1293
// Walk generations
1294
GenGCPrologueClosure blk(full);
1295
generation_iterate(&blk, false); // not old-to-young.
1296
};
1297
1298
class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1299
private:
1300
bool _full;
1301
public:
1302
void do_generation(Generation* gen) {
1303
gen->gc_epilogue(_full);
1304
}
1305
GenGCEpilogueClosure(bool full) : _full(full) {};
1306
};
1307
1308
void GenCollectedHeap::gc_epilogue(bool full) {
1309
#ifdef COMPILER2
1310
assert(DerivedPointerTable::is_empty(), "derived pointer present");
1311
size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1312
guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1313
#endif /* COMPILER2 */
1314
1315
resize_all_tlabs();
1316
1317
GenGCEpilogueClosure blk(full);
1318
generation_iterate(&blk, false); // not old-to-young.
1319
1320
if (!CleanChunkPoolAsync) {
1321
Chunk::clean_chunk_pool();
1322
}
1323
1324
MetaspaceCounters::update_performance_counters();
1325
CompressedClassSpaceCounters::update_performance_counters();
1326
1327
always_do_update_barrier = UseConcMarkSweepGC;
1328
};
1329
1330
#ifndef PRODUCT
1331
class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1332
private:
1333
public:
1334
void do_generation(Generation* gen) {
1335
gen->record_spaces_top();
1336
}
1337
};
1338
1339
void GenCollectedHeap::record_gen_tops_before_GC() {
1340
if (ZapUnusedHeapArea) {
1341
GenGCSaveTopsBeforeGCClosure blk;
1342
generation_iterate(&blk, false); // not old-to-young.
1343
}
1344
}
1345
#endif // not PRODUCT
1346
1347
class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1348
public:
1349
void do_generation(Generation* gen) {
1350
gen->ensure_parsability();
1351
}
1352
};
1353
1354
void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1355
CollectedHeap::ensure_parsability(retire_tlabs);
1356
GenEnsureParsabilityClosure ep_cl;
1357
generation_iterate(&ep_cl, false);
1358
}
1359
1360
oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1361
oop obj,
1362
size_t obj_size) {
1363
guarantee(old_gen->level() == 1, "We only get here with an old generation");
1364
assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1365
HeapWord* result = NULL;
1366
1367
result = old_gen->expand_and_allocate(obj_size, false);
1368
1369
if (result != NULL) {
1370
Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1371
}
1372
return oop(result);
1373
}
1374
1375
class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1376
jlong _time; // in ms
1377
jlong _now; // in ms
1378
1379
public:
1380
GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1381
1382
jlong time() { return _time; }
1383
1384
void do_generation(Generation* gen) {
1385
_time = MIN2(_time, gen->time_of_last_gc(_now));
1386
}
1387
};
1388
1389
jlong GenCollectedHeap::millis_since_last_gc() {
1390
// We need a monotonically non-deccreasing time in ms but
1391
// os::javaTimeMillis() does not guarantee monotonicity.
1392
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1393
GenTimeOfLastGCClosure tolgc_cl(now);
1394
// iterate over generations getting the oldest
1395
// time that a generation was collected
1396
generation_iterate(&tolgc_cl, false);
1397
1398
// javaTimeNanos() is guaranteed to be monotonically non-decreasing
1399
// provided the underlying platform provides such a time source
1400
// (and it is bug free). So we still have to guard against getting
1401
// back a time later than 'now'.
1402
jlong retVal = now - tolgc_cl.time();
1403
if (retVal < 0) {
1404
NOT_PRODUCT(warning("time warp: " INT64_FORMAT, (int64_t) retVal);)
1405
return 0;
1406
}
1407
return retVal;
1408
}
1409
1410