Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/memory/genCollectedHeap.hpp
32285 views
1
/*
2
* Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
26
#define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
27
28
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
29
#include "memory/collectorPolicy.hpp"
30
#include "memory/generation.hpp"
31
#include "memory/sharedHeap.hpp"
32
33
class SubTasksDone;
34
35
// A "GenCollectedHeap" is a SharedHeap that uses generational
36
// collection. It is represented with a sequence of Generation's.
37
class GenCollectedHeap : public SharedHeap {
38
friend class GenCollectorPolicy;
39
friend class Generation;
40
friend class DefNewGeneration;
41
friend class TenuredGeneration;
42
friend class ConcurrentMarkSweepGeneration;
43
friend class CMSCollector;
44
friend class GenMarkSweep;
45
friend class VM_GenCollectForAllocation;
46
friend class VM_GenCollectFull;
47
friend class VM_GenCollectFullConcurrent;
48
friend class VM_GC_HeapInspection;
49
friend class VM_HeapDumper;
50
friend class HeapInspection;
51
friend class GCCauseSetter;
52
friend class VMStructs;
53
public:
54
enum SomeConstants {
55
max_gens = 10
56
};
57
58
friend class VM_PopulateDumpSharedSpace;
59
60
protected:
61
// Fields:
62
static GenCollectedHeap* _gch;
63
64
private:
65
int _n_gens;
66
Generation* _gens[max_gens];
67
GenerationSpec** _gen_specs;
68
69
// The generational collector policy.
70
GenCollectorPolicy* _gen_policy;
71
72
// Indicates that the most recent previous incremental collection failed.
73
// The flag is cleared when an action is taken that might clear the
74
// condition that caused that incremental collection to fail.
75
bool _incremental_collection_failed;
76
77
// In support of ExplicitGCInvokesConcurrent functionality
78
unsigned int _full_collections_completed;
79
80
// Data structure for claiming the (potentially) parallel tasks in
81
// (gen-specific) roots processing.
82
SubTasksDone* _process_strong_tasks;
83
84
// In block contents verification, the number of header words to skip
85
NOT_PRODUCT(static size_t _skip_header_HeapWords;)
86
87
protected:
88
// Helper functions for allocation
89
HeapWord* attempt_allocation(size_t size,
90
bool is_tlab,
91
bool first_only);
92
93
// Helper function for two callbacks below.
94
// Considers collection of the first max_level+1 generations.
95
void do_collection(bool full,
96
bool clear_all_soft_refs,
97
size_t size,
98
bool is_tlab,
99
int max_level);
100
101
// Callback from VM_GenCollectForAllocation operation.
102
// This function does everything necessary/possible to satisfy an
103
// allocation request that failed in the youngest generation that should
104
// have handled it (including collection, expansion, etc.)
105
HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
106
107
// Callback from VM_GenCollectFull operation.
108
// Perform a full collection of the first max_level+1 generations.
109
virtual void do_full_collection(bool clear_all_soft_refs);
110
void do_full_collection(bool clear_all_soft_refs, int max_level);
111
112
// Does the "cause" of GC indicate that
113
// we absolutely __must__ clear soft refs?
114
bool must_clear_all_soft_refs();
115
116
public:
117
GenCollectedHeap(GenCollectorPolicy *policy);
118
119
GCStats* gc_stats(int level) const;
120
121
// Returns JNI_OK on success
122
virtual jint initialize();
123
char* allocate(size_t alignment,
124
size_t* _total_reserved, int* _n_covered_regions,
125
ReservedSpace* heap_rs);
126
127
// Does operations required after initialization has been done.
128
void post_initialize();
129
130
// Initialize ("weak") refs processing support
131
virtual void ref_processing_init();
132
133
virtual CollectedHeap::Name kind() const {
134
return CollectedHeap::GenCollectedHeap;
135
}
136
137
// The generational collector policy.
138
GenCollectorPolicy* gen_policy() const { return _gen_policy; }
139
virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
140
141
// Adaptive size policy
142
virtual AdaptiveSizePolicy* size_policy() {
143
return gen_policy()->size_policy();
144
}
145
146
// Return the (conservative) maximum heap alignment
147
static size_t conservative_max_heap_alignment() {
148
return Generation::GenGrain;
149
}
150
151
size_t capacity() const;
152
size_t used() const;
153
154
// Save the "used_region" for generations level and lower.
155
void save_used_regions(int level);
156
157
size_t max_capacity() const;
158
159
HeapWord* mem_allocate(size_t size,
160
bool* gc_overhead_limit_was_exceeded);
161
162
// We may support a shared contiguous allocation area, if the youngest
163
// generation does.
164
bool supports_inline_contig_alloc() const;
165
HeapWord** top_addr() const;
166
HeapWord** end_addr() const;
167
168
// Does this heap support heap inspection? (+PrintClassHistogram)
169
virtual bool supports_heap_inspection() const { return true; }
170
171
// Perform a full collection of the heap; intended for use in implementing
172
// "System.gc". This implies as full a collection as the CollectedHeap
173
// supports. Caller does not hold the Heap_lock on entry.
174
void collect(GCCause::Cause cause);
175
176
// The same as above but assume that the caller holds the Heap_lock.
177
void collect_locked(GCCause::Cause cause);
178
179
// Perform a full collection of the first max_level+1 generations.
180
// Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
181
void collect(GCCause::Cause cause, int max_level);
182
183
// Returns "TRUE" iff "p" points into the committed areas of the heap.
184
// The methods is_in(), is_in_closed_subset() and is_in_youngest() may
185
// be expensive to compute in general, so, to prevent
186
// their inadvertent use in product jvm's, we restrict their use to
187
// assertion checking or verification only.
188
bool is_in(const void* p) const;
189
190
// override
191
bool is_in_closed_subset(const void* p) const {
192
if (UseConcMarkSweepGC) {
193
return is_in_reserved(p);
194
} else {
195
return is_in(p);
196
}
197
}
198
199
// Returns true if the reference is to an object in the reserved space
200
// for the young generation.
201
// Assumes the the young gen address range is less than that of the old gen.
202
bool is_in_young(oop p);
203
204
#ifdef ASSERT
205
virtual bool is_in_partial_collection(const void* p);
206
#endif
207
208
virtual bool is_scavengable(const void* addr) {
209
return is_in_young((oop)addr);
210
}
211
212
// Iteration functions.
213
void oop_iterate(ExtendedOopClosure* cl);
214
void object_iterate(ObjectClosure* cl);
215
void safe_object_iterate(ObjectClosure* cl);
216
Space* space_containing(const void* addr) const;
217
218
// A CollectedHeap is divided into a dense sequence of "blocks"; that is,
219
// each address in the (reserved) heap is a member of exactly
220
// one block. The defining characteristic of a block is that it is
221
// possible to find its size, and thus to progress forward to the next
222
// block. (Blocks may be of different sizes.) Thus, blocks may
223
// represent Java objects, or they might be free blocks in a
224
// free-list-based heap (or subheap), as long as the two kinds are
225
// distinguishable and the size of each is determinable.
226
227
// Returns the address of the start of the "block" that contains the
228
// address "addr". We say "blocks" instead of "object" since some heaps
229
// may not pack objects densely; a chunk may either be an object or a
230
// non-object.
231
virtual HeapWord* block_start(const void* addr) const;
232
233
// Requires "addr" to be the start of a chunk, and returns its size.
234
// "addr + size" is required to be the start of a new chunk, or the end
235
// of the active area of the heap. Assumes (and verifies in non-product
236
// builds) that addr is in the allocated part of the heap and is
237
// the start of a chunk.
238
virtual size_t block_size(const HeapWord* addr) const;
239
240
// Requires "addr" to be the start of a block, and returns "TRUE" iff
241
// the block is an object. Assumes (and verifies in non-product
242
// builds) that addr is in the allocated part of the heap and is
243
// the start of a chunk.
244
virtual bool block_is_obj(const HeapWord* addr) const;
245
246
// Section on TLAB's.
247
virtual bool supports_tlab_allocation() const;
248
virtual size_t tlab_capacity(Thread* thr) const;
249
virtual size_t tlab_used(Thread* thr) const;
250
virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
251
virtual HeapWord* allocate_new_tlab(size_t size);
252
253
// Can a compiler initialize a new object without store barriers?
254
// This permission only extends from the creation of a new object
255
// via a TLAB up to the first subsequent safepoint.
256
virtual bool can_elide_tlab_store_barriers() const {
257
return true;
258
}
259
260
virtual bool card_mark_must_follow_store() const {
261
return UseConcMarkSweepGC;
262
}
263
264
// We don't need barriers for stores to objects in the
265
// young gen and, a fortiori, for initializing stores to
266
// objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
267
// only and may need to be re-examined in case other
268
// kinds of collectors are implemented in the future.
269
virtual bool can_elide_initializing_store_barrier(oop new_obj) {
270
// We wanted to assert that:-
271
// assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
272
// "Check can_elide_initializing_store_barrier() for this collector");
273
// but unfortunately the flag UseSerialGC need not necessarily always
274
// be set when DefNew+Tenured are being used.
275
return is_in_young(new_obj);
276
}
277
278
// The "requestor" generation is performing some garbage collection
279
// action for which it would be useful to have scratch space. The
280
// requestor promises to allocate no more than "max_alloc_words" in any
281
// older generation (via promotion say.) Any blocks of space that can
282
// be provided are returned as a list of ScratchBlocks, sorted by
283
// decreasing size.
284
ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
285
// Allow each generation to reset any scratch space that it has
286
// contributed as it needs.
287
void release_scratch();
288
289
// Ensure parsability: override
290
virtual void ensure_parsability(bool retire_tlabs);
291
292
// Time in ms since the longest time a collector ran in
293
// in any generation.
294
virtual jlong millis_since_last_gc();
295
296
// Total number of full collections completed.
297
unsigned int total_full_collections_completed() {
298
assert(_full_collections_completed <= _total_full_collections,
299
"Can't complete more collections than were started");
300
return _full_collections_completed;
301
}
302
303
// Update above counter, as appropriate, at the end of a stop-world GC cycle
304
unsigned int update_full_collections_completed();
305
// Update above counter, as appropriate, at the end of a concurrent GC cycle
306
unsigned int update_full_collections_completed(unsigned int count);
307
308
// Update "time of last gc" for all constituent generations
309
// to "now".
310
void update_time_of_last_gc(jlong now) {
311
for (int i = 0; i < _n_gens; i++) {
312
_gens[i]->update_time_of_last_gc(now);
313
}
314
}
315
316
// Update the gc statistics for each generation.
317
// "level" is the level of the lastest collection
318
void update_gc_stats(int current_level, bool full) {
319
for (int i = 0; i < _n_gens; i++) {
320
_gens[i]->update_gc_stats(current_level, full);
321
}
322
}
323
324
// Override.
325
bool no_gc_in_progress() { return !is_gc_active(); }
326
327
// Override.
328
void prepare_for_verify();
329
330
// Override.
331
void verify(bool silent, VerifyOption option);
332
333
// Override.
334
virtual void print_on(outputStream* st) const;
335
virtual void print_gc_threads_on(outputStream* st) const;
336
virtual void gc_threads_do(ThreadClosure* tc) const;
337
virtual void print_tracing_info() const;
338
virtual void print_on_error(outputStream* st) const;
339
340
// PrintGC, PrintGCDetails support
341
void print_heap_change(size_t prev_used) const;
342
343
// The functions below are helper functions that a subclass of
344
// "CollectedHeap" can use in the implementation of its virtual
345
// functions.
346
347
class GenClosure : public StackObj {
348
public:
349
virtual void do_generation(Generation* gen) = 0;
350
};
351
352
// Apply "cl.do_generation" to all generations in the heap
353
// If "old_to_young" determines the order.
354
void generation_iterate(GenClosure* cl, bool old_to_young);
355
356
void space_iterate(SpaceClosure* cl);
357
358
// Return "true" if all generations have reached the
359
// maximal committed limit that they can reach, without a garbage
360
// collection.
361
virtual bool is_maximal_no_gc() const;
362
363
// Return the generation before "gen".
364
Generation* prev_gen(Generation* gen) const {
365
int l = gen->level();
366
guarantee(l > 0, "Out of bounds");
367
return _gens[l-1];
368
}
369
370
// Return the generation after "gen".
371
Generation* next_gen(Generation* gen) const {
372
int l = gen->level() + 1;
373
guarantee(l < _n_gens, "Out of bounds");
374
return _gens[l];
375
}
376
377
Generation* get_gen(int i) const {
378
guarantee(i >= 0 && i < _n_gens, "Out of bounds");
379
return _gens[i];
380
}
381
382
int n_gens() const {
383
assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
384
return _n_gens;
385
}
386
387
// Convenience function to be used in situations where the heap type can be
388
// asserted to be this type.
389
static GenCollectedHeap* heap();
390
391
void set_par_threads(uint t);
392
void set_n_termination(uint t);
393
394
// Invoke the "do_oop" method of one of the closures "not_older_gens"
395
// or "older_gens" on root locations for the generation at
396
// "level". (The "older_gens" closure is used for scanning references
397
// from older generations; "not_older_gens" is used everywhere else.)
398
// If "younger_gens_as_roots" is false, younger generations are
399
// not scanned as roots; in this case, the caller must be arranging to
400
// scan the younger generations itself. (For example, a generation might
401
// explicitly mark reachable objects in younger generations, to avoid
402
// excess storage retention.)
403
// The "so" argument determines which of the roots
404
// the closure is applied to:
405
// "SO_None" does none;
406
enum ScanningOption {
407
SO_None = 0x0,
408
SO_AllCodeCache = 0x8,
409
SO_ScavengeCodeCache = 0x10
410
};
411
412
private:
413
void process_roots(bool activate_scope,
414
ScanningOption so,
415
OopClosure* strong_roots,
416
OopClosure* weak_roots,
417
CLDClosure* strong_cld_closure,
418
CLDClosure* weak_cld_closure,
419
CodeBlobToOopClosure* code_roots);
420
421
void gen_process_roots(int level,
422
bool younger_gens_as_roots,
423
bool activate_scope,
424
ScanningOption so,
425
OopsInGenClosure* not_older_gens,
426
OopsInGenClosure* weak_roots,
427
OopsInGenClosure* older_gens,
428
CLDClosure* cld_closure,
429
CLDClosure* weak_cld_closure,
430
CodeBlobClosure* code_closure);
431
432
public:
433
static const bool StrongAndWeakRoots = false;
434
static const bool StrongRootsOnly = true;
435
436
void gen_process_roots(int level,
437
bool younger_gens_as_roots,
438
bool activate_scope,
439
ScanningOption so,
440
bool only_strong_roots,
441
OopsInGenClosure* not_older_gens,
442
OopsInGenClosure* older_gens,
443
CLDClosure* cld_closure);
444
445
// Apply "root_closure" to all the weak roots of the system.
446
// These include JNI weak roots, string table,
447
// and referents of reachable weak refs.
448
void gen_process_weak_roots(OopClosure* root_closure);
449
450
// Set the saved marks of generations, if that makes sense.
451
// In particular, if any generation might iterate over the oops
452
// in other generations, it should call this method.
453
void save_marks();
454
455
// Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
456
// allocated since the last call to save_marks in generations at or above
457
// "level". The "cur" closure is
458
// applied to references in the generation at "level", and the "older"
459
// closure to older generations.
460
#define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix) \
461
void oop_since_save_marks_iterate(int level, \
462
OopClosureType* cur, \
463
OopClosureType* older);
464
465
ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
466
467
#undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
468
469
// Returns "true" iff no allocations have occurred in any generation at
470
// "level" or above since the last
471
// call to "save_marks".
472
bool no_allocs_since_save_marks(int level);
473
474
// Returns true if an incremental collection is likely to fail.
475
// We optionally consult the young gen, if asked to do so;
476
// otherwise we base our answer on whether the previous incremental
477
// collection attempt failed with no corrective action as of yet.
478
bool incremental_collection_will_fail(bool consult_young) {
479
// Assumes a 2-generation system; the first disjunct remembers if an
480
// incremental collection failed, even when we thought (second disjunct)
481
// that it would not.
482
assert(heap()->collector_policy()->is_two_generation_policy(),
483
"the following definition may not be suitable for an n(>2)-generation system");
484
return incremental_collection_failed() ||
485
(consult_young && !get_gen(0)->collection_attempt_is_safe());
486
}
487
488
// If a generation bails out of an incremental collection,
489
// it sets this flag.
490
bool incremental_collection_failed() const {
491
return _incremental_collection_failed;
492
}
493
void set_incremental_collection_failed() {
494
_incremental_collection_failed = true;
495
}
496
void clear_incremental_collection_failed() {
497
_incremental_collection_failed = false;
498
}
499
500
// Promotion of obj into gen failed. Try to promote obj to higher
501
// gens in ascending order; return the new location of obj if successful.
502
// Otherwise, try expand-and-allocate for obj in both the young and old
503
// generation; return the new location of obj if successful. Otherwise, return NULL.
504
oop handle_failed_promotion(Generation* old_gen,
505
oop obj,
506
size_t obj_size);
507
508
private:
509
// Accessor for memory state verification support
510
NOT_PRODUCT(
511
static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
512
)
513
514
// Override
515
void check_for_non_bad_heap_word_value(HeapWord* addr,
516
size_t size) PRODUCT_RETURN;
517
518
// For use by mark-sweep. As implemented, mark-sweep-compact is global
519
// in an essential way: compaction is performed across generations, by
520
// iterating over spaces.
521
void prepare_for_compaction();
522
523
// Perform a full collection of the first max_level+1 generations.
524
// This is the low level interface used by the public versions of
525
// collect() and collect_locked(). Caller holds the Heap_lock on entry.
526
void collect_locked(GCCause::Cause cause, int max_level);
527
528
// Returns success or failure.
529
bool create_cms_collector();
530
531
// In support of ExplicitGCInvokesConcurrent functionality
532
bool should_do_concurrent_full_gc(GCCause::Cause cause);
533
void collect_mostly_concurrent(GCCause::Cause cause);
534
535
// Save the tops of the spaces in all generations
536
void record_gen_tops_before_GC() PRODUCT_RETURN;
537
538
protected:
539
virtual void gc_prologue(bool full);
540
virtual void gc_epilogue(bool full);
541
};
542
543
#endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
544
545