Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/oops/methodData.hpp
32285 views
1
/*
2
* Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
26
#define SHARE_VM_OOPS_METHODDATAOOP_HPP
27
28
#include "interpreter/bytecodes.hpp"
29
#include "memory/universe.hpp"
30
#include "oops/method.hpp"
31
#include "oops/oop.hpp"
32
#include "runtime/orderAccess.hpp"
33
34
class BytecodeStream;
35
class KlassSizeStats;
36
37
// The MethodData object collects counts and other profile information
38
// during zeroth-tier (interpretive) and first-tier execution.
39
// The profile is used later by compilation heuristics. Some heuristics
40
// enable use of aggressive (or "heroic") optimizations. An aggressive
41
// optimization often has a down-side, a corner case that it handles
42
// poorly, but which is thought to be rare. The profile provides
43
// evidence of this rarity for a given method or even BCI. It allows
44
// the compiler to back out of the optimization at places where it
45
// has historically been a poor choice. Other heuristics try to use
46
// specific information gathered about types observed at a given site.
47
//
48
// All data in the profile is approximate. It is expected to be accurate
49
// on the whole, but the system expects occasional inaccuraces, due to
50
// counter overflow, multiprocessor races during data collection, space
51
// limitations, missing MDO blocks, etc. Bad or missing data will degrade
52
// optimization quality but will not affect correctness. Also, each MDO
53
// is marked with its birth-date ("creation_mileage") which can be used
54
// to assess the quality ("maturity") of its data.
55
//
56
// Short (<32-bit) counters are designed to overflow to a known "saturated"
57
// state. Also, certain recorded per-BCI events are given one-bit counters
58
// which overflow to a saturated state which applied to all counters at
59
// that BCI. In other words, there is a small lattice which approximates
60
// the ideal of an infinite-precision counter for each event at each BCI,
61
// and the lattice quickly "bottoms out" in a state where all counters
62
// are taken to be indefinitely large.
63
//
64
// The reader will find many data races in profile gathering code, starting
65
// with invocation counter incrementation. None of these races harm correct
66
// execution of the compiled code.
67
68
// forward decl
69
class ProfileData;
70
71
// DataLayout
72
//
73
// Overlay for generic profiling data.
74
class DataLayout VALUE_OBJ_CLASS_SPEC {
75
friend class VMStructs;
76
77
private:
78
// Every data layout begins with a header. This header
79
// contains a tag, which is used to indicate the size/layout
80
// of the data, 4 bits of flags, which can be used in any way,
81
// 4 bits of trap history (none/one reason/many reasons),
82
// and a bci, which is used to tie this piece of data to a
83
// specific bci in the bytecodes.
84
union {
85
intptr_t _bits;
86
struct {
87
u1 _tag;
88
u1 _flags;
89
u2 _bci;
90
} _struct;
91
} _header;
92
93
// The data layout has an arbitrary number of cells, each sized
94
// to accomodate a pointer or an integer.
95
intptr_t _cells[1];
96
97
// Some types of data layouts need a length field.
98
static bool needs_array_len(u1 tag);
99
100
public:
101
enum {
102
counter_increment = 1
103
};
104
105
enum {
106
cell_size = sizeof(intptr_t)
107
};
108
109
// Tag values
110
enum {
111
no_tag,
112
bit_data_tag,
113
counter_data_tag,
114
jump_data_tag,
115
receiver_type_data_tag,
116
virtual_call_data_tag,
117
ret_data_tag,
118
branch_data_tag,
119
multi_branch_data_tag,
120
arg_info_data_tag,
121
call_type_data_tag,
122
virtual_call_type_data_tag,
123
parameters_type_data_tag,
124
speculative_trap_data_tag
125
};
126
127
enum {
128
// The _struct._flags word is formatted as [trap_state:4 | flags:4].
129
// The trap state breaks down further as [recompile:1 | reason:3].
130
// This further breakdown is defined in deoptimization.cpp.
131
// See Deoptimization::trap_state_reason for an assert that
132
// trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
133
//
134
// The trap_state is collected only if ProfileTraps is true.
135
trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
136
trap_shift = BitsPerByte - trap_bits,
137
trap_mask = right_n_bits(trap_bits),
138
trap_mask_in_place = (trap_mask << trap_shift),
139
flag_limit = trap_shift,
140
flag_mask = right_n_bits(flag_limit),
141
first_flag = 0
142
};
143
144
// Size computation
145
static int header_size_in_bytes() {
146
return cell_size;
147
}
148
static int header_size_in_cells() {
149
return 1;
150
}
151
152
static int compute_size_in_bytes(int cell_count) {
153
return header_size_in_bytes() + cell_count * cell_size;
154
}
155
156
// Initialization
157
void initialize(u1 tag, u2 bci, int cell_count);
158
159
// Accessors
160
u1 tag() {
161
return _header._struct._tag;
162
}
163
164
// Return a few bits of trap state. Range is [0..trap_mask].
165
// The state tells if traps with zero, one, or many reasons have occurred.
166
// It also tells whether zero or many recompilations have occurred.
167
// The associated trap histogram in the MDO itself tells whether
168
// traps are common or not. If a BCI shows that a trap X has
169
// occurred, and the MDO shows N occurrences of X, we make the
170
// simplifying assumption that all N occurrences can be blamed
171
// on that BCI.
172
int trap_state() const {
173
return ((_header._struct._flags >> trap_shift) & trap_mask);
174
}
175
176
void set_trap_state(int new_state) {
177
assert(ProfileTraps, "used only under +ProfileTraps");
178
uint old_flags = (_header._struct._flags & flag_mask);
179
_header._struct._flags = (new_state << trap_shift) | old_flags;
180
}
181
182
u1 flags() const {
183
return _header._struct._flags;
184
}
185
186
u2 bci() const {
187
return _header._struct._bci;
188
}
189
190
void set_header(intptr_t value) {
191
_header._bits = value;
192
}
193
intptr_t header() {
194
return _header._bits;
195
}
196
void set_cell_at(int index, intptr_t value) {
197
_cells[index] = value;
198
}
199
void release_set_cell_at(int index, intptr_t value) {
200
OrderAccess::release_store_ptr(&_cells[index], value);
201
}
202
intptr_t cell_at(int index) const {
203
return _cells[index];
204
}
205
206
void set_flag_at(int flag_number) {
207
assert(flag_number < flag_limit, "oob");
208
_header._struct._flags |= (0x1 << flag_number);
209
}
210
bool flag_at(int flag_number) const {
211
assert(flag_number < flag_limit, "oob");
212
return (_header._struct._flags & (0x1 << flag_number)) != 0;
213
}
214
215
// Low-level support for code generation.
216
static ByteSize header_offset() {
217
return byte_offset_of(DataLayout, _header);
218
}
219
static ByteSize tag_offset() {
220
return byte_offset_of(DataLayout, _header._struct._tag);
221
}
222
static ByteSize flags_offset() {
223
return byte_offset_of(DataLayout, _header._struct._flags);
224
}
225
static ByteSize bci_offset() {
226
return byte_offset_of(DataLayout, _header._struct._bci);
227
}
228
static ByteSize cell_offset(int index) {
229
return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
230
}
231
#ifdef CC_INTERP
232
static int cell_offset_in_bytes(int index) {
233
return (int)offset_of(DataLayout, _cells[index]);
234
}
235
#endif // CC_INTERP
236
// Return a value which, when or-ed as a byte into _flags, sets the flag.
237
static int flag_number_to_byte_constant(int flag_number) {
238
assert(0 <= flag_number && flag_number < flag_limit, "oob");
239
DataLayout temp; temp.set_header(0);
240
temp.set_flag_at(flag_number);
241
return temp._header._struct._flags;
242
}
243
// Return a value which, when or-ed as a word into _header, sets the flag.
244
static intptr_t flag_mask_to_header_mask(int byte_constant) {
245
DataLayout temp; temp.set_header(0);
246
temp._header._struct._flags = byte_constant;
247
return temp._header._bits;
248
}
249
250
ProfileData* data_in();
251
252
// GC support
253
void clean_weak_klass_links(BoolObjectClosure* cl);
254
255
// Redefinition support
256
void clean_weak_method_links();
257
};
258
259
260
// ProfileData class hierarchy
261
class ProfileData;
262
class BitData;
263
class CounterData;
264
class ReceiverTypeData;
265
class VirtualCallData;
266
class VirtualCallTypeData;
267
class RetData;
268
class CallTypeData;
269
class JumpData;
270
class BranchData;
271
class ArrayData;
272
class MultiBranchData;
273
class ArgInfoData;
274
class ParametersTypeData;
275
class SpeculativeTrapData;
276
277
// ProfileData
278
//
279
// A ProfileData object is created to refer to a section of profiling
280
// data in a structured way.
281
class ProfileData : public ResourceObj {
282
friend class TypeEntries;
283
friend class ReturnTypeEntry;
284
friend class TypeStackSlotEntries;
285
private:
286
#ifndef PRODUCT
287
enum {
288
tab_width_one = 16,
289
tab_width_two = 36
290
};
291
#endif // !PRODUCT
292
293
// This is a pointer to a section of profiling data.
294
DataLayout* _data;
295
296
char* print_data_on_helper(const MethodData* md) const;
297
298
protected:
299
DataLayout* data() { return _data; }
300
const DataLayout* data() const { return _data; }
301
302
enum {
303
cell_size = DataLayout::cell_size
304
};
305
306
public:
307
// How many cells are in this?
308
virtual int cell_count() const {
309
ShouldNotReachHere();
310
return -1;
311
}
312
313
// Return the size of this data.
314
int size_in_bytes() {
315
return DataLayout::compute_size_in_bytes(cell_count());
316
}
317
318
protected:
319
// Low-level accessors for underlying data
320
void set_intptr_at(int index, intptr_t value) {
321
assert(0 <= index && index < cell_count(), "oob");
322
data()->set_cell_at(index, value);
323
}
324
void release_set_intptr_at(int index, intptr_t value) {
325
assert(0 <= index && index < cell_count(), "oob");
326
data()->release_set_cell_at(index, value);
327
}
328
intptr_t intptr_at(int index) const {
329
assert(0 <= index && index < cell_count(), "oob");
330
return data()->cell_at(index);
331
}
332
void set_uint_at(int index, uint value) {
333
set_intptr_at(index, (intptr_t) value);
334
}
335
void release_set_uint_at(int index, uint value) {
336
release_set_intptr_at(index, (intptr_t) value);
337
}
338
uint uint_at(int index) const {
339
return (uint)intptr_at(index);
340
}
341
void set_int_at(int index, int value) {
342
set_intptr_at(index, (intptr_t) value);
343
}
344
void release_set_int_at(int index, int value) {
345
release_set_intptr_at(index, (intptr_t) value);
346
}
347
int int_at(int index) const {
348
return (int)intptr_at(index);
349
}
350
int int_at_unchecked(int index) const {
351
return (int)data()->cell_at(index);
352
}
353
void set_oop_at(int index, oop value) {
354
set_intptr_at(index, cast_from_oop<intptr_t>(value));
355
}
356
oop oop_at(int index) const {
357
return cast_to_oop(intptr_at(index));
358
}
359
360
void set_flag_at(int flag_number) {
361
data()->set_flag_at(flag_number);
362
}
363
bool flag_at(int flag_number) const {
364
return data()->flag_at(flag_number);
365
}
366
367
// two convenient imports for use by subclasses:
368
static ByteSize cell_offset(int index) {
369
return DataLayout::cell_offset(index);
370
}
371
static int flag_number_to_byte_constant(int flag_number) {
372
return DataLayout::flag_number_to_byte_constant(flag_number);
373
}
374
375
ProfileData(DataLayout* data) {
376
_data = data;
377
}
378
379
#ifdef CC_INTERP
380
// Static low level accessors for DataLayout with ProfileData's semantics.
381
382
static int cell_offset_in_bytes(int index) {
383
return DataLayout::cell_offset_in_bytes(index);
384
}
385
386
static void increment_uint_at_no_overflow(DataLayout* layout, int index,
387
int inc = DataLayout::counter_increment) {
388
uint count = ((uint)layout->cell_at(index)) + inc;
389
if (count == 0) return;
390
layout->set_cell_at(index, (intptr_t) count);
391
}
392
393
static int int_at(DataLayout* layout, int index) {
394
return (int)layout->cell_at(index);
395
}
396
397
static int uint_at(DataLayout* layout, int index) {
398
return (uint)layout->cell_at(index);
399
}
400
401
static oop oop_at(DataLayout* layout, int index) {
402
return cast_to_oop(layout->cell_at(index));
403
}
404
405
static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
406
layout->set_cell_at(index, (intptr_t) value);
407
}
408
409
static void set_flag_at(DataLayout* layout, int flag_number) {
410
layout->set_flag_at(flag_number);
411
}
412
#endif // CC_INTERP
413
414
public:
415
// Constructor for invalid ProfileData.
416
ProfileData();
417
418
u2 bci() const {
419
return data()->bci();
420
}
421
422
address dp() {
423
return (address)_data;
424
}
425
426
int trap_state() const {
427
return data()->trap_state();
428
}
429
void set_trap_state(int new_state) {
430
data()->set_trap_state(new_state);
431
}
432
433
// Type checking
434
virtual bool is_BitData() const { return false; }
435
virtual bool is_CounterData() const { return false; }
436
virtual bool is_JumpData() const { return false; }
437
virtual bool is_ReceiverTypeData()const { return false; }
438
virtual bool is_VirtualCallData() const { return false; }
439
virtual bool is_RetData() const { return false; }
440
virtual bool is_BranchData() const { return false; }
441
virtual bool is_ArrayData() const { return false; }
442
virtual bool is_MultiBranchData() const { return false; }
443
virtual bool is_ArgInfoData() const { return false; }
444
virtual bool is_CallTypeData() const { return false; }
445
virtual bool is_VirtualCallTypeData()const { return false; }
446
virtual bool is_ParametersTypeData() const { return false; }
447
virtual bool is_SpeculativeTrapData()const { return false; }
448
449
450
BitData* as_BitData() const {
451
assert(is_BitData(), "wrong type");
452
return is_BitData() ? (BitData*) this : NULL;
453
}
454
CounterData* as_CounterData() const {
455
assert(is_CounterData(), "wrong type");
456
return is_CounterData() ? (CounterData*) this : NULL;
457
}
458
JumpData* as_JumpData() const {
459
assert(is_JumpData(), "wrong type");
460
return is_JumpData() ? (JumpData*) this : NULL;
461
}
462
ReceiverTypeData* as_ReceiverTypeData() const {
463
assert(is_ReceiverTypeData(), "wrong type");
464
return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
465
}
466
VirtualCallData* as_VirtualCallData() const {
467
assert(is_VirtualCallData(), "wrong type");
468
return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
469
}
470
RetData* as_RetData() const {
471
assert(is_RetData(), "wrong type");
472
return is_RetData() ? (RetData*) this : NULL;
473
}
474
BranchData* as_BranchData() const {
475
assert(is_BranchData(), "wrong type");
476
return is_BranchData() ? (BranchData*) this : NULL;
477
}
478
ArrayData* as_ArrayData() const {
479
assert(is_ArrayData(), "wrong type");
480
return is_ArrayData() ? (ArrayData*) this : NULL;
481
}
482
MultiBranchData* as_MultiBranchData() const {
483
assert(is_MultiBranchData(), "wrong type");
484
return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
485
}
486
ArgInfoData* as_ArgInfoData() const {
487
assert(is_ArgInfoData(), "wrong type");
488
return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
489
}
490
CallTypeData* as_CallTypeData() const {
491
assert(is_CallTypeData(), "wrong type");
492
return is_CallTypeData() ? (CallTypeData*)this : NULL;
493
}
494
VirtualCallTypeData* as_VirtualCallTypeData() const {
495
assert(is_VirtualCallTypeData(), "wrong type");
496
return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
497
}
498
ParametersTypeData* as_ParametersTypeData() const {
499
assert(is_ParametersTypeData(), "wrong type");
500
return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
501
}
502
SpeculativeTrapData* as_SpeculativeTrapData() const {
503
assert(is_SpeculativeTrapData(), "wrong type");
504
return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
505
}
506
507
508
// Subclass specific initialization
509
virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
510
511
// GC support
512
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
513
514
// Redefinition support
515
virtual void clean_weak_method_links() {}
516
517
// CI translation: ProfileData can represent both MethodDataOop data
518
// as well as CIMethodData data. This function is provided for translating
519
// an oop in a ProfileData to the ci equivalent. Generally speaking,
520
// most ProfileData don't require any translation, so we provide the null
521
// translation here, and the required translators are in the ci subclasses.
522
virtual void translate_from(const ProfileData* data) {}
523
524
virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
525
ShouldNotReachHere();
526
}
527
528
void print_data_on(outputStream* st, const MethodData* md) const;
529
530
#ifndef PRODUCT
531
void print_shared(outputStream* st, const char* name, const char* extra) const;
532
void tab(outputStream* st, bool first = false) const;
533
#endif
534
};
535
536
// BitData
537
//
538
// A BitData holds a flag or two in its header.
539
class BitData : public ProfileData {
540
protected:
541
enum {
542
// null_seen:
543
// saw a null operand (cast/aastore/instanceof)
544
null_seen_flag = DataLayout::first_flag + 0
545
};
546
enum { bit_cell_count = 0 }; // no additional data fields needed.
547
public:
548
BitData(DataLayout* layout) : ProfileData(layout) {
549
}
550
551
virtual bool is_BitData() const { return true; }
552
553
static int static_cell_count() {
554
return bit_cell_count;
555
}
556
557
virtual int cell_count() const {
558
return static_cell_count();
559
}
560
561
// Accessor
562
563
// The null_seen flag bit is specially known to the interpreter.
564
// Consulting it allows the compiler to avoid setting up null_check traps.
565
bool null_seen() { return flag_at(null_seen_flag); }
566
void set_null_seen() { set_flag_at(null_seen_flag); }
567
568
569
// Code generation support
570
static int null_seen_byte_constant() {
571
return flag_number_to_byte_constant(null_seen_flag);
572
}
573
574
static ByteSize bit_data_size() {
575
return cell_offset(bit_cell_count);
576
}
577
578
#ifdef CC_INTERP
579
static int bit_data_size_in_bytes() {
580
return cell_offset_in_bytes(bit_cell_count);
581
}
582
583
static void set_null_seen(DataLayout* layout) {
584
set_flag_at(layout, null_seen_flag);
585
}
586
587
static DataLayout* advance(DataLayout* layout) {
588
return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
589
}
590
#endif // CC_INTERP
591
592
#ifndef PRODUCT
593
void print_data_on(outputStream* st, const char* extra = NULL) const;
594
#endif
595
};
596
597
// CounterData
598
//
599
// A CounterData corresponds to a simple counter.
600
class CounterData : public BitData {
601
protected:
602
enum {
603
count_off,
604
counter_cell_count
605
};
606
public:
607
CounterData(DataLayout* layout) : BitData(layout) {}
608
609
virtual bool is_CounterData() const { return true; }
610
611
static int static_cell_count() {
612
return counter_cell_count;
613
}
614
615
virtual int cell_count() const {
616
return static_cell_count();
617
}
618
619
// Direct accessor
620
uint count() const {
621
return uint_at(count_off);
622
}
623
624
// Code generation support
625
static ByteSize count_offset() {
626
return cell_offset(count_off);
627
}
628
static ByteSize counter_data_size() {
629
return cell_offset(counter_cell_count);
630
}
631
632
void set_count(uint count) {
633
set_uint_at(count_off, count);
634
}
635
636
#ifdef CC_INTERP
637
static int counter_data_size_in_bytes() {
638
return cell_offset_in_bytes(counter_cell_count);
639
}
640
641
static void increment_count_no_overflow(DataLayout* layout) {
642
increment_uint_at_no_overflow(layout, count_off);
643
}
644
645
// Support counter decrementation at checkcast / subtype check failed.
646
static void decrement_count(DataLayout* layout) {
647
increment_uint_at_no_overflow(layout, count_off, -1);
648
}
649
650
static DataLayout* advance(DataLayout* layout) {
651
return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
652
}
653
#endif // CC_INTERP
654
655
#ifndef PRODUCT
656
void print_data_on(outputStream* st, const char* extra = NULL) const;
657
#endif
658
};
659
660
// JumpData
661
//
662
// A JumpData is used to access profiling information for a direct
663
// branch. It is a counter, used for counting the number of branches,
664
// plus a data displacement, used for realigning the data pointer to
665
// the corresponding target bci.
666
class JumpData : public ProfileData {
667
protected:
668
enum {
669
taken_off_set,
670
displacement_off_set,
671
jump_cell_count
672
};
673
674
void set_displacement(int displacement) {
675
set_int_at(displacement_off_set, displacement);
676
}
677
678
public:
679
JumpData(DataLayout* layout) : ProfileData(layout) {
680
assert(layout->tag() == DataLayout::jump_data_tag ||
681
layout->tag() == DataLayout::branch_data_tag, "wrong type");
682
}
683
684
virtual bool is_JumpData() const { return true; }
685
686
static int static_cell_count() {
687
return jump_cell_count;
688
}
689
690
virtual int cell_count() const {
691
return static_cell_count();
692
}
693
694
// Direct accessor
695
uint taken() const {
696
return uint_at(taken_off_set);
697
}
698
699
void set_taken(uint cnt) {
700
set_uint_at(taken_off_set, cnt);
701
}
702
703
// Saturating counter
704
uint inc_taken() {
705
uint cnt = taken() + 1;
706
// Did we wrap? Will compiler screw us??
707
if (cnt == 0) cnt--;
708
set_uint_at(taken_off_set, cnt);
709
return cnt;
710
}
711
712
int displacement() const {
713
return int_at(displacement_off_set);
714
}
715
716
// Code generation support
717
static ByteSize taken_offset() {
718
return cell_offset(taken_off_set);
719
}
720
721
static ByteSize displacement_offset() {
722
return cell_offset(displacement_off_set);
723
}
724
725
#ifdef CC_INTERP
726
static void increment_taken_count_no_overflow(DataLayout* layout) {
727
increment_uint_at_no_overflow(layout, taken_off_set);
728
}
729
730
static DataLayout* advance_taken(DataLayout* layout) {
731
return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
732
}
733
734
static uint taken_count(DataLayout* layout) {
735
return (uint) uint_at(layout, taken_off_set);
736
}
737
#endif // CC_INTERP
738
739
// Specific initialization.
740
void post_initialize(BytecodeStream* stream, MethodData* mdo);
741
742
#ifndef PRODUCT
743
void print_data_on(outputStream* st, const char* extra = NULL) const;
744
#endif
745
};
746
747
// Entries in a ProfileData object to record types: it can either be
748
// none (no profile), unknown (conflicting profile data) or a klass if
749
// a single one is seen. Whether a null reference was seen is also
750
// recorded. No counter is associated with the type and a single type
751
// is tracked (unlike VirtualCallData).
752
class TypeEntries {
753
754
public:
755
756
// A single cell is used to record information for a type:
757
// - the cell is initialized to 0
758
// - when a type is discovered it is stored in the cell
759
// - bit zero of the cell is used to record whether a null reference
760
// was encountered or not
761
// - bit 1 is set to record a conflict in the type information
762
763
enum {
764
null_seen = 1,
765
type_mask = ~null_seen,
766
type_unknown = 2,
767
status_bits = null_seen | type_unknown,
768
type_klass_mask = ~status_bits
769
};
770
771
// what to initialize a cell to
772
static intptr_t type_none() {
773
return 0;
774
}
775
776
// null seen = bit 0 set?
777
static bool was_null_seen(intptr_t v) {
778
return (v & null_seen) != 0;
779
}
780
781
// conflicting type information = bit 1 set?
782
static bool is_type_unknown(intptr_t v) {
783
return (v & type_unknown) != 0;
784
}
785
786
// not type information yet = all bits cleared, ignoring bit 0?
787
static bool is_type_none(intptr_t v) {
788
return (v & type_mask) == 0;
789
}
790
791
// recorded type: cell without bit 0 and 1
792
static intptr_t klass_part(intptr_t v) {
793
intptr_t r = v & type_klass_mask;
794
return r;
795
}
796
797
// type recorded
798
static Klass* valid_klass(intptr_t k) {
799
if (!is_type_none(k) &&
800
!is_type_unknown(k)) {
801
Klass* res = (Klass*)klass_part(k);
802
assert(res != NULL, "invalid");
803
return res;
804
} else {
805
return NULL;
806
}
807
}
808
809
static intptr_t with_status(intptr_t k, intptr_t in) {
810
return k | (in & status_bits);
811
}
812
813
static intptr_t with_status(Klass* k, intptr_t in) {
814
return with_status((intptr_t)k, in);
815
}
816
817
#ifndef PRODUCT
818
static void print_klass(outputStream* st, intptr_t k);
819
#endif
820
821
// GC support
822
static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
823
824
protected:
825
// ProfileData object these entries are part of
826
ProfileData* _pd;
827
// offset within the ProfileData object where the entries start
828
const int _base_off;
829
830
TypeEntries(int base_off)
831
: _base_off(base_off), _pd(NULL) {}
832
833
void set_intptr_at(int index, intptr_t value) {
834
_pd->set_intptr_at(index, value);
835
}
836
837
intptr_t intptr_at(int index) const {
838
return _pd->intptr_at(index);
839
}
840
841
public:
842
void set_profile_data(ProfileData* pd) {
843
_pd = pd;
844
}
845
};
846
847
// Type entries used for arguments passed at a call and parameters on
848
// method entry. 2 cells per entry: one for the type encoded as in
849
// TypeEntries and one initialized with the stack slot where the
850
// profiled object is to be found so that the interpreter can locate
851
// it quickly.
852
class TypeStackSlotEntries : public TypeEntries {
853
854
private:
855
enum {
856
stack_slot_entry,
857
type_entry,
858
per_arg_cell_count
859
};
860
861
// offset of cell for stack slot for entry i within ProfileData object
862
int stack_slot_offset(int i) const {
863
return _base_off + stack_slot_local_offset(i);
864
}
865
866
protected:
867
const int _number_of_entries;
868
869
// offset of cell for type for entry i within ProfileData object
870
int type_offset(int i) const {
871
return _base_off + type_local_offset(i);
872
}
873
874
public:
875
876
TypeStackSlotEntries(int base_off, int nb_entries)
877
: TypeEntries(base_off), _number_of_entries(nb_entries) {}
878
879
static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
880
881
void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
882
883
// offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
884
static int stack_slot_local_offset(int i) {
885
return i * per_arg_cell_count + stack_slot_entry;
886
}
887
888
// offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
889
static int type_local_offset(int i) {
890
return i * per_arg_cell_count + type_entry;
891
}
892
893
// stack slot for entry i
894
uint stack_slot(int i) const {
895
assert(i >= 0 && i < _number_of_entries, "oob");
896
return _pd->uint_at(stack_slot_offset(i));
897
}
898
899
// set stack slot for entry i
900
void set_stack_slot(int i, uint num) {
901
assert(i >= 0 && i < _number_of_entries, "oob");
902
_pd->set_uint_at(stack_slot_offset(i), num);
903
}
904
905
// type for entry i
906
intptr_t type(int i) const {
907
assert(i >= 0 && i < _number_of_entries, "oob");
908
return _pd->intptr_at(type_offset(i));
909
}
910
911
// set type for entry i
912
void set_type(int i, intptr_t k) {
913
assert(i >= 0 && i < _number_of_entries, "oob");
914
_pd->set_intptr_at(type_offset(i), k);
915
}
916
917
static ByteSize per_arg_size() {
918
return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
919
}
920
921
static int per_arg_count() {
922
return per_arg_cell_count ;
923
}
924
925
// GC support
926
void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
927
928
#ifndef PRODUCT
929
void print_data_on(outputStream* st) const;
930
#endif
931
};
932
933
// Type entry used for return from a call. A single cell to record the
934
// type.
935
class ReturnTypeEntry : public TypeEntries {
936
937
private:
938
enum {
939
cell_count = 1
940
};
941
942
public:
943
ReturnTypeEntry(int base_off)
944
: TypeEntries(base_off) {}
945
946
void post_initialize() {
947
set_type(type_none());
948
}
949
950
intptr_t type() const {
951
return _pd->intptr_at(_base_off);
952
}
953
954
void set_type(intptr_t k) {
955
_pd->set_intptr_at(_base_off, k);
956
}
957
958
static int static_cell_count() {
959
return cell_count;
960
}
961
962
static ByteSize size() {
963
return in_ByteSize(cell_count * DataLayout::cell_size);
964
}
965
966
ByteSize type_offset() {
967
return DataLayout::cell_offset(_base_off);
968
}
969
970
// GC support
971
void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
972
973
#ifndef PRODUCT
974
void print_data_on(outputStream* st) const;
975
#endif
976
};
977
978
// Entries to collect type information at a call: contains arguments
979
// (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
980
// number of cells. Because the number of cells for the return type is
981
// smaller than the number of cells for the type of an arguments, the
982
// number of cells is used to tell how many arguments are profiled and
983
// whether a return value is profiled. See has_arguments() and
984
// has_return().
985
class TypeEntriesAtCall {
986
private:
987
static int stack_slot_local_offset(int i) {
988
return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
989
}
990
991
static int argument_type_local_offset(int i) {
992
return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
993
}
994
995
public:
996
997
static int header_cell_count() {
998
return 1;
999
}
1000
1001
static int cell_count_local_offset() {
1002
return 0;
1003
}
1004
1005
static int compute_cell_count(BytecodeStream* stream);
1006
1007
static void initialize(DataLayout* dl, int base, int cell_count) {
1008
int off = base + cell_count_local_offset();
1009
dl->set_cell_at(off, cell_count - base - header_cell_count());
1010
}
1011
1012
static bool arguments_profiling_enabled();
1013
static bool return_profiling_enabled();
1014
1015
// Code generation support
1016
static ByteSize cell_count_offset() {
1017
return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1018
}
1019
1020
static ByteSize args_data_offset() {
1021
return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1022
}
1023
1024
static ByteSize stack_slot_offset(int i) {
1025
return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1026
}
1027
1028
static ByteSize argument_type_offset(int i) {
1029
return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1030
}
1031
1032
static ByteSize return_only_size() {
1033
return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1034
}
1035
1036
};
1037
1038
// CallTypeData
1039
//
1040
// A CallTypeData is used to access profiling information about a non
1041
// virtual call for which we collect type information about arguments
1042
// and return value.
1043
class CallTypeData : public CounterData {
1044
private:
1045
// entries for arguments if any
1046
TypeStackSlotEntries _args;
1047
// entry for return type if any
1048
ReturnTypeEntry _ret;
1049
1050
int cell_count_global_offset() const {
1051
return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1052
}
1053
1054
// number of cells not counting the header
1055
int cell_count_no_header() const {
1056
return uint_at(cell_count_global_offset());
1057
}
1058
1059
void check_number_of_arguments(int total) {
1060
assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1061
}
1062
1063
public:
1064
CallTypeData(DataLayout* layout) :
1065
CounterData(layout),
1066
_args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1067
_ret(cell_count() - ReturnTypeEntry::static_cell_count())
1068
{
1069
assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1070
// Some compilers (VC++) don't want this passed in member initialization list
1071
_args.set_profile_data(this);
1072
_ret.set_profile_data(this);
1073
}
1074
1075
const TypeStackSlotEntries* args() const {
1076
assert(has_arguments(), "no profiling of arguments");
1077
return &_args;
1078
}
1079
1080
const ReturnTypeEntry* ret() const {
1081
assert(has_return(), "no profiling of return value");
1082
return &_ret;
1083
}
1084
1085
virtual bool is_CallTypeData() const { return true; }
1086
1087
static int static_cell_count() {
1088
return -1;
1089
}
1090
1091
static int compute_cell_count(BytecodeStream* stream) {
1092
return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1093
}
1094
1095
static void initialize(DataLayout* dl, int cell_count) {
1096
TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1097
}
1098
1099
virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1100
1101
virtual int cell_count() const {
1102
return CounterData::static_cell_count() +
1103
TypeEntriesAtCall::header_cell_count() +
1104
int_at_unchecked(cell_count_global_offset());
1105
}
1106
1107
int number_of_arguments() const {
1108
return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1109
}
1110
1111
void set_argument_type(int i, Klass* k) {
1112
assert(has_arguments(), "no arguments!");
1113
intptr_t current = _args.type(i);
1114
_args.set_type(i, TypeEntries::with_status(k, current));
1115
}
1116
1117
void set_return_type(Klass* k) {
1118
assert(has_return(), "no return!");
1119
intptr_t current = _ret.type();
1120
_ret.set_type(TypeEntries::with_status(k, current));
1121
}
1122
1123
// An entry for a return value takes less space than an entry for an
1124
// argument so if the number of cells exceeds the number of cells
1125
// needed for an argument, this object contains type information for
1126
// at least one argument.
1127
bool has_arguments() const {
1128
bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1129
assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1130
return res;
1131
}
1132
1133
// An entry for a return value takes less space than an entry for an
1134
// argument, so if the remainder of the number of cells divided by
1135
// the number of cells for an argument is not null, a return value
1136
// is profiled in this object.
1137
bool has_return() const {
1138
bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1139
assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1140
return res;
1141
}
1142
1143
// Code generation support
1144
static ByteSize args_data_offset() {
1145
return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1146
}
1147
1148
// GC support
1149
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1150
if (has_arguments()) {
1151
_args.clean_weak_klass_links(is_alive_closure);
1152
}
1153
if (has_return()) {
1154
_ret.clean_weak_klass_links(is_alive_closure);
1155
}
1156
}
1157
1158
#ifndef PRODUCT
1159
virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1160
#endif
1161
};
1162
1163
// ReceiverTypeData
1164
//
1165
// A ReceiverTypeData is used to access profiling information about a
1166
// dynamic type check. It consists of a counter which counts the total times
1167
// that the check is reached, and a series of (Klass*, count) pairs
1168
// which are used to store a type profile for the receiver of the check.
1169
class ReceiverTypeData : public CounterData {
1170
protected:
1171
enum {
1172
receiver0_offset = counter_cell_count,
1173
count0_offset,
1174
receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1175
};
1176
1177
public:
1178
ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1179
assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1180
layout->tag() == DataLayout::virtual_call_data_tag ||
1181
layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1182
}
1183
1184
virtual bool is_ReceiverTypeData() const { return true; }
1185
1186
static int static_cell_count() {
1187
return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1188
}
1189
1190
virtual int cell_count() const {
1191
return static_cell_count();
1192
}
1193
1194
// Direct accessors
1195
static uint row_limit() {
1196
return TypeProfileWidth;
1197
}
1198
static int receiver_cell_index(uint row) {
1199
return receiver0_offset + row * receiver_type_row_cell_count;
1200
}
1201
static int receiver_count_cell_index(uint row) {
1202
return count0_offset + row * receiver_type_row_cell_count;
1203
}
1204
1205
Klass* receiver(uint row) const {
1206
assert(row < row_limit(), "oob");
1207
1208
Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1209
assert(recv == NULL || recv->is_klass(), "wrong type");
1210
return recv;
1211
}
1212
1213
void set_receiver(uint row, Klass* k) {
1214
assert((uint)row < row_limit(), "oob");
1215
set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1216
}
1217
1218
uint receiver_count(uint row) const {
1219
assert(row < row_limit(), "oob");
1220
return uint_at(receiver_count_cell_index(row));
1221
}
1222
1223
void set_receiver_count(uint row, uint count) {
1224
assert(row < row_limit(), "oob");
1225
set_uint_at(receiver_count_cell_index(row), count);
1226
}
1227
1228
void clear_row(uint row) {
1229
assert(row < row_limit(), "oob");
1230
// Clear total count - indicator of polymorphic call site.
1231
// The site may look like as monomorphic after that but
1232
// it allow to have more accurate profiling information because
1233
// there was execution phase change since klasses were unloaded.
1234
// If the site is still polymorphic then MDO will be updated
1235
// to reflect it. But it could be the case that the site becomes
1236
// only bimorphic. Then keeping total count not 0 will be wrong.
1237
// Even if we use monomorphic (when it is not) for compilation
1238
// we will only have trap, deoptimization and recompile again
1239
// with updated MDO after executing method in Interpreter.
1240
// An additional receiver will be recorded in the cleaned row
1241
// during next call execution.
1242
//
1243
// Note: our profiling logic works with empty rows in any slot.
1244
// We do sorting a profiling info (ciCallProfile) for compilation.
1245
//
1246
set_count(0);
1247
set_receiver(row, NULL);
1248
set_receiver_count(row, 0);
1249
}
1250
1251
// Code generation support
1252
static ByteSize receiver_offset(uint row) {
1253
return cell_offset(receiver_cell_index(row));
1254
}
1255
static ByteSize receiver_count_offset(uint row) {
1256
return cell_offset(receiver_count_cell_index(row));
1257
}
1258
static ByteSize receiver_type_data_size() {
1259
return cell_offset(static_cell_count());
1260
}
1261
1262
// GC support
1263
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1264
1265
#ifdef CC_INTERP
1266
static int receiver_type_data_size_in_bytes() {
1267
return cell_offset_in_bytes(static_cell_count());
1268
}
1269
1270
static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1271
Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1272
return recv;
1273
}
1274
1275
static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1276
const int num_rows = row_limit();
1277
// Receiver already exists?
1278
for (int row = 0; row < num_rows; row++) {
1279
if (receiver_unchecked(layout, row) == rcvr) {
1280
increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1281
return;
1282
}
1283
}
1284
// New receiver, find a free slot.
1285
for (int row = 0; row < num_rows; row++) {
1286
if (receiver_unchecked(layout, row) == NULL) {
1287
set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1288
increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1289
return;
1290
}
1291
}
1292
// Receiver did not match any saved receiver and there is no empty row for it.
1293
// Increment total counter to indicate polymorphic case.
1294
increment_count_no_overflow(layout);
1295
}
1296
1297
static DataLayout* advance(DataLayout* layout) {
1298
return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1299
}
1300
#endif // CC_INTERP
1301
1302
#ifndef PRODUCT
1303
void print_receiver_data_on(outputStream* st) const;
1304
void print_data_on(outputStream* st, const char* extra = NULL) const;
1305
#endif
1306
};
1307
1308
// VirtualCallData
1309
//
1310
// A VirtualCallData is used to access profiling information about a
1311
// virtual call. For now, it has nothing more than a ReceiverTypeData.
1312
class VirtualCallData : public ReceiverTypeData {
1313
public:
1314
VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1315
assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1316
layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1317
}
1318
1319
virtual bool is_VirtualCallData() const { return true; }
1320
1321
static int static_cell_count() {
1322
// At this point we could add more profile state, e.g., for arguments.
1323
// But for now it's the same size as the base record type.
1324
return ReceiverTypeData::static_cell_count();
1325
}
1326
1327
virtual int cell_count() const {
1328
return static_cell_count();
1329
}
1330
1331
// Direct accessors
1332
static ByteSize virtual_call_data_size() {
1333
return cell_offset(static_cell_count());
1334
}
1335
1336
#ifdef CC_INTERP
1337
static int virtual_call_data_size_in_bytes() {
1338
return cell_offset_in_bytes(static_cell_count());
1339
}
1340
1341
static DataLayout* advance(DataLayout* layout) {
1342
return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1343
}
1344
#endif // CC_INTERP
1345
1346
#ifndef PRODUCT
1347
void print_data_on(outputStream* st, const char* extra = NULL) const;
1348
#endif
1349
};
1350
1351
// VirtualCallTypeData
1352
//
1353
// A VirtualCallTypeData is used to access profiling information about
1354
// a virtual call for which we collect type information about
1355
// arguments and return value.
1356
class VirtualCallTypeData : public VirtualCallData {
1357
private:
1358
// entries for arguments if any
1359
TypeStackSlotEntries _args;
1360
// entry for return type if any
1361
ReturnTypeEntry _ret;
1362
1363
int cell_count_global_offset() const {
1364
return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1365
}
1366
1367
// number of cells not counting the header
1368
int cell_count_no_header() const {
1369
return uint_at(cell_count_global_offset());
1370
}
1371
1372
void check_number_of_arguments(int total) {
1373
assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1374
}
1375
1376
public:
1377
VirtualCallTypeData(DataLayout* layout) :
1378
VirtualCallData(layout),
1379
_args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1380
_ret(cell_count() - ReturnTypeEntry::static_cell_count())
1381
{
1382
assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1383
// Some compilers (VC++) don't want this passed in member initialization list
1384
_args.set_profile_data(this);
1385
_ret.set_profile_data(this);
1386
}
1387
1388
const TypeStackSlotEntries* args() const {
1389
assert(has_arguments(), "no profiling of arguments");
1390
return &_args;
1391
}
1392
1393
const ReturnTypeEntry* ret() const {
1394
assert(has_return(), "no profiling of return value");
1395
return &_ret;
1396
}
1397
1398
virtual bool is_VirtualCallTypeData() const { return true; }
1399
1400
static int static_cell_count() {
1401
return -1;
1402
}
1403
1404
static int compute_cell_count(BytecodeStream* stream) {
1405
return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1406
}
1407
1408
static void initialize(DataLayout* dl, int cell_count) {
1409
TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1410
}
1411
1412
virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1413
1414
virtual int cell_count() const {
1415
return VirtualCallData::static_cell_count() +
1416
TypeEntriesAtCall::header_cell_count() +
1417
int_at_unchecked(cell_count_global_offset());
1418
}
1419
1420
int number_of_arguments() const {
1421
return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1422
}
1423
1424
void set_argument_type(int i, Klass* k) {
1425
assert(has_arguments(), "no arguments!");
1426
intptr_t current = _args.type(i);
1427
_args.set_type(i, TypeEntries::with_status(k, current));
1428
}
1429
1430
void set_return_type(Klass* k) {
1431
assert(has_return(), "no return!");
1432
intptr_t current = _ret.type();
1433
_ret.set_type(TypeEntries::with_status(k, current));
1434
}
1435
1436
// An entry for a return value takes less space than an entry for an
1437
// argument, so if the remainder of the number of cells divided by
1438
// the number of cells for an argument is not null, a return value
1439
// is profiled in this object.
1440
bool has_return() const {
1441
bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1442
assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1443
return res;
1444
}
1445
1446
// An entry for a return value takes less space than an entry for an
1447
// argument so if the number of cells exceeds the number of cells
1448
// needed for an argument, this object contains type information for
1449
// at least one argument.
1450
bool has_arguments() const {
1451
bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1452
assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1453
return res;
1454
}
1455
1456
// Code generation support
1457
static ByteSize args_data_offset() {
1458
return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1459
}
1460
1461
// GC support
1462
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1463
ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1464
if (has_arguments()) {
1465
_args.clean_weak_klass_links(is_alive_closure);
1466
}
1467
if (has_return()) {
1468
_ret.clean_weak_klass_links(is_alive_closure);
1469
}
1470
}
1471
1472
#ifndef PRODUCT
1473
virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1474
#endif
1475
};
1476
1477
// RetData
1478
//
1479
// A RetData is used to access profiling information for a ret bytecode.
1480
// It is composed of a count of the number of times that the ret has
1481
// been executed, followed by a series of triples of the form
1482
// (bci, count, di) which count the number of times that some bci was the
1483
// target of the ret and cache a corresponding data displacement.
1484
class RetData : public CounterData {
1485
protected:
1486
enum {
1487
bci0_offset = counter_cell_count,
1488
count0_offset,
1489
displacement0_offset,
1490
ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1491
};
1492
1493
void set_bci(uint row, int bci) {
1494
assert((uint)row < row_limit(), "oob");
1495
set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1496
}
1497
void release_set_bci(uint row, int bci) {
1498
assert((uint)row < row_limit(), "oob");
1499
// 'release' when setting the bci acts as a valid flag for other
1500
// threads wrt bci_count and bci_displacement.
1501
release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1502
}
1503
void set_bci_count(uint row, uint count) {
1504
assert((uint)row < row_limit(), "oob");
1505
set_uint_at(count0_offset + row * ret_row_cell_count, count);
1506
}
1507
void set_bci_displacement(uint row, int disp) {
1508
set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1509
}
1510
1511
public:
1512
RetData(DataLayout* layout) : CounterData(layout) {
1513
assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1514
}
1515
1516
virtual bool is_RetData() const { return true; }
1517
1518
enum {
1519
no_bci = -1 // value of bci when bci1/2 are not in use.
1520
};
1521
1522
static int static_cell_count() {
1523
return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1524
}
1525
1526
virtual int cell_count() const {
1527
return static_cell_count();
1528
}
1529
1530
static uint row_limit() {
1531
return BciProfileWidth;
1532
}
1533
static int bci_cell_index(uint row) {
1534
return bci0_offset + row * ret_row_cell_count;
1535
}
1536
static int bci_count_cell_index(uint row) {
1537
return count0_offset + row * ret_row_cell_count;
1538
}
1539
static int bci_displacement_cell_index(uint row) {
1540
return displacement0_offset + row * ret_row_cell_count;
1541
}
1542
1543
// Direct accessors
1544
int bci(uint row) const {
1545
return int_at(bci_cell_index(row));
1546
}
1547
uint bci_count(uint row) const {
1548
return uint_at(bci_count_cell_index(row));
1549
}
1550
int bci_displacement(uint row) const {
1551
return int_at(bci_displacement_cell_index(row));
1552
}
1553
1554
// Interpreter Runtime support
1555
address fixup_ret(int return_bci, MethodData* mdo);
1556
1557
// Code generation support
1558
static ByteSize bci_offset(uint row) {
1559
return cell_offset(bci_cell_index(row));
1560
}
1561
static ByteSize bci_count_offset(uint row) {
1562
return cell_offset(bci_count_cell_index(row));
1563
}
1564
static ByteSize bci_displacement_offset(uint row) {
1565
return cell_offset(bci_displacement_cell_index(row));
1566
}
1567
1568
#ifdef CC_INTERP
1569
static DataLayout* advance(MethodData *md, int bci);
1570
#endif // CC_INTERP
1571
1572
// Specific initialization.
1573
void post_initialize(BytecodeStream* stream, MethodData* mdo);
1574
1575
#ifndef PRODUCT
1576
void print_data_on(outputStream* st, const char* extra = NULL) const;
1577
#endif
1578
};
1579
1580
// BranchData
1581
//
1582
// A BranchData is used to access profiling data for a two-way branch.
1583
// It consists of taken and not_taken counts as well as a data displacement
1584
// for the taken case.
1585
class BranchData : public JumpData {
1586
protected:
1587
enum {
1588
not_taken_off_set = jump_cell_count,
1589
branch_cell_count
1590
};
1591
1592
void set_displacement(int displacement) {
1593
set_int_at(displacement_off_set, displacement);
1594
}
1595
1596
public:
1597
BranchData(DataLayout* layout) : JumpData(layout) {
1598
assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1599
}
1600
1601
virtual bool is_BranchData() const { return true; }
1602
1603
static int static_cell_count() {
1604
return branch_cell_count;
1605
}
1606
1607
virtual int cell_count() const {
1608
return static_cell_count();
1609
}
1610
1611
// Direct accessor
1612
uint not_taken() const {
1613
return uint_at(not_taken_off_set);
1614
}
1615
1616
void set_not_taken(uint cnt) {
1617
set_uint_at(not_taken_off_set, cnt);
1618
}
1619
1620
uint inc_not_taken() {
1621
uint cnt = not_taken() + 1;
1622
// Did we wrap? Will compiler screw us??
1623
if (cnt == 0) cnt--;
1624
set_uint_at(not_taken_off_set, cnt);
1625
return cnt;
1626
}
1627
1628
// Code generation support
1629
static ByteSize not_taken_offset() {
1630
return cell_offset(not_taken_off_set);
1631
}
1632
static ByteSize branch_data_size() {
1633
return cell_offset(branch_cell_count);
1634
}
1635
1636
#ifdef CC_INTERP
1637
static int branch_data_size_in_bytes() {
1638
return cell_offset_in_bytes(branch_cell_count);
1639
}
1640
1641
static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1642
increment_uint_at_no_overflow(layout, not_taken_off_set);
1643
}
1644
1645
static DataLayout* advance_not_taken(DataLayout* layout) {
1646
return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1647
}
1648
#endif // CC_INTERP
1649
1650
// Specific initialization.
1651
void post_initialize(BytecodeStream* stream, MethodData* mdo);
1652
1653
#ifndef PRODUCT
1654
void print_data_on(outputStream* st, const char* extra = NULL) const;
1655
#endif
1656
};
1657
1658
// ArrayData
1659
//
1660
// A ArrayData is a base class for accessing profiling data which does
1661
// not have a statically known size. It consists of an array length
1662
// and an array start.
1663
class ArrayData : public ProfileData {
1664
protected:
1665
friend class DataLayout;
1666
1667
enum {
1668
array_len_off_set,
1669
array_start_off_set
1670
};
1671
1672
uint array_uint_at(int index) const {
1673
int aindex = index + array_start_off_set;
1674
return uint_at(aindex);
1675
}
1676
int array_int_at(int index) const {
1677
int aindex = index + array_start_off_set;
1678
return int_at(aindex);
1679
}
1680
oop array_oop_at(int index) const {
1681
int aindex = index + array_start_off_set;
1682
return oop_at(aindex);
1683
}
1684
void array_set_int_at(int index, int value) {
1685
int aindex = index + array_start_off_set;
1686
set_int_at(aindex, value);
1687
}
1688
1689
#ifdef CC_INTERP
1690
// Static low level accessors for DataLayout with ArrayData's semantics.
1691
1692
static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1693
int aindex = index + array_start_off_set;
1694
increment_uint_at_no_overflow(layout, aindex);
1695
}
1696
1697
static int array_int_at(DataLayout* layout, int index) {
1698
int aindex = index + array_start_off_set;
1699
return int_at(layout, aindex);
1700
}
1701
#endif // CC_INTERP
1702
1703
// Code generation support for subclasses.
1704
static ByteSize array_element_offset(int index) {
1705
return cell_offset(array_start_off_set + index);
1706
}
1707
1708
public:
1709
ArrayData(DataLayout* layout) : ProfileData(layout) {}
1710
1711
virtual bool is_ArrayData() const { return true; }
1712
1713
static int static_cell_count() {
1714
return -1;
1715
}
1716
1717
int array_len() const {
1718
return int_at_unchecked(array_len_off_set);
1719
}
1720
1721
virtual int cell_count() const {
1722
return array_len() + 1;
1723
}
1724
1725
// Code generation support
1726
static ByteSize array_len_offset() {
1727
return cell_offset(array_len_off_set);
1728
}
1729
static ByteSize array_start_offset() {
1730
return cell_offset(array_start_off_set);
1731
}
1732
};
1733
1734
// MultiBranchData
1735
//
1736
// A MultiBranchData is used to access profiling information for
1737
// a multi-way branch (*switch bytecodes). It consists of a series
1738
// of (count, displacement) pairs, which count the number of times each
1739
// case was taken and specify the data displacment for each branch target.
1740
class MultiBranchData : public ArrayData {
1741
protected:
1742
enum {
1743
default_count_off_set,
1744
default_disaplacement_off_set,
1745
case_array_start
1746
};
1747
enum {
1748
relative_count_off_set,
1749
relative_displacement_off_set,
1750
per_case_cell_count
1751
};
1752
1753
void set_default_displacement(int displacement) {
1754
array_set_int_at(default_disaplacement_off_set, displacement);
1755
}
1756
void set_displacement_at(int index, int displacement) {
1757
array_set_int_at(case_array_start +
1758
index * per_case_cell_count +
1759
relative_displacement_off_set,
1760
displacement);
1761
}
1762
1763
public:
1764
MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1765
assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1766
}
1767
1768
virtual bool is_MultiBranchData() const { return true; }
1769
1770
static int compute_cell_count(BytecodeStream* stream);
1771
1772
int number_of_cases() const {
1773
int alen = array_len() - 2; // get rid of default case here.
1774
assert(alen % per_case_cell_count == 0, "must be even");
1775
return (alen / per_case_cell_count);
1776
}
1777
1778
uint default_count() const {
1779
return array_uint_at(default_count_off_set);
1780
}
1781
int default_displacement() const {
1782
return array_int_at(default_disaplacement_off_set);
1783
}
1784
1785
uint count_at(int index) const {
1786
return array_uint_at(case_array_start +
1787
index * per_case_cell_count +
1788
relative_count_off_set);
1789
}
1790
int displacement_at(int index) const {
1791
return array_int_at(case_array_start +
1792
index * per_case_cell_count +
1793
relative_displacement_off_set);
1794
}
1795
1796
// Code generation support
1797
static ByteSize default_count_offset() {
1798
return array_element_offset(default_count_off_set);
1799
}
1800
static ByteSize default_displacement_offset() {
1801
return array_element_offset(default_disaplacement_off_set);
1802
}
1803
static ByteSize case_count_offset(int index) {
1804
return case_array_offset() +
1805
(per_case_size() * index) +
1806
relative_count_offset();
1807
}
1808
static ByteSize case_array_offset() {
1809
return array_element_offset(case_array_start);
1810
}
1811
static ByteSize per_case_size() {
1812
return in_ByteSize(per_case_cell_count) * cell_size;
1813
}
1814
static ByteSize relative_count_offset() {
1815
return in_ByteSize(relative_count_off_set) * cell_size;
1816
}
1817
static ByteSize relative_displacement_offset() {
1818
return in_ByteSize(relative_displacement_off_set) * cell_size;
1819
}
1820
1821
#ifdef CC_INTERP
1822
static void increment_count_no_overflow(DataLayout* layout, int index) {
1823
if (index == -1) {
1824
increment_array_uint_at_no_overflow(layout, default_count_off_set);
1825
} else {
1826
increment_array_uint_at_no_overflow(layout, case_array_start +
1827
index * per_case_cell_count +
1828
relative_count_off_set);
1829
}
1830
}
1831
1832
static DataLayout* advance(DataLayout* layout, int index) {
1833
if (index == -1) {
1834
return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1835
} else {
1836
return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1837
index * per_case_cell_count +
1838
relative_displacement_off_set));
1839
}
1840
}
1841
#endif // CC_INTERP
1842
1843
// Specific initialization.
1844
void post_initialize(BytecodeStream* stream, MethodData* mdo);
1845
1846
#ifndef PRODUCT
1847
void print_data_on(outputStream* st, const char* extra = NULL) const;
1848
#endif
1849
};
1850
1851
class ArgInfoData : public ArrayData {
1852
1853
public:
1854
ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1855
assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1856
}
1857
1858
virtual bool is_ArgInfoData() const { return true; }
1859
1860
1861
int number_of_args() const {
1862
return array_len();
1863
}
1864
1865
uint arg_modified(int arg) const {
1866
return array_uint_at(arg);
1867
}
1868
1869
void set_arg_modified(int arg, uint val) {
1870
array_set_int_at(arg, val);
1871
}
1872
1873
#ifndef PRODUCT
1874
void print_data_on(outputStream* st, const char* extra = NULL) const;
1875
#endif
1876
};
1877
1878
// ParametersTypeData
1879
//
1880
// A ParametersTypeData is used to access profiling information about
1881
// types of parameters to a method
1882
class ParametersTypeData : public ArrayData {
1883
1884
private:
1885
TypeStackSlotEntries _parameters;
1886
1887
static int stack_slot_local_offset(int i) {
1888
assert_profiling_enabled();
1889
return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1890
}
1891
1892
static int type_local_offset(int i) {
1893
assert_profiling_enabled();
1894
return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1895
}
1896
1897
static bool profiling_enabled();
1898
static void assert_profiling_enabled() {
1899
assert(profiling_enabled(), "method parameters profiling should be on");
1900
}
1901
1902
public:
1903
ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1904
assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1905
// Some compilers (VC++) don't want this passed in member initialization list
1906
_parameters.set_profile_data(this);
1907
}
1908
1909
static int compute_cell_count(Method* m);
1910
1911
virtual bool is_ParametersTypeData() const { return true; }
1912
1913
virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1914
1915
int number_of_parameters() const {
1916
return array_len() / TypeStackSlotEntries::per_arg_count();
1917
}
1918
1919
const TypeStackSlotEntries* parameters() const { return &_parameters; }
1920
1921
uint stack_slot(int i) const {
1922
return _parameters.stack_slot(i);
1923
}
1924
1925
void set_type(int i, Klass* k) {
1926
intptr_t current = _parameters.type(i);
1927
_parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1928
}
1929
1930
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1931
_parameters.clean_weak_klass_links(is_alive_closure);
1932
}
1933
1934
#ifndef PRODUCT
1935
virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1936
#endif
1937
1938
static ByteSize stack_slot_offset(int i) {
1939
return cell_offset(stack_slot_local_offset(i));
1940
}
1941
1942
static ByteSize type_offset(int i) {
1943
return cell_offset(type_local_offset(i));
1944
}
1945
};
1946
1947
// SpeculativeTrapData
1948
//
1949
// A SpeculativeTrapData is used to record traps due to type
1950
// speculation. It records the root of the compilation: that type
1951
// speculation is wrong in the context of one compilation (for
1952
// method1) doesn't mean it's wrong in the context of another one (for
1953
// method2). Type speculation could have more/different data in the
1954
// context of the compilation of method2 and it's worthwhile to try an
1955
// optimization that failed for compilation of method1 in the context
1956
// of compilation of method2.
1957
// Space for SpeculativeTrapData entries is allocated from the extra
1958
// data space in the MDO. If we run out of space, the trap data for
1959
// the ProfileData at that bci is updated.
1960
class SpeculativeTrapData : public ProfileData {
1961
protected:
1962
enum {
1963
method_offset,
1964
speculative_trap_cell_count
1965
};
1966
public:
1967
SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1968
assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1969
}
1970
1971
virtual bool is_SpeculativeTrapData() const { return true; }
1972
1973
static int static_cell_count() {
1974
return speculative_trap_cell_count;
1975
}
1976
1977
virtual int cell_count() const {
1978
return static_cell_count();
1979
}
1980
1981
// Direct accessor
1982
Method* method() const {
1983
return (Method*)intptr_at(method_offset);
1984
}
1985
1986
void set_method(Method* m) {
1987
set_intptr_at(method_offset, (intptr_t)m);
1988
}
1989
1990
#ifndef PRODUCT
1991
virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1992
#endif
1993
};
1994
1995
// MethodData*
1996
//
1997
// A MethodData* holds information which has been collected about
1998
// a method. Its layout looks like this:
1999
//
2000
// -----------------------------
2001
// | header |
2002
// | klass |
2003
// -----------------------------
2004
// | method |
2005
// | size of the MethodData* |
2006
// -----------------------------
2007
// | Data entries... |
2008
// | (variable size) |
2009
// | |
2010
// . .
2011
// . .
2012
// . .
2013
// | |
2014
// -----------------------------
2015
//
2016
// The data entry area is a heterogeneous array of DataLayouts. Each
2017
// DataLayout in the array corresponds to a specific bytecode in the
2018
// method. The entries in the array are sorted by the corresponding
2019
// bytecode. Access to the data is via resource-allocated ProfileData,
2020
// which point to the underlying blocks of DataLayout structures.
2021
//
2022
// During interpretation, if profiling in enabled, the interpreter
2023
// maintains a method data pointer (mdp), which points at the entry
2024
// in the array corresponding to the current bci. In the course of
2025
// intepretation, when a bytecode is encountered that has profile data
2026
// associated with it, the entry pointed to by mdp is updated, then the
2027
// mdp is adjusted to point to the next appropriate DataLayout. If mdp
2028
// is NULL to begin with, the interpreter assumes that the current method
2029
// is not (yet) being profiled.
2030
//
2031
// In MethodData* parlance, "dp" is a "data pointer", the actual address
2032
// of a DataLayout element. A "di" is a "data index", the offset in bytes
2033
// from the base of the data entry array. A "displacement" is the byte offset
2034
// in certain ProfileData objects that indicate the amount the mdp must be
2035
// adjusted in the event of a change in control flow.
2036
//
2037
2038
CC_INTERP_ONLY(class BytecodeInterpreter;)
2039
class CleanExtraDataClosure;
2040
2041
class MethodData : public Metadata {
2042
friend class VMStructs;
2043
CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2044
private:
2045
friend class ProfileData;
2046
2047
// Back pointer to the Method*
2048
Method* _method;
2049
2050
// Size of this oop in bytes
2051
int _size;
2052
2053
// Cached hint for bci_to_dp and bci_to_data
2054
int _hint_di;
2055
2056
Mutex _extra_data_lock;
2057
2058
MethodData(methodHandle method, int size, TRAPS);
2059
public:
2060
static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
2061
MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2062
2063
bool is_methodData() const volatile { return true; }
2064
2065
// Whole-method sticky bits and flags
2066
enum {
2067
_trap_hist_limit = 20, // decoupled from Deoptimization::Reason_LIMIT
2068
_trap_hist_mask = max_jubyte,
2069
_extra_data_count = 4 // extra DataLayout headers, for trap history
2070
}; // Public flag values
2071
private:
2072
uint _nof_decompiles; // count of all nmethod removals
2073
uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
2074
uint _nof_overflow_traps; // trap count, excluding _trap_hist
2075
union {
2076
intptr_t _align;
2077
u1 _array[_trap_hist_limit];
2078
} _trap_hist;
2079
2080
// Support for interprocedural escape analysis, from Thomas Kotzmann.
2081
intx _eflags; // flags on escape information
2082
intx _arg_local; // bit set of non-escaping arguments
2083
intx _arg_stack; // bit set of stack-allocatable arguments
2084
intx _arg_returned; // bit set of returned arguments
2085
2086
int _creation_mileage; // method mileage at MDO creation
2087
2088
// How many invocations has this MDO seen?
2089
// These counters are used to determine the exact age of MDO.
2090
// We need those because in tiered a method can be concurrently
2091
// executed at different levels.
2092
InvocationCounter _invocation_counter;
2093
// Same for backedges.
2094
InvocationCounter _backedge_counter;
2095
// Counter values at the time profiling started.
2096
int _invocation_counter_start;
2097
int _backedge_counter_start;
2098
2099
#if INCLUDE_RTM_OPT
2100
// State of RTM code generation during compilation of the method
2101
int _rtm_state;
2102
#endif
2103
2104
// Number of loops and blocks is computed when compiling the first
2105
// time with C1. It is used to determine if method is trivial.
2106
short _num_loops;
2107
short _num_blocks;
2108
// Does this method contain anything worth profiling?
2109
enum WouldProfile {unknown, no_profile, profile};
2110
WouldProfile _would_profile;
2111
2112
// Size of _data array in bytes. (Excludes header and extra_data fields.)
2113
int _data_size;
2114
2115
// data index for the area dedicated to parameters. -1 if no
2116
// parameter profiling.
2117
int _parameters_type_data_di;
2118
2119
// Beginning of the data entries
2120
intptr_t _data[1];
2121
2122
// Helper for size computation
2123
static int compute_data_size(BytecodeStream* stream);
2124
static int bytecode_cell_count(Bytecodes::Code code);
2125
static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2126
enum { no_profile_data = -1, variable_cell_count = -2 };
2127
2128
// Helper for initialization
2129
DataLayout* data_layout_at(int data_index) const {
2130
assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2131
return (DataLayout*) (((address)_data) + data_index);
2132
}
2133
2134
// Initialize an individual data segment. Returns the size of
2135
// the segment in bytes.
2136
int initialize_data(BytecodeStream* stream, int data_index);
2137
2138
// Helper for data_at
2139
DataLayout* limit_data_position() const {
2140
return (DataLayout*)((address)data_base() + _data_size);
2141
}
2142
bool out_of_bounds(int data_index) const {
2143
return data_index >= data_size();
2144
}
2145
2146
// Give each of the data entries a chance to perform specific
2147
// data initialization.
2148
void post_initialize(BytecodeStream* stream);
2149
2150
// hint accessors
2151
int hint_di() const { return _hint_di; }
2152
void set_hint_di(int di) {
2153
assert(!out_of_bounds(di), "hint_di out of bounds");
2154
_hint_di = di;
2155
}
2156
ProfileData* data_before(int bci) {
2157
// avoid SEGV on this edge case
2158
if (data_size() == 0)
2159
return NULL;
2160
int hint = hint_di();
2161
if (data_layout_at(hint)->bci() <= bci)
2162
return data_at(hint);
2163
return first_data();
2164
}
2165
2166
// What is the index of the first data entry?
2167
int first_di() const { return 0; }
2168
2169
ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2170
// Find or create an extra ProfileData:
2171
ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2172
2173
// return the argument info cell
2174
ArgInfoData *arg_info();
2175
2176
enum {
2177
no_type_profile = 0,
2178
type_profile_jsr292 = 1,
2179
type_profile_all = 2
2180
};
2181
2182
static bool profile_jsr292(methodHandle m, int bci);
2183
static int profile_arguments_flag();
2184
static bool profile_all_arguments();
2185
static bool profile_arguments_for_invoke(methodHandle m, int bci);
2186
static int profile_return_flag();
2187
static bool profile_all_return();
2188
static bool profile_return_for_invoke(methodHandle m, int bci);
2189
static int profile_parameters_flag();
2190
static bool profile_parameters_jsr292_only();
2191
static bool profile_all_parameters();
2192
2193
void clean_extra_data(CleanExtraDataClosure* cl);
2194
void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2195
void verify_extra_data_clean(CleanExtraDataClosure* cl);
2196
2197
public:
2198
static int header_size() {
2199
return sizeof(MethodData)/wordSize;
2200
}
2201
2202
// Compute the size of a MethodData* before it is created.
2203
static int compute_allocation_size_in_bytes(methodHandle method);
2204
static int compute_allocation_size_in_words(methodHandle method);
2205
static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2206
2207
// Determine if a given bytecode can have profile information.
2208
static bool bytecode_has_profile(Bytecodes::Code code) {
2209
return bytecode_cell_count(code) != no_profile_data;
2210
}
2211
2212
// reset into original state
2213
void init();
2214
2215
// My size
2216
int size_in_bytes() const { return _size; }
2217
int size() const { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2218
#if INCLUDE_SERVICES
2219
void collect_statistics(KlassSizeStats *sz) const;
2220
#endif
2221
2222
int creation_mileage() const { return _creation_mileage; }
2223
void set_creation_mileage(int x) { _creation_mileage = x; }
2224
2225
int invocation_count() {
2226
if (invocation_counter()->carry()) {
2227
return InvocationCounter::count_limit;
2228
}
2229
return invocation_counter()->count();
2230
}
2231
int backedge_count() {
2232
if (backedge_counter()->carry()) {
2233
return InvocationCounter::count_limit;
2234
}
2235
return backedge_counter()->count();
2236
}
2237
2238
int invocation_count_start() {
2239
if (invocation_counter()->carry()) {
2240
return 0;
2241
}
2242
return _invocation_counter_start;
2243
}
2244
2245
int backedge_count_start() {
2246
if (backedge_counter()->carry()) {
2247
return 0;
2248
}
2249
return _backedge_counter_start;
2250
}
2251
2252
int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2253
int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
2254
2255
void reset_start_counters() {
2256
_invocation_counter_start = invocation_count();
2257
_backedge_counter_start = backedge_count();
2258
}
2259
2260
InvocationCounter* invocation_counter() { return &_invocation_counter; }
2261
InvocationCounter* backedge_counter() { return &_backedge_counter; }
2262
2263
#if INCLUDE_RTM_OPT
2264
int rtm_state() const {
2265
return _rtm_state;
2266
}
2267
void set_rtm_state(RTMState rstate) {
2268
_rtm_state = (int)rstate;
2269
}
2270
void atomic_set_rtm_state(RTMState rstate) {
2271
Atomic::store((int)rstate, &_rtm_state);
2272
}
2273
2274
static int rtm_state_offset_in_bytes() {
2275
return offset_of(MethodData, _rtm_state);
2276
}
2277
#endif
2278
2279
void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; }
2280
bool would_profile() const { return _would_profile != no_profile; }
2281
2282
int num_loops() const { return _num_loops; }
2283
void set_num_loops(int n) { _num_loops = n; }
2284
int num_blocks() const { return _num_blocks; }
2285
void set_num_blocks(int n) { _num_blocks = n; }
2286
2287
bool is_mature() const; // consult mileage and ProfileMaturityPercentage
2288
static int mileage_of(Method* m);
2289
2290
// Support for interprocedural escape analysis, from Thomas Kotzmann.
2291
enum EscapeFlag {
2292
estimated = 1 << 0,
2293
return_local = 1 << 1,
2294
return_allocated = 1 << 2,
2295
allocated_escapes = 1 << 3,
2296
unknown_modified = 1 << 4
2297
};
2298
2299
intx eflags() { return _eflags; }
2300
intx arg_local() { return _arg_local; }
2301
intx arg_stack() { return _arg_stack; }
2302
intx arg_returned() { return _arg_returned; }
2303
uint arg_modified(int a) { ArgInfoData *aid = arg_info();
2304
assert(aid != NULL, "arg_info must be not null");
2305
assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2306
return aid->arg_modified(a); }
2307
2308
void set_eflags(intx v) { _eflags = v; }
2309
void set_arg_local(intx v) { _arg_local = v; }
2310
void set_arg_stack(intx v) { _arg_stack = v; }
2311
void set_arg_returned(intx v) { _arg_returned = v; }
2312
void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
2313
assert(aid != NULL, "arg_info must be not null");
2314
assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2315
aid->set_arg_modified(a, v); }
2316
2317
void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2318
2319
// Location and size of data area
2320
address data_base() const {
2321
return (address) _data;
2322
}
2323
int data_size() const {
2324
return _data_size;
2325
}
2326
2327
// Accessors
2328
Method* method() const { return _method; }
2329
2330
// Get the data at an arbitrary (sort of) data index.
2331
ProfileData* data_at(int data_index) const;
2332
2333
// Walk through the data in order.
2334
ProfileData* first_data() const { return data_at(first_di()); }
2335
ProfileData* next_data(ProfileData* current) const;
2336
bool is_valid(ProfileData* current) const { return current != NULL; }
2337
2338
// Convert a dp (data pointer) to a di (data index).
2339
int dp_to_di(address dp) const {
2340
return dp - ((address)_data);
2341
}
2342
2343
address di_to_dp(int di) {
2344
return (address)data_layout_at(di);
2345
}
2346
2347
// bci to di/dp conversion.
2348
address bci_to_dp(int bci);
2349
int bci_to_di(int bci) {
2350
return dp_to_di(bci_to_dp(bci));
2351
}
2352
2353
// Get the data at an arbitrary bci, or NULL if there is none.
2354
ProfileData* bci_to_data(int bci);
2355
2356
// Same, but try to create an extra_data record if one is needed:
2357
ProfileData* allocate_bci_to_data(int bci, Method* m) {
2358
ProfileData* data = NULL;
2359
// If m not NULL, try to allocate a SpeculativeTrapData entry
2360
if (m == NULL) {
2361
data = bci_to_data(bci);
2362
}
2363
if (data != NULL) {
2364
return data;
2365
}
2366
data = bci_to_extra_data(bci, m, true);
2367
if (data != NULL) {
2368
return data;
2369
}
2370
// If SpeculativeTrapData allocation fails try to allocate a
2371
// regular entry
2372
data = bci_to_data(bci);
2373
if (data != NULL) {
2374
return data;
2375
}
2376
return bci_to_extra_data(bci, NULL, true);
2377
}
2378
2379
// Add a handful of extra data records, for trap tracking.
2380
DataLayout* extra_data_base() const { return limit_data_position(); }
2381
DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2382
int extra_data_size() const { return (address)extra_data_limit()
2383
- (address)extra_data_base(); }
2384
static DataLayout* next_extra(DataLayout* dp);
2385
2386
// Return (uint)-1 for overflow.
2387
uint trap_count(int reason) const {
2388
assert((uint)reason < _trap_hist_limit, "oob");
2389
return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2390
}
2391
// For loops:
2392
static uint trap_reason_limit() { return _trap_hist_limit; }
2393
static uint trap_count_limit() { return _trap_hist_mask; }
2394
uint inc_trap_count(int reason) {
2395
// Count another trap, anywhere in this method.
2396
assert(reason >= 0, "must be single trap");
2397
if ((uint)reason < _trap_hist_limit) {
2398
uint cnt1 = 1 + _trap_hist._array[reason];
2399
if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
2400
_trap_hist._array[reason] = cnt1;
2401
return cnt1;
2402
} else {
2403
return _trap_hist_mask + (++_nof_overflow_traps);
2404
}
2405
} else {
2406
// Could not represent the count in the histogram.
2407
return (++_nof_overflow_traps);
2408
}
2409
}
2410
2411
uint overflow_trap_count() const {
2412
return _nof_overflow_traps;
2413
}
2414
uint overflow_recompile_count() const {
2415
return _nof_overflow_recompiles;
2416
}
2417
void inc_overflow_recompile_count() {
2418
_nof_overflow_recompiles += 1;
2419
}
2420
uint decompile_count() const {
2421
return _nof_decompiles;
2422
}
2423
void inc_decompile_count() {
2424
_nof_decompiles += 1;
2425
if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2426
method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2427
}
2428
}
2429
2430
// Return pointer to area dedicated to parameters in MDO
2431
ParametersTypeData* parameters_type_data() const {
2432
return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2433
}
2434
2435
int parameters_type_data_di() const {
2436
assert(_parameters_type_data_di != -1, "no args type data");
2437
return _parameters_type_data_di;
2438
}
2439
2440
// Support for code generation
2441
static ByteSize data_offset() {
2442
return byte_offset_of(MethodData, _data[0]);
2443
}
2444
2445
static ByteSize invocation_counter_offset() {
2446
return byte_offset_of(MethodData, _invocation_counter);
2447
}
2448
static ByteSize backedge_counter_offset() {
2449
return byte_offset_of(MethodData, _backedge_counter);
2450
}
2451
2452
static ByteSize parameters_type_data_di_offset() {
2453
return byte_offset_of(MethodData, _parameters_type_data_di);
2454
}
2455
2456
// Deallocation support - no pointer fields to deallocate
2457
void deallocate_contents(ClassLoaderData* loader_data) {}
2458
2459
// GC support
2460
void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2461
2462
// Printing
2463
#ifndef PRODUCT
2464
void print_on (outputStream* st) const;
2465
#endif
2466
void print_value_on(outputStream* st) const;
2467
2468
#ifndef PRODUCT
2469
// printing support for method data
2470
void print_data_on(outputStream* st) const;
2471
#endif
2472
2473
const char* internal_name() const { return "{method data}"; }
2474
2475
// verification
2476
void verify_on(outputStream* st);
2477
void verify_data_on(outputStream* st);
2478
2479
static bool profile_parameters_for_method(methodHandle m);
2480
static bool profile_arguments();
2481
static bool profile_arguments_jsr292_only();
2482
static bool profile_return();
2483
static bool profile_parameters();
2484
static bool profile_return_jsr292_only();
2485
2486
void clean_method_data(BoolObjectClosure* is_alive);
2487
2488
void clean_weak_method_links();
2489
};
2490
2491
#endif // SHARE_VM_OOPS_METHODDATAOOP_HPP
2492
2493