Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/addnode.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "opto/addnode.hpp"
28
#include "opto/cfgnode.hpp"
29
#include "opto/connode.hpp"
30
#include "opto/machnode.hpp"
31
#include "opto/mulnode.hpp"
32
#include "opto/phaseX.hpp"
33
#include "opto/subnode.hpp"
34
#if INCLUDE_ALL_GCS
35
#include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp"
36
#endif
37
38
// Portions of code courtesy of Clifford Click
39
40
// Classic Add functionality. This covers all the usual 'add' behaviors for
41
// an algebraic ring. Add-integer, add-float, add-double, and binary-or are
42
// all inherited from this class. The various identity values are supplied
43
// by virtual functions.
44
45
46
//=============================================================================
47
//------------------------------hash-------------------------------------------
48
// Hash function over AddNodes. Needs to be commutative; i.e., I swap
49
// (commute) inputs to AddNodes willy-nilly so the hash function must return
50
// the same value in the presence of edge swapping.
51
uint AddNode::hash() const {
52
return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
53
}
54
55
//------------------------------Identity---------------------------------------
56
// If either input is a constant 0, return the other input.
57
Node *AddNode::Identity( PhaseTransform *phase ) {
58
const Type *zero = add_id(); // The additive identity
59
if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
60
if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
61
return this;
62
}
63
64
//------------------------------commute----------------------------------------
65
// Commute operands to move loads and constants to the right.
66
static bool commute( Node *add, int con_left, int con_right ) {
67
Node *in1 = add->in(1);
68
Node *in2 = add->in(2);
69
70
// Convert "1+x" into "x+1".
71
// Right is a constant; leave it
72
if( con_right ) return false;
73
// Left is a constant; move it right.
74
if( con_left ) {
75
add->swap_edges(1, 2);
76
return true;
77
}
78
79
// Convert "Load+x" into "x+Load".
80
// Now check for loads
81
if (in2->is_Load()) {
82
if (!in1->is_Load()) {
83
// already x+Load to return
84
return false;
85
}
86
// both are loads, so fall through to sort inputs by idx
87
} else if( in1->is_Load() ) {
88
// Left is a Load and Right is not; move it right.
89
add->swap_edges(1, 2);
90
return true;
91
}
92
93
PhiNode *phi;
94
// Check for tight loop increments: Loop-phi of Add of loop-phi
95
if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
96
return false;
97
if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
98
add->swap_edges(1, 2);
99
return true;
100
}
101
102
// Otherwise, sort inputs (commutativity) to help value numbering.
103
if( in1->_idx > in2->_idx ) {
104
add->swap_edges(1, 2);
105
return true;
106
}
107
return false;
108
}
109
110
//------------------------------Idealize---------------------------------------
111
// If we get here, we assume we are associative!
112
Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
113
const Type *t1 = phase->type( in(1) );
114
const Type *t2 = phase->type( in(2) );
115
int con_left = t1->singleton();
116
int con_right = t2->singleton();
117
118
// Check for commutative operation desired
119
if( commute(this,con_left,con_right) ) return this;
120
121
AddNode *progress = NULL; // Progress flag
122
123
// Convert "(x+1)+2" into "x+(1+2)". If the right input is a
124
// constant, and the left input is an add of a constant, flatten the
125
// expression tree.
126
Node *add1 = in(1);
127
Node *add2 = in(2);
128
int add1_op = add1->Opcode();
129
int this_op = Opcode();
130
if( con_right && t2 != Type::TOP && // Right input is a constant?
131
add1_op == this_op ) { // Left input is an Add?
132
133
// Type of left _in right input
134
const Type *t12 = phase->type( add1->in(2) );
135
if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
136
// Check for rare case of closed data cycle which can happen inside
137
// unreachable loops. In these cases the computation is undefined.
138
#ifdef ASSERT
139
Node *add11 = add1->in(1);
140
int add11_op = add11->Opcode();
141
if( (add1 == add1->in(1))
142
|| (add11_op == this_op && add11->in(1) == add1) ) {
143
assert(false, "dead loop in AddNode::Ideal");
144
}
145
#endif
146
// The Add of the flattened expression
147
Node *x1 = add1->in(1);
148
Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
149
PhaseIterGVN *igvn = phase->is_IterGVN();
150
if( igvn ) {
151
set_req_X(2,x2,igvn);
152
set_req_X(1,x1,igvn);
153
} else {
154
set_req(2,x2);
155
set_req(1,x1);
156
}
157
progress = this; // Made progress
158
add1 = in(1);
159
add1_op = add1->Opcode();
160
}
161
}
162
163
// Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree.
164
if( add1_op == this_op && !con_right ) {
165
Node *a12 = add1->in(2);
166
const Type *t12 = phase->type( a12 );
167
if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
168
!(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
169
assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
170
add2 = add1->clone();
171
add2->set_req(2, in(2));
172
add2 = phase->transform(add2);
173
set_req(1, add2);
174
set_req(2, a12);
175
progress = this;
176
add2 = a12;
177
}
178
}
179
180
// Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree.
181
int add2_op = add2->Opcode();
182
if( add2_op == this_op && !con_left ) {
183
Node *a22 = add2->in(2);
184
const Type *t22 = phase->type( a22 );
185
if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
186
!(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
187
assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
188
Node *addx = add2->clone();
189
addx->set_req(1, in(1));
190
addx->set_req(2, add2->in(1));
191
addx = phase->transform(addx);
192
set_req(1, addx);
193
set_req(2, a22);
194
progress = this;
195
PhaseIterGVN *igvn = phase->is_IterGVN();
196
if (add2->outcnt() == 0 && igvn) {
197
// add disconnected.
198
igvn->_worklist.push(add2);
199
}
200
}
201
}
202
203
return progress;
204
}
205
206
//------------------------------Value-----------------------------------------
207
// An add node sums it's two _in. If one input is an RSD, we must mixin
208
// the other input's symbols.
209
const Type *AddNode::Value( PhaseTransform *phase ) const {
210
// Either input is TOP ==> the result is TOP
211
const Type *t1 = phase->type( in(1) );
212
const Type *t2 = phase->type( in(2) );
213
if( t1 == Type::TOP ) return Type::TOP;
214
if( t2 == Type::TOP ) return Type::TOP;
215
216
// Either input is BOTTOM ==> the result is the local BOTTOM
217
const Type *bot = bottom_type();
218
if( (t1 == bot) || (t2 == bot) ||
219
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
220
return bot;
221
222
// Check for an addition involving the additive identity
223
const Type *tadd = add_of_identity( t1, t2 );
224
if( tadd ) return tadd;
225
226
return add_ring(t1,t2); // Local flavor of type addition
227
}
228
229
//------------------------------add_identity-----------------------------------
230
// Check for addition of the identity
231
const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
232
const Type *zero = add_id(); // The additive identity
233
if( t1->higher_equal( zero ) ) return t2;
234
if( t2->higher_equal( zero ) ) return t1;
235
236
return NULL;
237
}
238
239
240
//=============================================================================
241
//------------------------------Idealize---------------------------------------
242
Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
243
Node* in1 = in(1);
244
Node* in2 = in(2);
245
int op1 = in1->Opcode();
246
int op2 = in2->Opcode();
247
// Fold (con1-x)+con2 into (con1+con2)-x
248
if ( op1 == Op_AddI && op2 == Op_SubI ) {
249
// Swap edges to try optimizations below
250
in1 = in2;
251
in2 = in(1);
252
op1 = op2;
253
op2 = in2->Opcode();
254
}
255
if( op1 == Op_SubI ) {
256
const Type *t_sub1 = phase->type( in1->in(1) );
257
const Type *t_2 = phase->type( in2 );
258
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
259
return new (phase->C) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
260
in1->in(2) );
261
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
262
if( op2 == Op_SubI ) {
263
// Check for dead cycle: d = (a-b)+(c-d)
264
assert( in1->in(2) != this && in2->in(2) != this,
265
"dead loop in AddINode::Ideal" );
266
Node *sub = new (phase->C) SubINode(NULL, NULL);
267
sub->init_req(1, phase->transform(new (phase->C) AddINode(in1->in(1), in2->in(1) ) ));
268
sub->init_req(2, phase->transform(new (phase->C) AddINode(in1->in(2), in2->in(2) ) ));
269
return sub;
270
}
271
// Convert "(a-b)+(b+c)" into "(a+c)"
272
if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
273
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
274
return new (phase->C) AddINode(in1->in(1), in2->in(2));
275
}
276
// Convert "(a-b)+(c+b)" into "(a+c)"
277
if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
278
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
279
return new (phase->C) AddINode(in1->in(1), in2->in(1));
280
}
281
// Convert "(a-b)+(b-c)" into "(a-c)"
282
if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
283
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
284
return new (phase->C) SubINode(in1->in(1), in2->in(2));
285
}
286
// Convert "(a-b)+(c-a)" into "(c-b)"
287
if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
288
assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
289
return new (phase->C) SubINode(in2->in(1), in1->in(2));
290
}
291
}
292
293
// Convert "x+(0-y)" into "(x-y)"
294
if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
295
return new (phase->C) SubINode(in1, in2->in(2) );
296
297
// Convert "(0-y)+x" into "(x-y)"
298
if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
299
return new (phase->C) SubINode( in2, in1->in(2) );
300
301
// Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
302
// Helps with array allocation math constant folding
303
// See 4790063:
304
// Unrestricted transformation is unsafe for some runtime values of 'x'
305
// ( x == 0, z == 1, y == -1 ) fails
306
// ( x == -5, z == 1, y == 1 ) fails
307
// Transform works for small z and small negative y when the addition
308
// (x + (y << z)) does not cross zero.
309
// Implement support for negative y and (x >= -(y << z))
310
// Have not observed cases where type information exists to support
311
// positive y and (x <= -(y << z))
312
if( op1 == Op_URShiftI && op2 == Op_ConI &&
313
in1->in(2)->Opcode() == Op_ConI ) {
314
jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
315
jint y = phase->type( in2 )->is_int()->get_con();
316
317
if( z < 5 && -5 < y && y < 0 ) {
318
const Type *t_in11 = phase->type(in1->in(1));
319
if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
320
Node *a = phase->transform( new (phase->C) AddINode( in1->in(1), phase->intcon(y<<z) ) );
321
return new (phase->C) URShiftINode( a, in1->in(2) );
322
}
323
}
324
}
325
326
return AddNode::Ideal(phase, can_reshape);
327
}
328
329
330
//------------------------------Identity---------------------------------------
331
// Fold (x-y)+y OR y+(x-y) into x
332
Node *AddINode::Identity( PhaseTransform *phase ) {
333
if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
334
return in(1)->in(1);
335
}
336
else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
337
return in(2)->in(1);
338
}
339
return AddNode::Identity(phase);
340
}
341
342
343
//------------------------------add_ring---------------------------------------
344
// Supplied function returns the sum of the inputs. Guaranteed never
345
// to be passed a TOP or BOTTOM type, these are filtered out by
346
// pre-check.
347
const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
348
const TypeInt *r0 = t0->is_int(); // Handy access
349
const TypeInt *r1 = t1->is_int();
350
int lo = java_add(r0->_lo, r1->_lo);
351
int hi = java_add(r0->_hi, r1->_hi);
352
if( !(r0->is_con() && r1->is_con()) ) {
353
// Not both constants, compute approximate result
354
if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
355
lo = min_jint; hi = max_jint; // Underflow on the low side
356
}
357
if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
358
lo = min_jint; hi = max_jint; // Overflow on the high side
359
}
360
if( lo > hi ) { // Handle overflow
361
lo = min_jint; hi = max_jint;
362
}
363
} else {
364
// both constants, compute precise result using 'lo' and 'hi'
365
// Semantics define overflow and underflow for integer addition
366
// as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
367
}
368
return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
369
}
370
371
372
//=============================================================================
373
//------------------------------Idealize---------------------------------------
374
Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
375
Node* in1 = in(1);
376
Node* in2 = in(2);
377
int op1 = in1->Opcode();
378
int op2 = in2->Opcode();
379
// Fold (con1-x)+con2 into (con1+con2)-x
380
if ( op1 == Op_AddL && op2 == Op_SubL ) {
381
// Swap edges to try optimizations below
382
in1 = in2;
383
in2 = in(1);
384
op1 = op2;
385
op2 = in2->Opcode();
386
}
387
// Fold (con1-x)+con2 into (con1+con2)-x
388
if( op1 == Op_SubL ) {
389
const Type *t_sub1 = phase->type( in1->in(1) );
390
const Type *t_2 = phase->type( in2 );
391
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
392
return new (phase->C) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
393
in1->in(2) );
394
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
395
if( op2 == Op_SubL ) {
396
// Check for dead cycle: d = (a-b)+(c-d)
397
assert( in1->in(2) != this && in2->in(2) != this,
398
"dead loop in AddLNode::Ideal" );
399
Node *sub = new (phase->C) SubLNode(NULL, NULL);
400
sub->init_req(1, phase->transform(new (phase->C) AddLNode(in1->in(1), in2->in(1) ) ));
401
sub->init_req(2, phase->transform(new (phase->C) AddLNode(in1->in(2), in2->in(2) ) ));
402
return sub;
403
}
404
// Convert "(a-b)+(b+c)" into "(a+c)"
405
if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
406
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
407
return new (phase->C) AddLNode(in1->in(1), in2->in(2));
408
}
409
// Convert "(a-b)+(c+b)" into "(a+c)"
410
if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
411
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
412
return new (phase->C) AddLNode(in1->in(1), in2->in(1));
413
}
414
// Convert "(a-b)+(b-c)" into "(a-c)"
415
if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
416
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
417
return new (phase->C) SubLNode(in1->in(1), in2->in(2));
418
}
419
// Convert "(a-b)+(c-a)" into "(c-b)"
420
if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
421
assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
422
return new (phase->C) SubLNode(in2->in(1), in1->in(2));
423
}
424
}
425
426
// Convert "x+(0-y)" into "(x-y)"
427
if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
428
return new (phase->C) SubLNode( in1, in2->in(2) );
429
430
// Convert "(0-y)+x" into "(x-y)"
431
if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
432
return new (phase->C) SubLNode( in2, in1->in(2) );
433
434
// Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
435
// into "(X<<1)+Y" and let shift-folding happen.
436
if( op2 == Op_AddL &&
437
in2->in(1) == in1 &&
438
op1 != Op_ConL &&
439
0 ) {
440
Node *shift = phase->transform(new (phase->C) LShiftLNode(in1,phase->intcon(1)));
441
return new (phase->C) AddLNode(shift,in2->in(2));
442
}
443
444
return AddNode::Ideal(phase, can_reshape);
445
}
446
447
448
//------------------------------Identity---------------------------------------
449
// Fold (x-y)+y OR y+(x-y) into x
450
Node *AddLNode::Identity( PhaseTransform *phase ) {
451
if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
452
return in(1)->in(1);
453
}
454
else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
455
return in(2)->in(1);
456
}
457
return AddNode::Identity(phase);
458
}
459
460
461
//------------------------------add_ring---------------------------------------
462
// Supplied function returns the sum of the inputs. Guaranteed never
463
// to be passed a TOP or BOTTOM type, these are filtered out by
464
// pre-check.
465
const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
466
const TypeLong *r0 = t0->is_long(); // Handy access
467
const TypeLong *r1 = t1->is_long();
468
jlong lo = java_add(r0->_lo, r1->_lo);
469
jlong hi = java_add(r0->_hi, r1->_hi);
470
if( !(r0->is_con() && r1->is_con()) ) {
471
// Not both constants, compute approximate result
472
if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
473
lo =min_jlong; hi = max_jlong; // Underflow on the low side
474
}
475
if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
476
lo = min_jlong; hi = max_jlong; // Overflow on the high side
477
}
478
if( lo > hi ) { // Handle overflow
479
lo = min_jlong; hi = max_jlong;
480
}
481
} else {
482
// both constants, compute precise result using 'lo' and 'hi'
483
// Semantics define overflow and underflow for integer addition
484
// as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
485
}
486
return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
487
}
488
489
490
//=============================================================================
491
//------------------------------add_of_identity--------------------------------
492
// Check for addition of the identity
493
const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
494
// x ADD 0 should return x unless 'x' is a -zero
495
//
496
// const Type *zero = add_id(); // The additive identity
497
// jfloat f1 = t1->getf();
498
// jfloat f2 = t2->getf();
499
//
500
// if( t1->higher_equal( zero ) ) return t2;
501
// if( t2->higher_equal( zero ) ) return t1;
502
503
return NULL;
504
}
505
506
//------------------------------add_ring---------------------------------------
507
// Supplied function returns the sum of the inputs.
508
// This also type-checks the inputs for sanity. Guaranteed never to
509
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
510
const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
511
// We must be adding 2 float constants.
512
return TypeF::make( t0->getf() + t1->getf() );
513
}
514
515
//------------------------------Ideal------------------------------------------
516
Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
517
if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
518
return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
519
}
520
521
// Floating point additions are not associative because of boundary conditions (infinity)
522
return commute(this,
523
phase->type( in(1) )->singleton(),
524
phase->type( in(2) )->singleton() ) ? this : NULL;
525
}
526
527
528
//=============================================================================
529
//------------------------------add_of_identity--------------------------------
530
// Check for addition of the identity
531
const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
532
// x ADD 0 should return x unless 'x' is a -zero
533
//
534
// const Type *zero = add_id(); // The additive identity
535
// jfloat f1 = t1->getf();
536
// jfloat f2 = t2->getf();
537
//
538
// if( t1->higher_equal( zero ) ) return t2;
539
// if( t2->higher_equal( zero ) ) return t1;
540
541
return NULL;
542
}
543
//------------------------------add_ring---------------------------------------
544
// Supplied function returns the sum of the inputs.
545
// This also type-checks the inputs for sanity. Guaranteed never to
546
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
547
const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
548
// We must be adding 2 double constants.
549
return TypeD::make( t0->getd() + t1->getd() );
550
}
551
552
//------------------------------Ideal------------------------------------------
553
Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
554
if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
555
return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
556
}
557
558
// Floating point additions are not associative because of boundary conditions (infinity)
559
return commute(this,
560
phase->type( in(1) )->singleton(),
561
phase->type( in(2) )->singleton() ) ? this : NULL;
562
}
563
564
565
//=============================================================================
566
//------------------------------Identity---------------------------------------
567
// If one input is a constant 0, return the other input.
568
Node *AddPNode::Identity( PhaseTransform *phase ) {
569
return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
570
}
571
572
//------------------------------Idealize---------------------------------------
573
Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
574
// Bail out if dead inputs
575
if( phase->type( in(Address) ) == Type::TOP ) return NULL;
576
577
// If the left input is an add of a constant, flatten the expression tree.
578
const Node *n = in(Address);
579
if (n->is_AddP() && n->in(Base) == in(Base)) {
580
const AddPNode *addp = n->as_AddP(); // Left input is an AddP
581
assert( !addp->in(Address)->is_AddP() ||
582
addp->in(Address)->as_AddP() != addp,
583
"dead loop in AddPNode::Ideal" );
584
// Type of left input's right input
585
const Type *t = phase->type( addp->in(Offset) );
586
if( t == Type::TOP ) return NULL;
587
const TypeX *t12 = t->is_intptr_t();
588
if( t12->is_con() ) { // Left input is an add of a constant?
589
// If the right input is a constant, combine constants
590
const Type *temp_t2 = phase->type( in(Offset) );
591
if( temp_t2 == Type::TOP ) return NULL;
592
const TypeX *t2 = temp_t2->is_intptr_t();
593
Node* address;
594
Node* offset;
595
if( t2->is_con() ) {
596
// The Add of the flattened expression
597
address = addp->in(Address);
598
offset = phase->MakeConX(t2->get_con() + t12->get_con());
599
} else {
600
// Else move the constant to the right. ((A+con)+B) into ((A+B)+con)
601
address = phase->transform(new (phase->C) AddPNode(in(Base),addp->in(Address),in(Offset)));
602
offset = addp->in(Offset);
603
}
604
PhaseIterGVN *igvn = phase->is_IterGVN();
605
if( igvn ) {
606
set_req_X(Address,address,igvn);
607
set_req_X(Offset,offset,igvn);
608
} else {
609
set_req(Address,address);
610
set_req(Offset,offset);
611
}
612
return this;
613
}
614
}
615
616
// Raw pointers?
617
if( in(Base)->bottom_type() == Type::TOP ) {
618
// If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
619
if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
620
Node* offset = in(Offset);
621
return new (phase->C) CastX2PNode(offset);
622
}
623
}
624
625
// If the right is an add of a constant, push the offset down.
626
// Convert: (ptr + (offset+con)) into (ptr+offset)+con.
627
// The idea is to merge array_base+scaled_index groups together,
628
// and only have different constant offsets from the same base.
629
const Node *add = in(Offset);
630
if( add->Opcode() == Op_AddX && add->in(1) != add ) {
631
const Type *t22 = phase->type( add->in(2) );
632
if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant?
633
set_req(Address, phase->transform(new (phase->C) AddPNode(in(Base),in(Address),add->in(1))));
634
set_req(Offset, add->in(2));
635
PhaseIterGVN *igvn = phase->is_IterGVN();
636
if (add->outcnt() == 0 && igvn) {
637
// add disconnected.
638
igvn->_worklist.push((Node*)add);
639
}
640
return this; // Made progress
641
}
642
}
643
644
return NULL; // No progress
645
}
646
647
//------------------------------bottom_type------------------------------------
648
// Bottom-type is the pointer-type with unknown offset.
649
const Type *AddPNode::bottom_type() const {
650
if (in(Address) == NULL) return TypePtr::BOTTOM;
651
const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
652
if( !tp ) return Type::TOP; // TOP input means TOP output
653
assert( in(Offset)->Opcode() != Op_ConP, "" );
654
const Type *t = in(Offset)->bottom_type();
655
if( t == Type::TOP )
656
return tp->add_offset(Type::OffsetTop);
657
const TypeX *tx = t->is_intptr_t();
658
intptr_t txoffset = Type::OffsetBot;
659
if (tx->is_con()) { // Left input is an add of a constant?
660
txoffset = tx->get_con();
661
}
662
return tp->add_offset(txoffset);
663
}
664
665
//------------------------------Value------------------------------------------
666
const Type *AddPNode::Value( PhaseTransform *phase ) const {
667
// Either input is TOP ==> the result is TOP
668
const Type *t1 = phase->type( in(Address) );
669
const Type *t2 = phase->type( in(Offset) );
670
if( t1 == Type::TOP ) return Type::TOP;
671
if( t2 == Type::TOP ) return Type::TOP;
672
673
// Left input is a pointer
674
const TypePtr *p1 = t1->isa_ptr();
675
// Right input is an int
676
const TypeX *p2 = t2->is_intptr_t();
677
// Add 'em
678
intptr_t p2offset = Type::OffsetBot;
679
if (p2->is_con()) { // Left input is an add of a constant?
680
p2offset = p2->get_con();
681
}
682
return p1->add_offset(p2offset);
683
}
684
685
//------------------------Ideal_base_and_offset--------------------------------
686
// Split an oop pointer into a base and offset.
687
// (The offset might be Type::OffsetBot in the case of an array.)
688
// Return the base, or NULL if failure.
689
Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
690
// second return value:
691
intptr_t& offset) {
692
if (ptr->is_AddP()) {
693
Node* base = ptr->in(AddPNode::Base);
694
Node* addr = ptr->in(AddPNode::Address);
695
Node* offs = ptr->in(AddPNode::Offset);
696
if (base == addr || base->is_top()) {
697
offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
698
if (offset != Type::OffsetBot) {
699
return addr;
700
}
701
}
702
}
703
offset = Type::OffsetBot;
704
return NULL;
705
}
706
707
//------------------------------unpack_offsets----------------------------------
708
// Collect the AddP offset values into the elements array, giving up
709
// if there are more than length.
710
int AddPNode::unpack_offsets(Node* elements[], int length) {
711
int count = 0;
712
Node* addr = this;
713
Node* base = addr->in(AddPNode::Base);
714
while (addr->is_AddP()) {
715
if (addr->in(AddPNode::Base) != base) {
716
// give up
717
return -1;
718
}
719
elements[count++] = addr->in(AddPNode::Offset);
720
if (count == length) {
721
// give up
722
return -1;
723
}
724
addr = addr->in(AddPNode::Address);
725
}
726
if (addr != base) {
727
return -1;
728
}
729
return count;
730
}
731
732
//------------------------------match_edge-------------------------------------
733
// Do we Match on this edge index or not? Do not match base pointer edge
734
uint AddPNode::match_edge(uint idx) const {
735
return idx > Base;
736
}
737
738
//=============================================================================
739
//------------------------------Identity---------------------------------------
740
Node *OrINode::Identity( PhaseTransform *phase ) {
741
// x | x => x
742
if (phase->eqv(in(1), in(2))) {
743
return in(1);
744
}
745
746
return AddNode::Identity(phase);
747
}
748
749
//------------------------------add_ring---------------------------------------
750
// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
751
// the logical operations the ring's ADD is really a logical OR function.
752
// This also type-checks the inputs for sanity. Guaranteed never to
753
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
754
const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
755
const TypeInt *r0 = t0->is_int(); // Handy access
756
const TypeInt *r1 = t1->is_int();
757
758
// If both args are bool, can figure out better types
759
if ( r0 == TypeInt::BOOL ) {
760
if ( r1 == TypeInt::ONE) {
761
return TypeInt::ONE;
762
} else if ( r1 == TypeInt::BOOL ) {
763
return TypeInt::BOOL;
764
}
765
} else if ( r0 == TypeInt::ONE ) {
766
if ( r1 == TypeInt::BOOL ) {
767
return TypeInt::ONE;
768
}
769
}
770
771
// If either input is not a constant, just return all integers.
772
if( !r0->is_con() || !r1->is_con() )
773
return TypeInt::INT; // Any integer, but still no symbols.
774
775
// Otherwise just OR them bits.
776
return TypeInt::make( r0->get_con() | r1->get_con() );
777
}
778
779
//=============================================================================
780
//------------------------------Identity---------------------------------------
781
Node *OrLNode::Identity( PhaseTransform *phase ) {
782
// x | x => x
783
if (phase->eqv(in(1), in(2))) {
784
return in(1);
785
}
786
787
return AddNode::Identity(phase);
788
}
789
790
//------------------------------add_ring---------------------------------------
791
const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
792
const TypeLong *r0 = t0->is_long(); // Handy access
793
const TypeLong *r1 = t1->is_long();
794
795
// If either input is not a constant, just return all integers.
796
if( !r0->is_con() || !r1->is_con() )
797
return TypeLong::LONG; // Any integer, but still no symbols.
798
799
// Otherwise just OR them bits.
800
return TypeLong::make( r0->get_con() | r1->get_con() );
801
}
802
803
//=============================================================================
804
//------------------------------add_ring---------------------------------------
805
// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
806
// the logical operations the ring's ADD is really a logical OR function.
807
// This also type-checks the inputs for sanity. Guaranteed never to
808
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
809
const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
810
const TypeInt *r0 = t0->is_int(); // Handy access
811
const TypeInt *r1 = t1->is_int();
812
813
// Complementing a boolean?
814
if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
815
|| r1 == TypeInt::BOOL))
816
return TypeInt::BOOL;
817
818
if( !r0->is_con() || !r1->is_con() ) // Not constants
819
return TypeInt::INT; // Any integer, but still no symbols.
820
821
// Otherwise just XOR them bits.
822
return TypeInt::make( r0->get_con() ^ r1->get_con() );
823
}
824
825
//=============================================================================
826
//------------------------------add_ring---------------------------------------
827
const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
828
const TypeLong *r0 = t0->is_long(); // Handy access
829
const TypeLong *r1 = t1->is_long();
830
831
// If either input is not a constant, just return all integers.
832
if( !r0->is_con() || !r1->is_con() )
833
return TypeLong::LONG; // Any integer, but still no symbols.
834
835
// Otherwise just OR them bits.
836
return TypeLong::make( r0->get_con() ^ r1->get_con() );
837
}
838
839
//=============================================================================
840
//------------------------------add_ring---------------------------------------
841
// Supplied function returns the sum of the inputs.
842
const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
843
const TypeInt *r0 = t0->is_int(); // Handy access
844
const TypeInt *r1 = t1->is_int();
845
846
// Otherwise just MAX them bits.
847
return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
848
}
849
850
// Check if addition of an integer with type 't' and a constant 'c' can overflow
851
static bool can_overflow(const TypeInt* t, jint c) {
852
jint t_lo = t->_lo;
853
jint t_hi = t->_hi;
854
return ((c < 0 && (java_add(t_lo, c) > t_lo)) ||
855
(c > 0 && (java_add(t_hi, c) < t_hi)));
856
}
857
858
//=============================================================================
859
//------------------------------Idealize---------------------------------------
860
// MINs show up in range-check loop limit calculations. Look for
861
// "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)"
862
Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
863
Node *progress = NULL;
864
// Force a right-spline graph
865
Node *l = in(1);
866
Node *r = in(2);
867
// Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) )
868
// to force a right-spline graph for the rest of MinINode::Ideal().
869
if( l->Opcode() == Op_MinI ) {
870
assert( l != l->in(1), "dead loop in MinINode::Ideal" );
871
r = phase->transform(new (phase->C) MinINode(l->in(2),r));
872
l = l->in(1);
873
set_req(1, l);
874
set_req(2, r);
875
return this;
876
}
877
878
// Get left input & constant
879
Node *x = l;
880
jint x_off = 0;
881
if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
882
x->in(2)->is_Con() ) {
883
const Type *t = x->in(2)->bottom_type();
884
if( t == Type::TOP ) return NULL; // No progress
885
x_off = t->is_int()->get_con();
886
x = x->in(1);
887
}
888
889
// Scan a right-spline-tree for MINs
890
Node *y = r;
891
jint y_off = 0;
892
// Check final part of MIN tree
893
if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
894
y->in(2)->is_Con() ) {
895
const Type *t = y->in(2)->bottom_type();
896
if( t == Type::TOP ) return NULL; // No progress
897
y_off = t->is_int()->get_con();
898
y = y->in(1);
899
}
900
if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
901
swap_edges(1, 2);
902
return this;
903
}
904
905
const TypeInt* tx = phase->type(x)->isa_int();
906
907
if( r->Opcode() == Op_MinI ) {
908
assert( r != r->in(2), "dead loop in MinINode::Ideal" );
909
y = r->in(1);
910
// Check final part of MIN tree
911
if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
912
y->in(2)->is_Con() ) {
913
const Type *t = y->in(2)->bottom_type();
914
if( t == Type::TOP ) return NULL; // No progress
915
y_off = t->is_int()->get_con();
916
y = y->in(1);
917
}
918
919
if( x->_idx > y->_idx )
920
return new (phase->C) MinINode(r->in(1),phase->transform(new (phase->C) MinINode(l,r->in(2))));
921
922
// Transform MIN2(x + c0, MIN2(x + c1, z)) into MIN2(x + MIN2(c0, c1), z)
923
// if x == y and the additions can't overflow.
924
if (phase->eqv(x,y) && tx != NULL &&
925
!can_overflow(tx, x_off) &&
926
!can_overflow(tx, y_off)) {
927
return new (phase->C) MinINode(phase->transform(new (phase->C) AddINode(x, phase->intcon(MIN2(x_off, y_off)))), r->in(2));
928
}
929
} else {
930
// Transform MIN2(x + c0, y + c1) into x + MIN2(c0, c1)
931
// if x == y and the additions can't overflow.
932
if (phase->eqv(x,y) && tx != NULL &&
933
!can_overflow(tx, x_off) &&
934
!can_overflow(tx, y_off)) {
935
return new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
936
}
937
}
938
return NULL;
939
}
940
941
//------------------------------add_ring---------------------------------------
942
// Supplied function returns the sum of the inputs.
943
const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
944
const TypeInt *r0 = t0->is_int(); // Handy access
945
const TypeInt *r1 = t1->is_int();
946
947
// Otherwise just MIN them bits.
948
return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
949
}
950
951