Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/block.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "libadt/vectset.hpp"
27
#include "memory/allocation.inline.hpp"
28
#include "opto/block.hpp"
29
#include "opto/cfgnode.hpp"
30
#include "opto/chaitin.hpp"
31
#include "opto/loopnode.hpp"
32
#include "opto/machnode.hpp"
33
#include "opto/matcher.hpp"
34
#include "opto/opcodes.hpp"
35
#include "opto/rootnode.hpp"
36
#include "utilities/copy.hpp"
37
38
void Block_Array::grow( uint i ) {
39
assert(i >= Max(), "must be an overflow");
40
debug_only(_limit = i+1);
41
if( i < _size ) return;
42
if( !_size ) {
43
_size = 1;
44
_blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
45
_blocks[0] = NULL;
46
}
47
uint old = _size;
48
while( i >= _size ) _size <<= 1; // Double to fit
49
_blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
50
Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
51
}
52
53
void Block_List::remove(uint i) {
54
assert(i < _cnt, "index out of bounds");
55
Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
56
pop(); // shrink list by one block
57
}
58
59
void Block_List::insert(uint i, Block *b) {
60
push(b); // grow list by one block
61
Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
62
_blocks[i] = b;
63
}
64
65
#ifndef PRODUCT
66
void Block_List::print() {
67
for (uint i=0; i < size(); i++) {
68
tty->print("B%d ", _blocks[i]->_pre_order);
69
}
70
tty->print("size = %d\n", size());
71
}
72
#endif
73
74
uint Block::code_alignment() {
75
// Check for Root block
76
if (_pre_order == 0) return CodeEntryAlignment;
77
// Check for Start block
78
if (_pre_order == 1) return InteriorEntryAlignment;
79
// Check for loop alignment
80
if (has_loop_alignment()) return loop_alignment();
81
82
return relocInfo::addr_unit(); // no particular alignment
83
}
84
85
uint Block::compute_loop_alignment() {
86
Node *h = head();
87
int unit_sz = relocInfo::addr_unit();
88
if (h->is_Loop() && h->as_Loop()->is_inner_loop()) {
89
// Pre- and post-loops have low trip count so do not bother with
90
// NOPs for align loop head. The constants are hidden from tuning
91
// but only because my "divide by 4" heuristic surely gets nearly
92
// all possible gain (a "do not align at all" heuristic has a
93
// chance of getting a really tiny gain).
94
if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
95
h->as_CountedLoop()->is_post_loop())) {
96
return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
97
}
98
// Loops with low backedge frequency should not be aligned.
99
Node *n = h->in(LoopNode::LoopBackControl)->in(0);
100
if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
101
return unit_sz; // Loop does not loop, more often than not!
102
}
103
return OptoLoopAlignment; // Otherwise align loop head
104
}
105
106
return unit_sz; // no particular alignment
107
}
108
109
// Compute the size of first 'inst_cnt' instructions in this block.
110
// Return the number of instructions left to compute if the block has
111
// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
112
// exceeds OptoLoopAlignment.
113
uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
114
PhaseRegAlloc* ra) {
115
uint last_inst = number_of_nodes();
116
for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
117
uint inst_size = get_node(j)->size(ra);
118
if( inst_size > 0 ) {
119
inst_cnt--;
120
uint sz = sum_size + inst_size;
121
if( sz <= (uint)OptoLoopAlignment ) {
122
// Compute size of instructions which fit into fetch buffer only
123
// since all inst_cnt instructions will not fit even if we align them.
124
sum_size = sz;
125
} else {
126
return 0;
127
}
128
}
129
}
130
return inst_cnt;
131
}
132
133
uint Block::find_node( const Node *n ) const {
134
for( uint i = 0; i < number_of_nodes(); i++ ) {
135
if( get_node(i) == n )
136
return i;
137
}
138
ShouldNotReachHere();
139
return 0;
140
}
141
142
// Find and remove n from block list
143
void Block::find_remove( const Node *n ) {
144
remove_node(find_node(n));
145
}
146
147
bool Block::contains(const Node *n) const {
148
return _nodes.contains(n);
149
}
150
151
// Return empty status of a block. Empty blocks contain only the head, other
152
// ideal nodes, and an optional trailing goto.
153
int Block::is_Empty() const {
154
155
// Root or start block is not considered empty
156
if (head()->is_Root() || head()->is_Start()) {
157
return not_empty;
158
}
159
160
int success_result = completely_empty;
161
int end_idx = number_of_nodes() - 1;
162
163
// Check for ending goto
164
if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
165
success_result = empty_with_goto;
166
end_idx--;
167
}
168
169
// Unreachable blocks are considered empty
170
if (num_preds() <= 1) {
171
return success_result;
172
}
173
174
// Ideal nodes are allowable in empty blocks: skip them Only MachNodes
175
// turn directly into code, because only MachNodes have non-trivial
176
// emit() functions.
177
while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
178
end_idx--;
179
}
180
181
// No room for any interesting instructions?
182
if (end_idx == 0) {
183
return success_result;
184
}
185
186
return not_empty;
187
}
188
189
// Return true if the block's code implies that it is likely to be
190
// executed infrequently. Check to see if the block ends in a Halt or
191
// a low probability call.
192
bool Block::has_uncommon_code() const {
193
Node* en = end();
194
195
if (en->is_MachGoto())
196
en = en->in(0);
197
if (en->is_Catch())
198
en = en->in(0);
199
if (en->is_MachProj() && en->in(0)->is_MachCall()) {
200
MachCallNode* call = en->in(0)->as_MachCall();
201
if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
202
// This is true for slow-path stubs like new_{instance,array},
203
// slow_arraycopy, complete_monitor_locking, uncommon_trap.
204
// The magic number corresponds to the probability of an uncommon_trap,
205
// even though it is a count not a probability.
206
return true;
207
}
208
}
209
210
int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
211
return op == Op_Halt;
212
}
213
214
// True if block is low enough frequency or guarded by a test which
215
// mostly does not go here.
216
bool PhaseCFG::is_uncommon(const Block* block) {
217
// Initial blocks must never be moved, so are never uncommon.
218
if (block->head()->is_Root() || block->head()->is_Start()) return false;
219
220
// Check for way-low freq
221
if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
222
223
// Look for code shape indicating uncommon_trap or slow path
224
if (block->has_uncommon_code()) return true;
225
226
const float epsilon = 0.05f;
227
const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
228
uint uncommon_preds = 0;
229
uint freq_preds = 0;
230
uint uncommon_for_freq_preds = 0;
231
232
for( uint i=1; i< block->num_preds(); i++ ) {
233
Block* guard = get_block_for_node(block->pred(i));
234
// Check to see if this block follows its guard 1 time out of 10000
235
// or less.
236
//
237
// See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
238
// we intend to be "uncommon", such as slow-path TLE allocation,
239
// predicted call failure, and uncommon trap triggers.
240
//
241
// Use an epsilon value of 5% to allow for variability in frequency
242
// predictions and floating point calculations. The net effect is
243
// that guard_factor is set to 9500.
244
//
245
// Ignore low-frequency blocks.
246
// The next check is (guard->_freq < 1.e-5 * 9500.).
247
if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
248
uncommon_preds++;
249
} else {
250
freq_preds++;
251
if(block->_freq < guard->_freq * guard_factor ) {
252
uncommon_for_freq_preds++;
253
}
254
}
255
}
256
if( block->num_preds() > 1 &&
257
// The block is uncommon if all preds are uncommon or
258
(uncommon_preds == (block->num_preds()-1) ||
259
// it is uncommon for all frequent preds.
260
uncommon_for_freq_preds == freq_preds) ) {
261
return true;
262
}
263
return false;
264
}
265
266
#ifndef PRODUCT
267
void Block::dump_bidx(const Block* orig, outputStream* st) const {
268
if (_pre_order) st->print("B%d",_pre_order);
269
else st->print("N%d", head()->_idx);
270
271
if (Verbose && orig != this) {
272
// Dump the original block's idx
273
st->print(" (");
274
orig->dump_bidx(orig, st);
275
st->print(")");
276
}
277
}
278
279
void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
280
if (is_connector()) {
281
for (uint i=1; i<num_preds(); i++) {
282
Block *p = cfg->get_block_for_node(pred(i));
283
p->dump_pred(cfg, orig, st);
284
}
285
} else {
286
dump_bidx(orig, st);
287
st->print(" ");
288
}
289
}
290
291
void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
292
// Print the basic block
293
dump_bidx(this, st);
294
st->print(": #\t");
295
296
// Print the incoming CFG edges and the outgoing CFG edges
297
for( uint i=0; i<_num_succs; i++ ) {
298
non_connector_successor(i)->dump_bidx(_succs[i], st);
299
st->print(" ");
300
}
301
st->print("<- ");
302
if( head()->is_block_start() ) {
303
for (uint i=1; i<num_preds(); i++) {
304
Node *s = pred(i);
305
if (cfg != NULL) {
306
Block *p = cfg->get_block_for_node(s);
307
p->dump_pred(cfg, p, st);
308
} else {
309
while (!s->is_block_start())
310
s = s->in(0);
311
st->print("N%d ", s->_idx );
312
}
313
}
314
} else {
315
st->print("BLOCK HEAD IS JUNK ");
316
}
317
318
// Print loop, if any
319
const Block *bhead = this; // Head of self-loop
320
Node *bh = bhead->head();
321
322
if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
323
LoopNode *loop = bh->as_Loop();
324
const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
325
while (bx->is_connector()) {
326
bx = cfg->get_block_for_node(bx->pred(1));
327
}
328
st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
329
// Dump any loop-specific bits, especially for CountedLoops.
330
loop->dump_spec(st);
331
} else if (has_loop_alignment()) {
332
st->print(" top-of-loop");
333
}
334
st->print(" Freq: %g",_freq);
335
if( Verbose || WizardMode ) {
336
st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
337
st->print(" RegPressure: %d",_reg_pressure);
338
st->print(" IHRP Index: %d",_ihrp_index);
339
st->print(" FRegPressure: %d",_freg_pressure);
340
st->print(" FHRP Index: %d",_fhrp_index);
341
}
342
st->cr();
343
}
344
345
void Block::dump() const {
346
dump(NULL);
347
}
348
349
void Block::dump(const PhaseCFG* cfg) const {
350
dump_head(cfg);
351
for (uint i=0; i< number_of_nodes(); i++) {
352
get_node(i)->dump();
353
}
354
tty->print("\n");
355
}
356
#endif
357
358
PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
359
: Phase(CFG)
360
, _block_arena(arena)
361
, _root(root)
362
, _matcher(matcher)
363
, _node_to_block_mapping(arena)
364
, _node_latency(NULL)
365
#ifndef PRODUCT
366
, _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
367
#endif
368
#ifdef ASSERT
369
, _raw_oops(arena)
370
#endif
371
{
372
ResourceMark rm;
373
// I'll need a few machine-specific GotoNodes. Make an Ideal GotoNode,
374
// then Match it into a machine-specific Node. Then clone the machine
375
// Node on demand.
376
Node *x = new (C) GotoNode(NULL);
377
x->init_req(0, x);
378
_goto = matcher.match_tree(x);
379
assert(_goto != NULL, "");
380
_goto->set_req(0,_goto);
381
382
// Build the CFG in Reverse Post Order
383
_number_of_blocks = build_cfg();
384
_root_block = get_block_for_node(_root);
385
}
386
387
// Build a proper looking CFG. Make every block begin with either a StartNode
388
// or a RegionNode. Make every block end with either a Goto, If or Return.
389
// The RootNode both starts and ends it's own block. Do this with a recursive
390
// backwards walk over the control edges.
391
uint PhaseCFG::build_cfg() {
392
Arena *a = Thread::current()->resource_area();
393
VectorSet visited(a);
394
395
// Allocate stack with enough space to avoid frequent realloc
396
Node_Stack nstack(a, C->live_nodes() >> 1);
397
nstack.push(_root, 0);
398
uint sum = 0; // Counter for blocks
399
400
while (nstack.is_nonempty()) {
401
// node and in's index from stack's top
402
// 'np' is _root (see above) or RegionNode, StartNode: we push on stack
403
// only nodes which point to the start of basic block (see below).
404
Node *np = nstack.node();
405
// idx > 0, except for the first node (_root) pushed on stack
406
// at the beginning when idx == 0.
407
// We will use the condition (idx == 0) later to end the build.
408
uint idx = nstack.index();
409
Node *proj = np->in(idx);
410
const Node *x = proj->is_block_proj();
411
// Does the block end with a proper block-ending Node? One of Return,
412
// If or Goto? (This check should be done for visited nodes also).
413
if (x == NULL) { // Does not end right...
414
Node *g = _goto->clone(); // Force it to end in a Goto
415
g->set_req(0, proj);
416
np->set_req(idx, g);
417
x = proj = g;
418
}
419
if (!visited.test_set(x->_idx)) { // Visit this block once
420
// Skip any control-pinned middle'in stuff
421
Node *p = proj;
422
do {
423
proj = p; // Update pointer to last Control
424
p = p->in(0); // Move control forward
425
} while( !p->is_block_proj() &&
426
!p->is_block_start() );
427
// Make the block begin with one of Region or StartNode.
428
if( !p->is_block_start() ) {
429
RegionNode *r = new (C) RegionNode( 2 );
430
r->init_req(1, p); // Insert RegionNode in the way
431
proj->set_req(0, r); // Insert RegionNode in the way
432
p = r;
433
}
434
// 'p' now points to the start of this basic block
435
436
// Put self in array of basic blocks
437
Block *bb = new (_block_arena) Block(_block_arena, p);
438
map_node_to_block(p, bb);
439
map_node_to_block(x, bb);
440
if( x != p ) { // Only for root is x == p
441
bb->push_node((Node*)x);
442
}
443
// Now handle predecessors
444
++sum; // Count 1 for self block
445
uint cnt = bb->num_preds();
446
for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
447
Node *prevproj = p->in(i); // Get prior input
448
assert( !prevproj->is_Con(), "dead input not removed" );
449
// Check to see if p->in(i) is a "control-dependent" CFG edge -
450
// i.e., it splits at the source (via an IF or SWITCH) and merges
451
// at the destination (via a many-input Region).
452
// This breaks critical edges. The RegionNode to start the block
453
// will be added when <p,i> is pulled off the node stack
454
if ( cnt > 2 ) { // Merging many things?
455
assert( prevproj== bb->pred(i),"");
456
if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
457
// Force a block on the control-dependent edge
458
Node *g = _goto->clone(); // Force it to end in a Goto
459
g->set_req(0,prevproj);
460
p->set_req(i,g);
461
}
462
}
463
nstack.push(p, i); // 'p' is RegionNode or StartNode
464
}
465
} else { // Post-processing visited nodes
466
nstack.pop(); // remove node from stack
467
// Check if it the fist node pushed on stack at the beginning.
468
if (idx == 0) break; // end of the build
469
// Find predecessor basic block
470
Block *pb = get_block_for_node(x);
471
// Insert into nodes array, if not already there
472
if (!has_block(proj)) {
473
assert( x != proj, "" );
474
// Map basic block of projection
475
map_node_to_block(proj, pb);
476
pb->push_node(proj);
477
}
478
// Insert self as a child of my predecessor block
479
pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
480
assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
481
"too many control users, not a CFG?" );
482
}
483
}
484
// Return number of basic blocks for all children and self
485
return sum;
486
}
487
488
// Inserts a goto & corresponding basic block between
489
// block[block_no] and its succ_no'th successor block
490
void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
491
// get block with block_no
492
assert(block_no < number_of_blocks(), "illegal block number");
493
Block* in = get_block(block_no);
494
// get successor block succ_no
495
assert(succ_no < in->_num_succs, "illegal successor number");
496
Block* out = in->_succs[succ_no];
497
// Compute frequency of the new block. Do this before inserting
498
// new block in case succ_prob() needs to infer the probability from
499
// surrounding blocks.
500
float freq = in->_freq * in->succ_prob(succ_no);
501
// get ProjNode corresponding to the succ_no'th successor of the in block
502
ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
503
// create region for basic block
504
RegionNode* region = new (C) RegionNode(2);
505
region->init_req(1, proj);
506
// setup corresponding basic block
507
Block* block = new (_block_arena) Block(_block_arena, region);
508
map_node_to_block(region, block);
509
C->regalloc()->set_bad(region->_idx);
510
// add a goto node
511
Node* gto = _goto->clone(); // get a new goto node
512
gto->set_req(0, region);
513
// add it to the basic block
514
block->push_node(gto);
515
map_node_to_block(gto, block);
516
C->regalloc()->set_bad(gto->_idx);
517
// hook up successor block
518
block->_succs.map(block->_num_succs++, out);
519
// remap successor's predecessors if necessary
520
for (uint i = 1; i < out->num_preds(); i++) {
521
if (out->pred(i) == proj) out->head()->set_req(i, gto);
522
}
523
// remap predecessor's successor to new block
524
in->_succs.map(succ_no, block);
525
// Set the frequency of the new block
526
block->_freq = freq;
527
// add new basic block to basic block list
528
add_block_at(block_no + 1, block);
529
}
530
531
// Does this block end in a multiway branch that cannot have the default case
532
// flipped for another case?
533
static bool no_flip_branch(Block *b) {
534
int branch_idx = b->number_of_nodes() - b->_num_succs-1;
535
if (branch_idx < 1) {
536
return false;
537
}
538
Node *branch = b->get_node(branch_idx);
539
if (branch->is_Catch()) {
540
return true;
541
}
542
if (branch->is_Mach()) {
543
if (branch->is_MachNullCheck()) {
544
return true;
545
}
546
int iop = branch->as_Mach()->ideal_Opcode();
547
if (iop == Op_FastLock || iop == Op_FastUnlock) {
548
return true;
549
}
550
// Don't flip if branch has an implicit check.
551
if (branch->as_Mach()->is_TrapBasedCheckNode()) {
552
return true;
553
}
554
}
555
return false;
556
}
557
558
// Check for NeverBranch at block end. This needs to become a GOTO to the
559
// true target. NeverBranch are treated as a conditional branch that always
560
// goes the same direction for most of the optimizer and are used to give a
561
// fake exit path to infinite loops. At this late stage they need to turn
562
// into Goto's so that when you enter the infinite loop you indeed hang.
563
void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
564
// Find true target
565
int end_idx = b->end_idx();
566
int idx = b->get_node(end_idx+1)->as_Proj()->_con;
567
Block *succ = b->_succs[idx];
568
Node* gto = _goto->clone(); // get a new goto node
569
gto->set_req(0, b->head());
570
Node *bp = b->get_node(end_idx);
571
b->map_node(gto, end_idx); // Slam over NeverBranch
572
map_node_to_block(gto, b);
573
C->regalloc()->set_bad(gto->_idx);
574
b->pop_node(); // Yank projections
575
b->pop_node(); // Yank projections
576
b->_succs.map(0,succ); // Map only successor
577
b->_num_succs = 1;
578
// remap successor's predecessors if necessary
579
uint j;
580
for( j = 1; j < succ->num_preds(); j++)
581
if( succ->pred(j)->in(0) == bp )
582
succ->head()->set_req(j, gto);
583
// Kill alternate exit path
584
Block *dead = b->_succs[1-idx];
585
for( j = 1; j < dead->num_preds(); j++)
586
if( dead->pred(j)->in(0) == bp )
587
break;
588
// Scan through block, yanking dead path from
589
// all regions and phis.
590
dead->head()->del_req(j);
591
for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
592
dead->get_node(k)->del_req(j);
593
}
594
595
// Helper function to move block bx to the slot following b_index. Return
596
// true if the move is successful, otherwise false
597
bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
598
if (bx == NULL) return false;
599
600
// Return false if bx is already scheduled.
601
uint bx_index = bx->_pre_order;
602
if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
603
return false;
604
}
605
606
// Find the current index of block bx on the block list
607
bx_index = b_index + 1;
608
while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
609
bx_index++;
610
}
611
assert(get_block(bx_index) == bx, "block not found");
612
613
// If the previous block conditionally falls into bx, return false,
614
// because moving bx will create an extra jump.
615
for(uint k = 1; k < bx->num_preds(); k++ ) {
616
Block* pred = get_block_for_node(bx->pred(k));
617
if (pred == get_block(bx_index - 1)) {
618
if (pred->_num_succs != 1) {
619
return false;
620
}
621
}
622
}
623
624
// Reinsert bx just past block 'b'
625
_blocks.remove(bx_index);
626
_blocks.insert(b_index + 1, bx);
627
return true;
628
}
629
630
// Move empty and uncommon blocks to the end.
631
void PhaseCFG::move_to_end(Block *b, uint i) {
632
int e = b->is_Empty();
633
if (e != Block::not_empty) {
634
if (e == Block::empty_with_goto) {
635
// Remove the goto, but leave the block.
636
b->pop_node();
637
}
638
// Mark this block as a connector block, which will cause it to be
639
// ignored in certain functions such as non_connector_successor().
640
b->set_connector();
641
}
642
// Move the empty block to the end, and don't recheck.
643
_blocks.remove(i);
644
_blocks.push(b);
645
}
646
647
// Set loop alignment for every block
648
void PhaseCFG::set_loop_alignment() {
649
uint last = number_of_blocks();
650
assert(get_block(0) == get_root_block(), "");
651
652
for (uint i = 1; i < last; i++) {
653
Block* block = get_block(i);
654
if (block->head()->is_Loop()) {
655
block->set_loop_alignment(block);
656
}
657
}
658
}
659
660
// Make empty basic blocks to be "connector" blocks, Move uncommon blocks
661
// to the end.
662
void PhaseCFG::remove_empty_blocks() {
663
// Move uncommon blocks to the end
664
uint last = number_of_blocks();
665
assert(get_block(0) == get_root_block(), "");
666
667
for (uint i = 1; i < last; i++) {
668
Block* block = get_block(i);
669
if (block->is_connector()) {
670
break;
671
}
672
673
// Check for NeverBranch at block end. This needs to become a GOTO to the
674
// true target. NeverBranch are treated as a conditional branch that
675
// always goes the same direction for most of the optimizer and are used
676
// to give a fake exit path to infinite loops. At this late stage they
677
// need to turn into Goto's so that when you enter the infinite loop you
678
// indeed hang.
679
if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
680
convert_NeverBranch_to_Goto(block);
681
}
682
683
// Look for uncommon blocks and move to end.
684
if (!C->do_freq_based_layout()) {
685
if (is_uncommon(block)) {
686
move_to_end(block, i);
687
last--; // No longer check for being uncommon!
688
if (no_flip_branch(block)) { // Fall-thru case must follow?
689
// Find the fall-thru block
690
block = get_block(i);
691
move_to_end(block, i);
692
last--;
693
}
694
// backup block counter post-increment
695
i--;
696
}
697
}
698
}
699
700
// Move empty blocks to the end
701
last = number_of_blocks();
702
for (uint i = 1; i < last; i++) {
703
Block* block = get_block(i);
704
if (block->is_Empty() != Block::not_empty) {
705
move_to_end(block, i);
706
last--;
707
i--;
708
}
709
} // End of for all blocks
710
}
711
712
Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
713
// Trap based checks must fall through to the successor with
714
// PROB_ALWAYS.
715
// They should be an If with 2 successors.
716
assert(branch->is_MachIf(), "must be If");
717
assert(block->_num_succs == 2, "must have 2 successors");
718
719
// Get the If node and the projection for the first successor.
720
MachIfNode *iff = block->get_node(block->number_of_nodes()-3)->as_MachIf();
721
ProjNode *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
722
ProjNode *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
723
ProjNode *projt = (proj0->Opcode() == Op_IfTrue) ? proj0 : proj1;
724
ProjNode *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
725
726
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
727
assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
728
assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
729
730
ProjNode *proj_always;
731
ProjNode *proj_never;
732
// We must negate the branch if the implicit check doesn't follow
733
// the branch's TRUE path. Then, the new TRUE branch target will
734
// be the old FALSE branch target.
735
if (iff->_prob <= 2*PROB_NEVER) { // There are small rounding errors.
736
proj_never = projt;
737
proj_always = projf;
738
} else {
739
// We must negate the branch if the trap doesn't follow the
740
// branch's TRUE path. Then, the new TRUE branch target will
741
// be the old FALSE branch target.
742
proj_never = projf;
743
proj_always = projt;
744
iff->negate();
745
}
746
assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
747
// Map the successors properly
748
block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0))); // The target of the trap.
749
block->_succs.map(1, get_block_for_node(proj_always->raw_out(0))); // The fall through target.
750
751
if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
752
block->map_node(proj_never, block->number_of_nodes() - block->_num_succs + 0);
753
block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
754
}
755
756
// Place the fall through block after this block.
757
Block *bs1 = block->non_connector_successor(1);
758
if (bs1 != bnext && move_to_next(bs1, block_pos)) {
759
bnext = bs1;
760
}
761
// If the fall through block still is not the next block, insert a goto.
762
if (bs1 != bnext) {
763
insert_goto_at(block_pos, 1);
764
}
765
return bnext;
766
}
767
768
// Fix up the final control flow for basic blocks.
769
void PhaseCFG::fixup_flow() {
770
// Fixup final control flow for the blocks. Remove jump-to-next
771
// block. If neither arm of an IF follows the conditional branch, we
772
// have to add a second jump after the conditional. We place the
773
// TRUE branch target in succs[0] for both GOTOs and IFs.
774
for (uint i = 0; i < number_of_blocks(); i++) {
775
Block* block = get_block(i);
776
block->_pre_order = i; // turn pre-order into block-index
777
778
// Connector blocks need no further processing.
779
if (block->is_connector()) {
780
assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
781
continue;
782
}
783
assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
784
785
Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
786
Block* bs0 = block->non_connector_successor(0);
787
788
// Check for multi-way branches where I cannot negate the test to
789
// exchange the true and false targets.
790
if (no_flip_branch(block)) {
791
// Find fall through case - if must fall into its target.
792
// Get the index of the branch's first successor.
793
int branch_idx = block->number_of_nodes() - block->_num_succs;
794
795
// The branch is 1 before the branch's first successor.
796
Node *branch = block->get_node(branch_idx-1);
797
798
// Handle no-flip branches which have implicit checks and which require
799
// special block ordering and individual semantics of the 'fall through
800
// case'.
801
if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
802
branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
803
bnext = fixup_trap_based_check(branch, block, i, bnext);
804
} else {
805
// Else, default handling for no-flip branches
806
for (uint j2 = 0; j2 < block->_num_succs; j2++) {
807
const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
808
if (p->_con == 0) {
809
// successor j2 is fall through case
810
if (block->non_connector_successor(j2) != bnext) {
811
// but it is not the next block => insert a goto
812
insert_goto_at(i, j2);
813
}
814
// Put taken branch in slot 0
815
if (j2 == 0 && block->_num_succs == 2) {
816
// Flip targets in succs map
817
Block *tbs0 = block->_succs[0];
818
Block *tbs1 = block->_succs[1];
819
block->_succs.map(0, tbs1);
820
block->_succs.map(1, tbs0);
821
}
822
break;
823
}
824
}
825
}
826
827
// Remove all CatchProjs
828
for (uint j = 0; j < block->_num_succs; j++) {
829
block->pop_node();
830
}
831
832
} else if (block->_num_succs == 1) {
833
// Block ends in a Goto?
834
if (bnext == bs0) {
835
// We fall into next block; remove the Goto
836
block->pop_node();
837
}
838
839
} else if(block->_num_succs == 2) { // Block ends in a If?
840
// Get opcode of 1st projection (matches _succs[0])
841
// Note: Since this basic block has 2 exits, the last 2 nodes must
842
// be projections (in any order), the 3rd last node must be
843
// the IfNode (we have excluded other 2-way exits such as
844
// CatchNodes already).
845
MachNode* iff = block->get_node(block->number_of_nodes() - 3)->as_Mach();
846
ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
847
ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
848
849
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
850
assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
851
assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
852
853
Block* bs1 = block->non_connector_successor(1);
854
855
// Check for neither successor block following the current
856
// block ending in a conditional. If so, move one of the
857
// successors after the current one, provided that the
858
// successor was previously unscheduled, but moveable
859
// (i.e., all paths to it involve a branch).
860
if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
861
// Choose the more common successor based on the probability
862
// of the conditional branch.
863
Block* bx = bs0;
864
Block* by = bs1;
865
866
// _prob is the probability of taking the true path. Make
867
// p the probability of taking successor #1.
868
float p = iff->as_MachIf()->_prob;
869
if (proj0->Opcode() == Op_IfTrue) {
870
p = 1.0 - p;
871
}
872
873
// Prefer successor #1 if p > 0.5
874
if (p > PROB_FAIR) {
875
bx = bs1;
876
by = bs0;
877
}
878
879
// Attempt the more common successor first
880
if (move_to_next(bx, i)) {
881
bnext = bx;
882
} else if (move_to_next(by, i)) {
883
bnext = by;
884
}
885
}
886
887
// Check for conditional branching the wrong way. Negate
888
// conditional, if needed, so it falls into the following block
889
// and branches to the not-following block.
890
891
// Check for the next block being in succs[0]. We are going to branch
892
// to succs[0], so we want the fall-thru case as the next block in
893
// succs[1].
894
if (bnext == bs0) {
895
// Fall-thru case in succs[0], so flip targets in succs map
896
Block* tbs0 = block->_succs[0];
897
Block* tbs1 = block->_succs[1];
898
block->_succs.map(0, tbs1);
899
block->_succs.map(1, tbs0);
900
// Flip projection for each target
901
ProjNode* tmp = proj0;
902
proj0 = proj1;
903
proj1 = tmp;
904
905
} else if(bnext != bs1) {
906
// Need a double-branch
907
// The existing conditional branch need not change.
908
// Add a unconditional branch to the false target.
909
// Alas, it must appear in its own block and adding a
910
// block this late in the game is complicated. Sigh.
911
insert_goto_at(i, 1);
912
}
913
914
// Make sure we TRUE branch to the target
915
if (proj0->Opcode() == Op_IfFalse) {
916
iff->as_MachIf()->negate();
917
}
918
919
block->pop_node(); // Remove IfFalse & IfTrue projections
920
block->pop_node();
921
922
} else {
923
// Multi-exit block, e.g. a switch statement
924
// But we don't need to do anything here
925
}
926
} // End of for all blocks
927
}
928
929
930
// postalloc_expand: Expand nodes after register allocation.
931
//
932
// postalloc_expand has to be called after register allocation, just
933
// before output (i.e. scheduling). It only gets called if
934
// Matcher::require_postalloc_expand is true.
935
//
936
// Background:
937
//
938
// Nodes that are expandend (one compound node requiring several
939
// assembler instructions to be implemented split into two or more
940
// non-compound nodes) after register allocation are not as nice as
941
// the ones expanded before register allocation - they don't
942
// participate in optimizations as global code motion. But after
943
// register allocation we can expand nodes that use registers which
944
// are not spillable or registers that are not allocated, because the
945
// old compound node is simply replaced (in its location in the basic
946
// block) by a new subgraph which does not contain compound nodes any
947
// more. The scheduler called during output can later on process these
948
// non-compound nodes.
949
//
950
// Implementation:
951
//
952
// Nodes requiring postalloc expand are specified in the ad file by using
953
// a postalloc_expand statement instead of ins_encode. A postalloc_expand
954
// contains a single call to an encoding, as does an ins_encode
955
// statement. Instead of an emit() function a postalloc_expand() function
956
// is generated that doesn't emit assembler but creates a new
957
// subgraph. The code below calls this postalloc_expand function for each
958
// node with the appropriate attribute. This function returns the new
959
// nodes generated in an array passed in the call. The old node,
960
// potential MachTemps before and potential Projs after it then get
961
// disconnected and replaced by the new nodes. The instruction
962
// generating the result has to be the last one in the array. In
963
// general it is assumed that Projs after the node expanded are
964
// kills. These kills are not required any more after expanding as
965
// there are now explicitly visible def-use chains and the Projs are
966
// removed. This does not hold for calls: They do not only have
967
// kill-Projs but also Projs defining values. Therefore Projs after
968
// the node expanded are removed for all but for calls. If a node is
969
// to be reused, it must be added to the nodes list returned, and it
970
// will be added again.
971
//
972
// Implementing the postalloc_expand function for a node in an enc_class
973
// is rather tedious. It requires knowledge about many node details, as
974
// the nodes and the subgraph must be hand crafted. To simplify this,
975
// adlc generates some utility variables into the postalloc_expand function,
976
// e.g., holding the operands as specified by the postalloc_expand encoding
977
// specification, e.g.:
978
// * unsigned idx_<par_name> holding the index of the node in the ins
979
// * Node *n_<par_name> holding the node loaded from the ins
980
// * MachOpnd *op_<par_name> holding the corresponding operand
981
//
982
// The ordering of operands can not be determined by looking at a
983
// rule. Especially if a match rule matches several different trees,
984
// several nodes are generated from one instruct specification with
985
// different operand orderings. In this case the adlc generated
986
// variables are the only way to access the ins and operands
987
// deterministically.
988
//
989
// If assigning a register to a node that contains an oop, don't
990
// forget to call ra_->set_oop() for the node.
991
void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
992
GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
993
GrowableArray <Node *> remove(32);
994
GrowableArray <Node *> succs(32);
995
unsigned int max_idx = C->unique(); // Remember to distinguish new from old nodes.
996
DEBUG_ONLY(bool foundNode = false);
997
998
// for all blocks
999
for (uint i = 0; i < number_of_blocks(); i++) {
1000
Block *b = _blocks[i];
1001
// For all instructions in the current block.
1002
for (uint j = 0; j < b->number_of_nodes(); j++) {
1003
Node *n = b->get_node(j);
1004
if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
1005
#ifdef ASSERT
1006
if (TracePostallocExpand) {
1007
if (!foundNode) {
1008
foundNode = true;
1009
tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
1010
C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1011
}
1012
tty->print(" postalloc expanding "); n->dump();
1013
if (Verbose) {
1014
tty->print(" with ins:\n");
1015
for (uint k = 0; k < n->len(); ++k) {
1016
if (n->in(k)) { tty->print(" "); n->in(k)->dump(); }
1017
}
1018
}
1019
}
1020
#endif
1021
new_nodes.clear();
1022
// Collect nodes that have to be removed from the block later on.
1023
uint req = n->req();
1024
remove.clear();
1025
for (uint k = 0; k < req; ++k) {
1026
if (n->in(k) && n->in(k)->is_MachTemp()) {
1027
remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
1028
n->in(k)->del_req(0);
1029
j--;
1030
}
1031
}
1032
1033
// Check whether we can allocate enough nodes. We set a fix limit for
1034
// the size of postalloc expands with this.
1035
uint unique_limit = C->unique() + 40;
1036
if (unique_limit >= _ra->node_regs_max_index()) {
1037
Compile::current()->record_failure("out of nodes in postalloc expand");
1038
return;
1039
}
1040
1041
// Emit (i.e. generate new nodes).
1042
n->as_Mach()->postalloc_expand(&new_nodes, _ra);
1043
1044
assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
1045
1046
// Disconnect the inputs of the old node.
1047
//
1048
// We reuse MachSpillCopy nodes. If we need to expand them, there
1049
// are many, so reusing pays off. If reused, the node already
1050
// has the new ins. n must be the last node on new_nodes list.
1051
if (!n->is_MachSpillCopy()) {
1052
for (int k = req - 1; k >= 0; --k) {
1053
n->del_req(k);
1054
}
1055
}
1056
1057
#ifdef ASSERT
1058
// Check that all nodes have proper operands.
1059
for (int k = 0; k < new_nodes.length(); ++k) {
1060
if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
1061
MachNode *m = new_nodes.at(k)->as_Mach();
1062
for (unsigned int l = 0; l < m->num_opnds(); ++l) {
1063
if (MachOper::notAnOper(m->_opnds[l])) {
1064
outputStream *os = tty;
1065
os->print("Node %s ", m->Name());
1066
os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
1067
assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
1068
}
1069
}
1070
}
1071
#endif
1072
1073
// Collect succs of old node in remove (for projections) and in succs (for
1074
// all other nodes) do _not_ collect projections in remove (but in succs)
1075
// in case the node is a call. We need the projections for calls as they are
1076
// associated with registes (i.e. they are defs).
1077
succs.clear();
1078
for (DUIterator k = n->outs(); n->has_out(k); k++) {
1079
if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1080
remove.push(n->out(k));
1081
} else {
1082
succs.push(n->out(k));
1083
}
1084
}
1085
// Replace old node n as input of its succs by last of the new nodes.
1086
for (int k = 0; k < succs.length(); ++k) {
1087
Node *succ = succs.at(k);
1088
for (uint l = 0; l < succ->req(); ++l) {
1089
if (succ->in(l) == n) {
1090
succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1091
}
1092
}
1093
for (uint l = succ->req(); l < succ->len(); ++l) {
1094
if (succ->in(l) == n) {
1095
succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1096
}
1097
}
1098
}
1099
1100
// Index of old node in block.
1101
uint index = b->find_node(n);
1102
// Insert new nodes into block and map them in nodes->blocks array
1103
// and remember last node in n2.
1104
Node *n2 = NULL;
1105
for (int k = 0; k < new_nodes.length(); ++k) {
1106
n2 = new_nodes.at(k);
1107
b->insert_node(n2, ++index);
1108
map_node_to_block(n2, b);
1109
}
1110
1111
// Add old node n to remove and remove them all from block.
1112
remove.push(n);
1113
j--;
1114
#ifdef ASSERT
1115
if (TracePostallocExpand && Verbose) {
1116
tty->print(" removing:\n");
1117
for (int k = 0; k < remove.length(); ++k) {
1118
tty->print(" "); remove.at(k)->dump();
1119
}
1120
tty->print(" inserting:\n");
1121
for (int k = 0; k < new_nodes.length(); ++k) {
1122
tty->print(" "); new_nodes.at(k)->dump();
1123
}
1124
}
1125
#endif
1126
for (int k = 0; k < remove.length(); ++k) {
1127
if (b->contains(remove.at(k))) {
1128
b->find_remove(remove.at(k));
1129
} else {
1130
assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1131
}
1132
}
1133
// If anything has been inserted (n2 != NULL), continue after last node inserted.
1134
// This does not always work. Some postalloc expands don't insert any nodes, if they
1135
// do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1136
j = n2 ? b->find_node(n2) : j;
1137
}
1138
}
1139
}
1140
1141
#ifdef ASSERT
1142
if (foundNode) {
1143
tty->print("FINISHED %d %s\n", C->compile_id(),
1144
C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1145
tty->flush();
1146
}
1147
#endif
1148
}
1149
1150
1151
//------------------------------dump-------------------------------------------
1152
#ifndef PRODUCT
1153
void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
1154
const Node *x = end->is_block_proj();
1155
assert( x, "not a CFG" );
1156
1157
// Do not visit this block again
1158
if( visited.test_set(x->_idx) ) return;
1159
1160
// Skip through this block
1161
const Node *p = x;
1162
do {
1163
p = p->in(0); // Move control forward
1164
assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1165
} while( !p->is_block_start() );
1166
1167
// Recursively visit
1168
for (uint i = 1; i < p->req(); i++) {
1169
_dump_cfg(p->in(i), visited);
1170
}
1171
1172
// Dump the block
1173
get_block_for_node(p)->dump(this);
1174
}
1175
1176
void PhaseCFG::dump( ) const {
1177
tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1178
if (_blocks.size()) { // Did we do basic-block layout?
1179
for (uint i = 0; i < number_of_blocks(); i++) {
1180
const Block* block = get_block(i);
1181
block->dump(this);
1182
}
1183
} else { // Else do it with a DFS
1184
VectorSet visited(_block_arena);
1185
_dump_cfg(_root,visited);
1186
}
1187
}
1188
1189
void PhaseCFG::dump_headers() {
1190
for (uint i = 0; i < number_of_blocks(); i++) {
1191
Block* block = get_block(i);
1192
if (block != NULL) {
1193
block->dump_head(this);
1194
}
1195
}
1196
}
1197
1198
void PhaseCFG::verify() const {
1199
#ifdef ASSERT
1200
// Verify sane CFG
1201
for (uint i = 0; i < number_of_blocks(); i++) {
1202
Block* block = get_block(i);
1203
uint cnt = block->number_of_nodes();
1204
uint j;
1205
for (j = 0; j < cnt; j++) {
1206
Node *n = block->get_node(j);
1207
assert(get_block_for_node(n) == block, "");
1208
if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1209
assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1210
}
1211
if (n->needs_anti_dependence_check()) {
1212
verify_anti_dependences(block, n);
1213
}
1214
for (uint k = 0; k < n->req(); k++) {
1215
Node *def = n->in(k);
1216
if (def && def != n) {
1217
assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
1218
// Verify that instructions in the block is in correct order.
1219
// Uses must follow their definition if they are at the same block.
1220
// Mostly done to check that MachSpillCopy nodes are placed correctly
1221
// when CreateEx node is moved in build_ifg_physical().
1222
if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1223
// See (+++) comment in reg_split.cpp
1224
!(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1225
bool is_loop = false;
1226
if (n->is_Phi()) {
1227
for (uint l = 1; l < def->req(); l++) {
1228
if (n == def->in(l)) {
1229
is_loop = true;
1230
break; // Some kind of loop
1231
}
1232
}
1233
}
1234
assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1235
}
1236
}
1237
}
1238
}
1239
1240
j = block->end_idx();
1241
Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1242
assert(bp, "last instruction must be a block proj");
1243
assert(bp == block->get_node(j), "wrong number of successors for this block");
1244
if (bp->is_Catch()) {
1245
while (block->get_node(--j)->is_MachProj()) {
1246
;
1247
}
1248
assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1249
} else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1250
assert(block->_num_succs == 2, "Conditional branch must have two targets");
1251
}
1252
}
1253
#endif
1254
}
1255
#endif
1256
1257
UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1258
Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1259
}
1260
1261
void UnionFind::extend( uint from_idx, uint to_idx ) {
1262
_nesting.check();
1263
if( from_idx >= _max ) {
1264
uint size = 16;
1265
while( size <= from_idx ) size <<=1;
1266
_indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1267
_max = size;
1268
}
1269
while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1270
_indices[from_idx] = to_idx;
1271
}
1272
1273
void UnionFind::reset( uint max ) {
1274
assert( max <= max_uint, "Must fit within uint" );
1275
// Force the Union-Find mapping to be at least this large
1276
extend(max,0);
1277
// Initialize to be the ID mapping.
1278
for( uint i=0; i<max; i++ ) map(i,i);
1279
}
1280
1281
// Straight out of Tarjan's union-find algorithm
1282
uint UnionFind::Find_compress( uint idx ) {
1283
uint cur = idx;
1284
uint next = lookup(cur);
1285
while( next != cur ) { // Scan chain of equivalences
1286
assert( next < cur, "always union smaller" );
1287
cur = next; // until find a fixed-point
1288
next = lookup(cur);
1289
}
1290
// Core of union-find algorithm: update chain of
1291
// equivalences to be equal to the root.
1292
while( idx != next ) {
1293
uint tmp = lookup(idx);
1294
map(idx, next);
1295
idx = tmp;
1296
}
1297
return idx;
1298
}
1299
1300
// Like Find above, but no path compress, so bad asymptotic behavior
1301
uint UnionFind::Find_const( uint idx ) const {
1302
if( idx == 0 ) return idx; // Ignore the zero idx
1303
// Off the end? This can happen during debugging dumps
1304
// when data structures have not finished being updated.
1305
if( idx >= _max ) return idx;
1306
uint next = lookup(idx);
1307
while( next != idx ) { // Scan chain of equivalences
1308
idx = next; // until find a fixed-point
1309
next = lookup(idx);
1310
}
1311
return next;
1312
}
1313
1314
// union 2 sets together.
1315
void UnionFind::Union( uint idx1, uint idx2 ) {
1316
uint src = Find(idx1);
1317
uint dst = Find(idx2);
1318
assert( src, "" );
1319
assert( dst, "" );
1320
assert( src < _max, "oob" );
1321
assert( dst < _max, "oob" );
1322
assert( src < dst, "always union smaller" );
1323
map(dst,src);
1324
}
1325
1326
#ifndef PRODUCT
1327
void Trace::dump( ) const {
1328
tty->print_cr("Trace (freq %f)", first_block()->_freq);
1329
for (Block *b = first_block(); b != NULL; b = next(b)) {
1330
tty->print(" B%d", b->_pre_order);
1331
if (b->head()->is_Loop()) {
1332
tty->print(" (L%d)", b->compute_loop_alignment());
1333
}
1334
if (b->has_loop_alignment()) {
1335
tty->print(" (T%d)", b->code_alignment());
1336
}
1337
}
1338
tty->cr();
1339
}
1340
1341
void CFGEdge::dump( ) const {
1342
tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: ",
1343
from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1344
switch(state()) {
1345
case connected:
1346
tty->print("connected");
1347
break;
1348
case open:
1349
tty->print("open");
1350
break;
1351
case interior:
1352
tty->print("interior");
1353
break;
1354
}
1355
if (infrequent()) {
1356
tty->print(" infrequent");
1357
}
1358
tty->cr();
1359
}
1360
#endif
1361
1362
// Comparison function for edges
1363
static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1364
float freq0 = (*e0)->freq();
1365
float freq1 = (*e1)->freq();
1366
if (freq0 != freq1) {
1367
return freq0 > freq1 ? -1 : 1;
1368
}
1369
1370
int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1371
int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1372
1373
return dist1 - dist0;
1374
}
1375
1376
// Comparison function for edges
1377
extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1378
Trace *tr0 = *(Trace **) p0;
1379
Trace *tr1 = *(Trace **) p1;
1380
Block *b0 = tr0->first_block();
1381
Block *b1 = tr1->first_block();
1382
1383
// The trace of connector blocks goes at the end;
1384
// we only expect one such trace
1385
if (b0->is_connector() != b1->is_connector()) {
1386
return b1->is_connector() ? -1 : 1;
1387
}
1388
1389
// Pull more frequently executed blocks to the beginning
1390
float freq0 = b0->_freq;
1391
float freq1 = b1->_freq;
1392
if (freq0 != freq1) {
1393
return freq0 > freq1 ? -1 : 1;
1394
}
1395
1396
int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1397
1398
return diff;
1399
}
1400
1401
// Find edges of interest, i.e, those which can fall through. Presumes that
1402
// edges which don't fall through are of low frequency and can be generally
1403
// ignored. Initialize the list of traces.
1404
void PhaseBlockLayout::find_edges() {
1405
// Walk the blocks, creating edges and Traces
1406
uint i;
1407
Trace *tr = NULL;
1408
for (i = 0; i < _cfg.number_of_blocks(); i++) {
1409
Block* b = _cfg.get_block(i);
1410
tr = new Trace(b, next, prev);
1411
traces[tr->id()] = tr;
1412
1413
// All connector blocks should be at the end of the list
1414
if (b->is_connector()) break;
1415
1416
// If this block and the next one have a one-to-one successor
1417
// predecessor relationship, simply append the next block
1418
int nfallthru = b->num_fall_throughs();
1419
while (nfallthru == 1 &&
1420
b->succ_fall_through(0)) {
1421
Block *n = b->_succs[0];
1422
1423
// Skip over single-entry connector blocks, we don't want to
1424
// add them to the trace.
1425
while (n->is_connector() && n->num_preds() == 1) {
1426
n = n->_succs[0];
1427
}
1428
1429
// We see a merge point, so stop search for the next block
1430
if (n->num_preds() != 1) break;
1431
1432
i++;
1433
assert(n = _cfg.get_block(i), "expecting next block");
1434
tr->append(n);
1435
uf->map(n->_pre_order, tr->id());
1436
traces[n->_pre_order] = NULL;
1437
nfallthru = b->num_fall_throughs();
1438
b = n;
1439
}
1440
1441
if (nfallthru > 0) {
1442
// Create a CFGEdge for each outgoing
1443
// edge that could be a fall-through.
1444
for (uint j = 0; j < b->_num_succs; j++ ) {
1445
if (b->succ_fall_through(j)) {
1446
Block *target = b->non_connector_successor(j);
1447
float freq = b->_freq * b->succ_prob(j);
1448
int from_pct = (int) ((100 * freq) / b->_freq);
1449
int to_pct = (int) ((100 * freq) / target->_freq);
1450
edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1451
}
1452
}
1453
}
1454
}
1455
1456
// Group connector blocks into one trace
1457
for (i++; i < _cfg.number_of_blocks(); i++) {
1458
Block *b = _cfg.get_block(i);
1459
assert(b->is_connector(), "connector blocks at the end");
1460
tr->append(b);
1461
uf->map(b->_pre_order, tr->id());
1462
traces[b->_pre_order] = NULL;
1463
}
1464
}
1465
1466
// Union two traces together in uf, and null out the trace in the list
1467
void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1468
uint old_id = old_trace->id();
1469
uint updated_id = updated_trace->id();
1470
1471
uint lo_id = updated_id;
1472
uint hi_id = old_id;
1473
1474
// If from is greater than to, swap values to meet
1475
// UnionFind guarantee.
1476
if (updated_id > old_id) {
1477
lo_id = old_id;
1478
hi_id = updated_id;
1479
1480
// Fix up the trace ids
1481
traces[lo_id] = traces[updated_id];
1482
updated_trace->set_id(lo_id);
1483
}
1484
1485
// Union the lower with the higher and remove the pointer
1486
// to the higher.
1487
uf->Union(lo_id, hi_id);
1488
traces[hi_id] = NULL;
1489
}
1490
1491
// Append traces together via the most frequently executed edges
1492
void PhaseBlockLayout::grow_traces() {
1493
// Order the edges, and drive the growth of Traces via the most
1494
// frequently executed edges.
1495
edges->sort(edge_order);
1496
for (int i = 0; i < edges->length(); i++) {
1497
CFGEdge *e = edges->at(i);
1498
1499
if (e->state() != CFGEdge::open) continue;
1500
1501
Block *src_block = e->from();
1502
Block *targ_block = e->to();
1503
1504
// Don't grow traces along backedges?
1505
if (!BlockLayoutRotateLoops) {
1506
if (targ_block->_rpo <= src_block->_rpo) {
1507
targ_block->set_loop_alignment(targ_block);
1508
continue;
1509
}
1510
}
1511
1512
Trace *src_trace = trace(src_block);
1513
Trace *targ_trace = trace(targ_block);
1514
1515
// If the edge in question can join two traces at their ends,
1516
// append one trace to the other.
1517
if (src_trace->last_block() == src_block) {
1518
if (src_trace == targ_trace) {
1519
e->set_state(CFGEdge::interior);
1520
if (targ_trace->backedge(e)) {
1521
// Reset i to catch any newly eligible edge
1522
// (Or we could remember the first "open" edge, and reset there)
1523
i = 0;
1524
}
1525
} else if (targ_trace->first_block() == targ_block) {
1526
e->set_state(CFGEdge::connected);
1527
src_trace->append(targ_trace);
1528
union_traces(src_trace, targ_trace);
1529
}
1530
}
1531
}
1532
}
1533
1534
// Embed one trace into another, if the fork or join points are sufficiently
1535
// balanced.
1536
void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1537
// Walk the edge list a another time, looking at unprocessed edges.
1538
// Fold in diamonds
1539
for (int i = 0; i < edges->length(); i++) {
1540
CFGEdge *e = edges->at(i);
1541
1542
if (e->state() != CFGEdge::open) continue;
1543
if (fall_thru_only) {
1544
if (e->infrequent()) continue;
1545
}
1546
1547
Block *src_block = e->from();
1548
Trace *src_trace = trace(src_block);
1549
bool src_at_tail = src_trace->last_block() == src_block;
1550
1551
Block *targ_block = e->to();
1552
Trace *targ_trace = trace(targ_block);
1553
bool targ_at_start = targ_trace->first_block() == targ_block;
1554
1555
if (src_trace == targ_trace) {
1556
// This may be a loop, but we can't do much about it.
1557
e->set_state(CFGEdge::interior);
1558
continue;
1559
}
1560
1561
if (fall_thru_only) {
1562
// If the edge links the middle of two traces, we can't do anything.
1563
// Mark the edge and continue.
1564
if (!src_at_tail & !targ_at_start) {
1565
continue;
1566
}
1567
1568
// Don't grow traces along backedges?
1569
if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1570
continue;
1571
}
1572
1573
// If both ends of the edge are available, why didn't we handle it earlier?
1574
assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1575
1576
if (targ_at_start) {
1577
// Insert the "targ" trace in the "src" trace if the insertion point
1578
// is a two way branch.
1579
// Better profitability check possible, but may not be worth it.
1580
// Someday, see if the this "fork" has an associated "join";
1581
// then make a policy on merging this trace at the fork or join.
1582
// For example, other things being equal, it may be better to place this
1583
// trace at the join point if the "src" trace ends in a two-way, but
1584
// the insertion point is one-way.
1585
assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1586
e->set_state(CFGEdge::connected);
1587
src_trace->insert_after(src_block, targ_trace);
1588
union_traces(src_trace, targ_trace);
1589
} else if (src_at_tail) {
1590
if (src_trace != trace(_cfg.get_root_block())) {
1591
e->set_state(CFGEdge::connected);
1592
targ_trace->insert_before(targ_block, src_trace);
1593
union_traces(targ_trace, src_trace);
1594
}
1595
}
1596
} else if (e->state() == CFGEdge::open) {
1597
// Append traces, even without a fall-thru connection.
1598
// But leave root entry at the beginning of the block list.
1599
if (targ_trace != trace(_cfg.get_root_block())) {
1600
e->set_state(CFGEdge::connected);
1601
src_trace->append(targ_trace);
1602
union_traces(src_trace, targ_trace);
1603
}
1604
}
1605
}
1606
}
1607
1608
// Order the sequence of the traces in some desirable way, and fixup the
1609
// jumps at the end of each block.
1610
void PhaseBlockLayout::reorder_traces(int count) {
1611
ResourceArea *area = Thread::current()->resource_area();
1612
Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1613
Block_List worklist;
1614
int new_count = 0;
1615
1616
// Compact the traces.
1617
for (int i = 0; i < count; i++) {
1618
Trace *tr = traces[i];
1619
if (tr != NULL) {
1620
new_traces[new_count++] = tr;
1621
}
1622
}
1623
1624
// The entry block should be first on the new trace list.
1625
Trace *tr = trace(_cfg.get_root_block());
1626
assert(tr == new_traces[0], "entry trace misplaced");
1627
1628
// Sort the new trace list by frequency
1629
qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1630
1631
// Patch up the successor blocks
1632
_cfg.clear_blocks();
1633
for (int i = 0; i < new_count; i++) {
1634
Trace *tr = new_traces[i];
1635
if (tr != NULL) {
1636
tr->fixup_blocks(_cfg);
1637
}
1638
}
1639
}
1640
1641
// Order basic blocks based on frequency
1642
PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1643
: Phase(BlockLayout)
1644
, _cfg(cfg) {
1645
ResourceMark rm;
1646
ResourceArea *area = Thread::current()->resource_area();
1647
1648
// List of traces
1649
int size = _cfg.number_of_blocks() + 1;
1650
traces = NEW_ARENA_ARRAY(area, Trace *, size);
1651
memset(traces, 0, size*sizeof(Trace*));
1652
next = NEW_ARENA_ARRAY(area, Block *, size);
1653
memset(next, 0, size*sizeof(Block *));
1654
prev = NEW_ARENA_ARRAY(area, Block *, size);
1655
memset(prev , 0, size*sizeof(Block *));
1656
1657
// List of edges
1658
edges = new GrowableArray<CFGEdge*>;
1659
1660
// Mapping block index --> block_trace
1661
uf = new UnionFind(size);
1662
uf->reset(size);
1663
1664
// Find edges and create traces.
1665
find_edges();
1666
1667
// Grow traces at their ends via most frequent edges.
1668
grow_traces();
1669
1670
// Merge one trace into another, but only at fall-through points.
1671
// This may make diamonds and other related shapes in a trace.
1672
merge_traces(true);
1673
1674
// Run merge again, allowing two traces to be catenated, even if
1675
// one does not fall through into the other. This appends loosely
1676
// related traces to be near each other.
1677
merge_traces(false);
1678
1679
// Re-order all the remaining traces by frequency
1680
reorder_traces(size);
1681
1682
assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1683
}
1684
1685
1686
// Edge e completes a loop in a trace. If the target block is head of the
1687
// loop, rotate the loop block so that the loop ends in a conditional branch.
1688
bool Trace::backedge(CFGEdge *e) {
1689
bool loop_rotated = false;
1690
Block *src_block = e->from();
1691
Block *targ_block = e->to();
1692
1693
assert(last_block() == src_block, "loop discovery at back branch");
1694
if (first_block() == targ_block) {
1695
if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1696
// Find the last block in the trace that has a conditional
1697
// branch.
1698
Block *b;
1699
for (b = last_block(); b != NULL; b = prev(b)) {
1700
if (b->num_fall_throughs() == 2) {
1701
break;
1702
}
1703
}
1704
1705
if (b != last_block() && b != NULL) {
1706
loop_rotated = true;
1707
1708
// Rotate the loop by doing two-part linked-list surgery.
1709
append(first_block());
1710
break_loop_after(b);
1711
}
1712
}
1713
1714
// Backbranch to the top of a trace
1715
// Scroll forward through the trace from the targ_block. If we find
1716
// a loop head before another loop top, use the the loop head alignment.
1717
for (Block *b = targ_block; b != NULL; b = next(b)) {
1718
if (b->has_loop_alignment()) {
1719
break;
1720
}
1721
if (b->head()->is_Loop()) {
1722
targ_block = b;
1723
break;
1724
}
1725
}
1726
1727
first_block()->set_loop_alignment(targ_block);
1728
1729
} else {
1730
// Backbranch into the middle of a trace
1731
targ_block->set_loop_alignment(targ_block);
1732
}
1733
1734
return loop_rotated;
1735
}
1736
1737
// push blocks onto the CFG list
1738
// ensure that blocks have the correct two-way branch sense
1739
void Trace::fixup_blocks(PhaseCFG &cfg) {
1740
Block *last = last_block();
1741
for (Block *b = first_block(); b != NULL; b = next(b)) {
1742
cfg.add_block(b);
1743
if (!b->is_connector()) {
1744
int nfallthru = b->num_fall_throughs();
1745
if (b != last) {
1746
if (nfallthru == 2) {
1747
// Ensure that the sense of the branch is correct
1748
Block *bnext = next(b);
1749
Block *bs0 = b->non_connector_successor(0);
1750
1751
MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1752
ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1753
ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1754
1755
if (bnext == bs0) {
1756
// Fall-thru case in succs[0], should be in succs[1]
1757
1758
// Flip targets in _succs map
1759
Block *tbs0 = b->_succs[0];
1760
Block *tbs1 = b->_succs[1];
1761
b->_succs.map( 0, tbs1 );
1762
b->_succs.map( 1, tbs0 );
1763
1764
// Flip projections to match targets
1765
b->map_node(proj1, b->number_of_nodes() - 2);
1766
b->map_node(proj0, b->number_of_nodes() - 1);
1767
}
1768
}
1769
}
1770
}
1771
}
1772
}
1773
1774