Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/block.hpp
32285 views
1
/*
2
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_OPTO_BLOCK_HPP
26
#define SHARE_VM_OPTO_BLOCK_HPP
27
28
#include "opto/multnode.hpp"
29
#include "opto/node.hpp"
30
#include "opto/phase.hpp"
31
32
// Optimization - Graph Style
33
34
class Block;
35
class CFGLoop;
36
class MachCallNode;
37
class Matcher;
38
class RootNode;
39
class VectorSet;
40
struct Tarjan;
41
42
//------------------------------Block_Array------------------------------------
43
// Map dense integer indices to Blocks. Uses classic doubling-array trick.
44
// Abstractly provides an infinite array of Block*'s, initialized to NULL.
45
// Note that the constructor just zeros things, and since I use Arena
46
// allocation I do not need a destructor to reclaim storage.
47
class Block_Array : public ResourceObj {
48
friend class VMStructs;
49
uint _size; // allocated size, as opposed to formal limit
50
debug_only(uint _limit;) // limit to formal domain
51
Arena *_arena; // Arena to allocate in
52
protected:
53
Block **_blocks;
54
void grow( uint i ); // Grow array node to fit
55
56
public:
57
Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
58
debug_only(_limit=0);
59
_blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
60
for( int i = 0; i < OptoBlockListSize; i++ ) {
61
_blocks[i] = NULL;
62
}
63
}
64
Block *lookup( uint i ) const // Lookup, or NULL for not mapped
65
{ return (i<Max()) ? _blocks[i] : (Block*)NULL; }
66
Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
67
{ assert( i < Max(), "oob" ); return _blocks[i]; }
68
// Extend the mapping: index i maps to Block *n.
69
void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
70
uint Max() const { debug_only(return _limit); return _size; }
71
};
72
73
74
class Block_List : public Block_Array {
75
friend class VMStructs;
76
public:
77
uint _cnt;
78
Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
79
void push( Block *b ) { map(_cnt++,b); }
80
Block *pop() { return _blocks[--_cnt]; }
81
Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
82
void remove( uint i );
83
void insert( uint i, Block *n );
84
uint size() const { return _cnt; }
85
void reset() { _cnt = 0; }
86
void print();
87
};
88
89
90
class CFGElement : public ResourceObj {
91
friend class VMStructs;
92
public:
93
float _freq; // Execution frequency (estimate)
94
95
CFGElement() : _freq(0.0f) {}
96
virtual bool is_block() { return false; }
97
virtual bool is_loop() { return false; }
98
Block* as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
99
CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop"); return (CFGLoop*)this; }
100
};
101
102
//------------------------------Block------------------------------------------
103
// This class defines a Basic Block.
104
// Basic blocks are used during the output routines, and are not used during
105
// any optimization pass. They are created late in the game.
106
class Block : public CFGElement {
107
friend class VMStructs;
108
109
private:
110
// Nodes in this block, in order
111
Node_List _nodes;
112
113
public:
114
115
// Get the node at index 'at_index', if 'at_index' is out of bounds return NULL
116
Node* get_node(uint at_index) const {
117
return _nodes[at_index];
118
}
119
120
// Get the number of nodes in this block
121
uint number_of_nodes() const {
122
return _nodes.size();
123
}
124
125
// Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased
126
void map_node(Node* node, uint to_index) {
127
_nodes.map(to_index, node);
128
}
129
130
// Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash
131
void insert_node(Node* node, uint at_index) {
132
_nodes.insert(at_index, node);
133
}
134
135
// Remove a node at index 'at_index'
136
void remove_node(uint at_index) {
137
_nodes.remove(at_index);
138
}
139
140
// Push a node 'node' onto the node list
141
void push_node(Node* node) {
142
_nodes.push(node);
143
}
144
145
// Pop the last node off the node list
146
Node* pop_node() {
147
return _nodes.pop();
148
}
149
150
// Basic blocks have a Node which defines Control for all Nodes pinned in
151
// this block. This Node is a RegionNode. Exception-causing Nodes
152
// (division, subroutines) and Phi functions are always pinned. Later,
153
// every Node will get pinned to some block.
154
Node *head() const { return get_node(0); }
155
156
// CAUTION: num_preds() is ONE based, so that predecessor numbers match
157
// input edges to Regions and Phis.
158
uint num_preds() const { return head()->req(); }
159
Node *pred(uint i) const { return head()->in(i); }
160
161
// Array of successor blocks, same size as projs array
162
Block_Array _succs;
163
164
// Basic blocks have some number of Nodes which split control to all
165
// following blocks. These Nodes are always Projections. The field in
166
// the Projection and the block-ending Node determine which Block follows.
167
uint _num_succs;
168
169
// Basic blocks also carry all sorts of good old fashioned DFS information
170
// used to find loops, loop nesting depth, dominators, etc.
171
uint _pre_order; // Pre-order DFS number
172
173
// Dominator tree
174
uint _dom_depth; // Depth in dominator tree for fast LCA
175
Block* _idom; // Immediate dominator block
176
177
CFGLoop *_loop; // Loop to which this block belongs
178
uint _rpo; // Number in reverse post order walk
179
180
virtual bool is_block() { return true; }
181
float succ_prob(uint i); // return probability of i'th successor
182
int num_fall_throughs(); // How many fall-through candidate this block has
183
void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
184
bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
185
Block* lone_fall_through(); // Return lone fall-through Block or null
186
187
Block* dom_lca(Block* that); // Compute LCA in dominator tree.
188
189
bool dominates(Block* that) {
190
int dom_diff = this->_dom_depth - that->_dom_depth;
191
if (dom_diff > 0) return false;
192
for (; dom_diff < 0; dom_diff++) that = that->_idom;
193
return this == that;
194
}
195
196
// Report the alignment required by this block. Must be a power of 2.
197
// The previous block will insert nops to get this alignment.
198
uint code_alignment();
199
uint compute_loop_alignment();
200
201
// BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
202
// It is currently also used to scale such frequencies relative to
203
// FreqCountInvocations relative to the old value of 1500.
204
#define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
205
206
// Register Pressure (estimate) for Splitting heuristic
207
uint _reg_pressure;
208
uint _ihrp_index;
209
uint _freg_pressure;
210
uint _fhrp_index;
211
212
// Mark and visited bits for an LCA calculation in insert_anti_dependences.
213
// Since they hold unique node indexes, they do not need reinitialization.
214
node_idx_t _raise_LCA_mark;
215
void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; }
216
node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; }
217
node_idx_t _raise_LCA_visited;
218
void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
219
node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; }
220
221
// Estimated size in bytes of first instructions in a loop.
222
uint _first_inst_size;
223
uint first_inst_size() const { return _first_inst_size; }
224
void set_first_inst_size(uint s) { _first_inst_size = s; }
225
226
// Compute the size of first instructions in this block.
227
uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
228
229
// Compute alignment padding if the block needs it.
230
// Align a loop if loop's padding is less or equal to padding limit
231
// or the size of first instructions in the loop > padding.
232
uint alignment_padding(int current_offset) {
233
int block_alignment = code_alignment();
234
int max_pad = block_alignment-relocInfo::addr_unit();
235
if( max_pad > 0 ) {
236
assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
237
int current_alignment = current_offset & max_pad;
238
if( current_alignment != 0 ) {
239
uint padding = (block_alignment-current_alignment) & max_pad;
240
if( has_loop_alignment() &&
241
padding > (uint)MaxLoopPad &&
242
first_inst_size() <= padding ) {
243
return 0;
244
}
245
return padding;
246
}
247
}
248
return 0;
249
}
250
251
// Connector blocks. Connector blocks are basic blocks devoid of
252
// instructions, but may have relevant non-instruction Nodes, such as
253
// Phis or MergeMems. Such blocks are discovered and marked during the
254
// RemoveEmpty phase, and elided during Output.
255
bool _connector;
256
void set_connector() { _connector = true; }
257
bool is_connector() const { return _connector; };
258
259
// Loop_alignment will be set for blocks which are at the top of loops.
260
// The block layout pass may rotate loops such that the loop head may not
261
// be the sequentially first block of the loop encountered in the linear
262
// list of blocks. If the layout pass is not run, loop alignment is set
263
// for each block which is the head of a loop.
264
uint _loop_alignment;
265
void set_loop_alignment(Block *loop_top) {
266
uint new_alignment = loop_top->compute_loop_alignment();
267
if (new_alignment > _loop_alignment) {
268
_loop_alignment = new_alignment;
269
}
270
}
271
uint loop_alignment() const { return _loop_alignment; }
272
bool has_loop_alignment() const { return loop_alignment() > 0; }
273
274
// Create a new Block with given head Node.
275
// Creates the (empty) predecessor arrays.
276
Block( Arena *a, Node *headnode )
277
: CFGElement(),
278
_nodes(a),
279
_succs(a),
280
_num_succs(0),
281
_pre_order(0),
282
_idom(0),
283
_loop(NULL),
284
_reg_pressure(0),
285
_ihrp_index(1),
286
_freg_pressure(0),
287
_fhrp_index(1),
288
_raise_LCA_mark(0),
289
_raise_LCA_visited(0),
290
_first_inst_size(999999),
291
_connector(false),
292
_loop_alignment(0) {
293
_nodes.push(headnode);
294
}
295
296
// Index of 'end' Node
297
uint end_idx() const {
298
// %%%%% add a proj after every goto
299
// so (last->is_block_proj() != last) always, then simplify this code
300
// This will not give correct end_idx for block 0 when it only contains root.
301
int last_idx = _nodes.size() - 1;
302
Node *last = _nodes[last_idx];
303
assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
304
return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
305
}
306
307
// Basic blocks have a Node which ends them. This Node determines which
308
// basic block follows this one in the program flow. This Node is either an
309
// IfNode, a GotoNode, a JmpNode, or a ReturnNode.
310
Node *end() const { return _nodes[end_idx()]; }
311
312
// Add an instruction to an existing block. It must go after the head
313
// instruction and before the end instruction.
314
void add_inst( Node *n ) { insert_node(n, end_idx()); }
315
// Find node in block. Fails if node not in block.
316
uint find_node( const Node *n ) const;
317
// Find and remove n from block list
318
void find_remove( const Node *n );
319
// Check wether the node is in the block.
320
bool contains (const Node *n) const;
321
322
// Return the empty status of a block
323
enum { not_empty, empty_with_goto, completely_empty };
324
int is_Empty() const;
325
326
// Forward through connectors
327
Block* non_connector() {
328
Block* s = this;
329
while (s->is_connector()) {
330
s = s->_succs[0];
331
}
332
return s;
333
}
334
335
// Return true if b is a successor of this block
336
bool has_successor(Block* b) const {
337
for (uint i = 0; i < _num_succs; i++ ) {
338
if (non_connector_successor(i) == b) {
339
return true;
340
}
341
}
342
return false;
343
}
344
345
// Successor block, after forwarding through connectors
346
Block* non_connector_successor(int i) const {
347
return _succs[i]->non_connector();
348
}
349
350
// Examine block's code shape to predict if it is not commonly executed.
351
bool has_uncommon_code() const;
352
353
#ifndef PRODUCT
354
// Debugging print of basic block
355
void dump_bidx(const Block* orig, outputStream* st = tty) const;
356
void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
357
void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
358
void dump() const;
359
void dump(const PhaseCFG* cfg) const;
360
#endif
361
};
362
363
364
//------------------------------PhaseCFG---------------------------------------
365
// Build an array of Basic Block pointers, one per Node.
366
class PhaseCFG : public Phase {
367
friend class VMStructs;
368
private:
369
370
// Root of whole program
371
RootNode* _root;
372
373
// The block containing the root node
374
Block* _root_block;
375
376
// List of basic blocks that are created during CFG creation
377
Block_List _blocks;
378
379
// Count of basic blocks
380
uint _number_of_blocks;
381
382
// Arena for the blocks to be stored in
383
Arena* _block_arena;
384
385
// The matcher for this compilation
386
Matcher& _matcher;
387
388
// Map nodes to owning basic block
389
Block_Array _node_to_block_mapping;
390
391
// Loop from the root
392
CFGLoop* _root_loop;
393
394
// Outmost loop frequency
395
float _outer_loop_frequency;
396
397
// Per node latency estimation, valid only during GCM
398
GrowableArray<uint>* _node_latency;
399
400
// Build a proper looking cfg. Return count of basic blocks
401
uint build_cfg();
402
403
// Build the dominator tree so that we know where we can move instructions
404
void build_dominator_tree();
405
406
// Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
407
void estimate_block_frequency();
408
409
// Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
410
// basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
411
// Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
412
void global_code_motion();
413
414
// Schedule Nodes early in their basic blocks.
415
bool schedule_early(VectorSet &visited, Node_List &roots);
416
417
// For each node, find the latest block it can be scheduled into
418
// and then select the cheapest block between the latest and earliest
419
// block to place the node.
420
void schedule_late(VectorSet &visited, Node_List &stack);
421
422
// Compute the (backwards) latency of a node from a single use
423
int latency_from_use(Node *n, const Node *def, Node *use);
424
425
// Compute the (backwards) latency of a node from the uses of this instruction
426
void partial_latency_of_defs(Node *n);
427
428
// Compute the instruction global latency with a backwards walk
429
void compute_latencies_backwards(VectorSet &visited, Node_List &stack);
430
431
// Pick a block between early and late that is a cheaper alternative
432
// to late. Helper for schedule_late.
433
Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
434
435
bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call);
436
void set_next_call(Block* block, Node* n, VectorSet& next_call);
437
void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call);
438
439
// Perform basic-block local scheduling
440
Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot);
441
442
// Schedule a call next in the block
443
uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call);
444
445
// Cleanup if any code lands between a Call and his Catch
446
void call_catch_cleanup(Block* block);
447
448
Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx);
449
void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx);
450
451
// Detect implicit-null-check opportunities. Basically, find NULL checks
452
// with suitable memory ops nearby. Use the memory op to do the NULL check.
453
// I can generate a memory op if there is not one nearby.
454
void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons);
455
456
// Perform a Depth First Search (DFS).
457
// Setup 'vertex' as DFS to vertex mapping.
458
// Setup 'semi' as vertex to DFS mapping.
459
// Set 'parent' to DFS parent.
460
uint do_DFS(Tarjan* tarjan, uint rpo_counter);
461
462
// Helper function to insert a node into a block
463
void schedule_node_into_block( Node *n, Block *b );
464
465
void replace_block_proj_ctrl( Node *n );
466
467
// Set the basic block for pinned Nodes
468
void schedule_pinned_nodes( VectorSet &visited );
469
470
// I'll need a few machine-specific GotoNodes. Clone from this one.
471
// Used when building the CFG and creating end nodes for blocks.
472
MachNode* _goto;
473
474
Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
475
void verify_anti_dependences(Block* LCA, Node* load) const {
476
assert(LCA == get_block_for_node(load), "should already be scheduled");
477
const_cast<PhaseCFG*>(this)->insert_anti_dependences(LCA, load, true);
478
}
479
480
bool move_to_next(Block* bx, uint b_index);
481
void move_to_end(Block* bx, uint b_index);
482
483
void insert_goto_at(uint block_no, uint succ_no);
484
485
// Check for NeverBranch at block end. This needs to become a GOTO to the
486
// true target. NeverBranch are treated as a conditional branch that always
487
// goes the same direction for most of the optimizer and are used to give a
488
// fake exit path to infinite loops. At this late stage they need to turn
489
// into Goto's so that when you enter the infinite loop you indeed hang.
490
void convert_NeverBranch_to_Goto(Block *b);
491
492
CFGLoop* create_loop_tree();
493
494
#ifndef PRODUCT
495
bool _trace_opto_pipelining; // tracing flag
496
#endif
497
498
public:
499
PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
500
501
void set_latency_for_node(Node* node, int latency) {
502
_node_latency->at_put_grow(node->_idx, latency);
503
}
504
505
uint get_latency_for_node(Node* node) {
506
return _node_latency->at_grow(node->_idx);
507
}
508
509
// Get the outer most frequency
510
float get_outer_loop_frequency() const {
511
return _outer_loop_frequency;
512
}
513
514
// Get the root node of the CFG
515
RootNode* get_root_node() const {
516
return _root;
517
}
518
519
// Get the block of the root node
520
Block* get_root_block() const {
521
return _root_block;
522
}
523
524
// Add a block at a position and moves the later ones one step
525
void add_block_at(uint pos, Block* block) {
526
_blocks.insert(pos, block);
527
_number_of_blocks++;
528
}
529
530
// Adds a block to the top of the block list
531
void add_block(Block* block) {
532
_blocks.push(block);
533
_number_of_blocks++;
534
}
535
536
// Clear the list of blocks
537
void clear_blocks() {
538
_blocks.reset();
539
_number_of_blocks = 0;
540
}
541
542
// Get the block at position pos in _blocks
543
Block* get_block(uint pos) const {
544
return _blocks[pos];
545
}
546
547
// Number of blocks
548
uint number_of_blocks() const {
549
return _number_of_blocks;
550
}
551
552
// set which block this node should reside in
553
void map_node_to_block(const Node* node, Block* block) {
554
_node_to_block_mapping.map(node->_idx, block);
555
}
556
557
// removes the mapping from a node to a block
558
void unmap_node_from_block(const Node* node) {
559
_node_to_block_mapping.map(node->_idx, NULL);
560
}
561
562
// get the block in which this node resides
563
Block* get_block_for_node(const Node* node) const {
564
return _node_to_block_mapping[node->_idx];
565
}
566
567
// does this node reside in a block; return true
568
bool has_block(const Node* node) const {
569
return (_node_to_block_mapping.lookup(node->_idx) != NULL);
570
}
571
572
// Use frequency calculations and code shape to predict if the block
573
// is uncommon.
574
bool is_uncommon(const Block* block);
575
576
#ifdef ASSERT
577
Unique_Node_List _raw_oops;
578
#endif
579
580
// Do global code motion by first building dominator tree and estimate block frequency
581
// Returns true on success
582
bool do_global_code_motion();
583
584
// Compute the (backwards) latency of a node from the uses
585
void latency_from_uses(Node *n);
586
587
// Set loop alignment
588
void set_loop_alignment();
589
590
// Remove empty basic blocks
591
void remove_empty_blocks();
592
Block *fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext);
593
void fixup_flow();
594
595
// Insert a node into a block at index and map the node to the block
596
void insert(Block *b, uint idx, Node *n) {
597
b->insert_node(n , idx);
598
map_node_to_block(n, b);
599
}
600
601
// Check all nodes and postalloc_expand them if necessary.
602
void postalloc_expand(PhaseRegAlloc* _ra);
603
604
#ifndef PRODUCT
605
bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
606
607
// Debugging print of CFG
608
void dump( ) const; // CFG only
609
void _dump_cfg( const Node *end, VectorSet &visited ) const;
610
void verify() const;
611
void dump_headers();
612
#else
613
bool trace_opto_pipelining() const { return false; }
614
#endif
615
};
616
617
618
//------------------------------UnionFind--------------------------------------
619
// Map Block indices to a block-index for a cfg-cover.
620
// Array lookup in the optimized case.
621
class UnionFind : public ResourceObj {
622
uint _cnt, _max;
623
uint* _indices;
624
ReallocMark _nesting; // assertion check for reallocations
625
public:
626
UnionFind( uint max );
627
void reset( uint max ); // Reset to identity map for [0..max]
628
629
uint lookup( uint nidx ) const {
630
return _indices[nidx];
631
}
632
uint operator[] (uint nidx) const { return lookup(nidx); }
633
634
void map( uint from_idx, uint to_idx ) {
635
assert( from_idx < _cnt, "oob" );
636
_indices[from_idx] = to_idx;
637
}
638
void extend( uint from_idx, uint to_idx );
639
640
uint Size() const { return _cnt; }
641
642
uint Find( uint idx ) {
643
assert( idx < 65536, "Must fit into uint");
644
uint uf_idx = lookup(idx);
645
return (uf_idx == idx) ? uf_idx : Find_compress(idx);
646
}
647
uint Find_compress( uint idx );
648
uint Find_const( uint idx ) const;
649
void Union( uint idx1, uint idx2 );
650
651
};
652
653
//----------------------------BlockProbPair---------------------------
654
// Ordered pair of Node*.
655
class BlockProbPair VALUE_OBJ_CLASS_SPEC {
656
protected:
657
Block* _target; // block target
658
float _prob; // probability of edge to block
659
public:
660
BlockProbPair() : _target(NULL), _prob(0.0) {}
661
BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
662
663
Block* get_target() const { return _target; }
664
float get_prob() const { return _prob; }
665
};
666
667
//------------------------------CFGLoop-------------------------------------------
668
class CFGLoop : public CFGElement {
669
friend class VMStructs;
670
int _id;
671
int _depth;
672
CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null
673
CFGLoop *_sibling; // null terminated list
674
CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops
675
GrowableArray<CFGElement*> _members; // list of members of loop
676
GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
677
float _exit_prob; // probability any loop exit is taken on a single loop iteration
678
void update_succ_freq(Block* b, float freq);
679
680
public:
681
CFGLoop(int id) :
682
CFGElement(),
683
_id(id),
684
_depth(0),
685
_parent(NULL),
686
_sibling(NULL),
687
_child(NULL),
688
_exit_prob(1.0f) {}
689
CFGLoop* parent() { return _parent; }
690
void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
691
void add_member(CFGElement *s) { _members.push(s); }
692
void add_nested_loop(CFGLoop* cl);
693
Block* head() {
694
assert(_members.at(0)->is_block(), "head must be a block");
695
Block* hd = _members.at(0)->as_Block();
696
assert(hd->_loop == this, "just checking");
697
assert(hd->head()->is_Loop(), "must begin with loop head node");
698
return hd;
699
}
700
Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
701
void compute_loop_depth(int depth);
702
void compute_freq(); // compute frequency with loop assuming head freq 1.0f
703
void scale_freq(); // scale frequency by loop trip count (including outer loops)
704
float outer_loop_freq() const; // frequency of outer loop
705
bool in_loop_nest(Block* b);
706
float trip_count() const { return 1.0f / _exit_prob; }
707
virtual bool is_loop() { return true; }
708
int id() { return _id; }
709
710
#ifndef PRODUCT
711
void dump( ) const;
712
void dump_tree() const;
713
#endif
714
};
715
716
717
//----------------------------------CFGEdge------------------------------------
718
// A edge between two basic blocks that will be embodied by a branch or a
719
// fall-through.
720
class CFGEdge : public ResourceObj {
721
friend class VMStructs;
722
private:
723
Block * _from; // Source basic block
724
Block * _to; // Destination basic block
725
float _freq; // Execution frequency (estimate)
726
int _state;
727
bool _infrequent;
728
int _from_pct;
729
int _to_pct;
730
731
// Private accessors
732
int from_pct() const { return _from_pct; }
733
int to_pct() const { return _to_pct; }
734
int from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
735
int to_infrequent() const { return to_pct() < BlockLayoutMinDiamondPercentage; }
736
737
public:
738
enum {
739
open, // initial edge state; unprocessed
740
connected, // edge used to connect two traces together
741
interior // edge is interior to trace (could be backedge)
742
};
743
744
CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
745
_from(from), _to(to), _freq(freq),
746
_from_pct(from_pct), _to_pct(to_pct), _state(open) {
747
_infrequent = from_infrequent() || to_infrequent();
748
}
749
750
float freq() const { return _freq; }
751
Block* from() const { return _from; }
752
Block* to () const { return _to; }
753
int infrequent() const { return _infrequent; }
754
int state() const { return _state; }
755
756
void set_state(int state) { _state = state; }
757
758
#ifndef PRODUCT
759
void dump( ) const;
760
#endif
761
};
762
763
764
//-----------------------------------Trace-------------------------------------
765
// An ordered list of basic blocks.
766
class Trace : public ResourceObj {
767
private:
768
uint _id; // Unique Trace id (derived from initial block)
769
Block ** _next_list; // Array mapping index to next block
770
Block ** _prev_list; // Array mapping index to previous block
771
Block * _first; // First block in the trace
772
Block * _last; // Last block in the trace
773
774
// Return the block that follows "b" in the trace.
775
Block * next(Block *b) const { return _next_list[b->_pre_order]; }
776
void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
777
778
// Return the block that precedes "b" in the trace.
779
Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
780
void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
781
782
// We've discovered a loop in this trace. Reset last to be "b", and first as
783
// the block following "b
784
void break_loop_after(Block *b) {
785
_last = b;
786
_first = next(b);
787
set_prev(_first, NULL);
788
set_next(_last, NULL);
789
}
790
791
public:
792
793
Trace(Block *b, Block **next_list, Block **prev_list) :
794
_first(b),
795
_last(b),
796
_next_list(next_list),
797
_prev_list(prev_list),
798
_id(b->_pre_order) {
799
set_next(b, NULL);
800
set_prev(b, NULL);
801
};
802
803
// Return the id number
804
uint id() const { return _id; }
805
void set_id(uint id) { _id = id; }
806
807
// Return the first block in the trace
808
Block * first_block() const { return _first; }
809
810
// Return the last block in the trace
811
Block * last_block() const { return _last; }
812
813
// Insert a trace in the middle of this one after b
814
void insert_after(Block *b, Trace *tr) {
815
set_next(tr->last_block(), next(b));
816
if (next(b) != NULL) {
817
set_prev(next(b), tr->last_block());
818
}
819
820
set_next(b, tr->first_block());
821
set_prev(tr->first_block(), b);
822
823
if (b == _last) {
824
_last = tr->last_block();
825
}
826
}
827
828
void insert_before(Block *b, Trace *tr) {
829
Block *p = prev(b);
830
assert(p != NULL, "use append instead");
831
insert_after(p, tr);
832
}
833
834
// Append another trace to this one.
835
void append(Trace *tr) {
836
insert_after(_last, tr);
837
}
838
839
// Append a block at the end of this trace
840
void append(Block *b) {
841
set_next(_last, b);
842
set_prev(b, _last);
843
_last = b;
844
}
845
846
// Adjust the the blocks in this trace
847
void fixup_blocks(PhaseCFG &cfg);
848
bool backedge(CFGEdge *e);
849
850
#ifndef PRODUCT
851
void dump( ) const;
852
#endif
853
};
854
855
//------------------------------PhaseBlockLayout-------------------------------
856
// Rearrange blocks into some canonical order, based on edges and their frequencies
857
class PhaseBlockLayout : public Phase {
858
friend class VMStructs;
859
PhaseCFG &_cfg; // Control flow graph
860
861
GrowableArray<CFGEdge *> *edges;
862
Trace **traces;
863
Block **next;
864
Block **prev;
865
UnionFind *uf;
866
867
// Given a block, find its encompassing Trace
868
Trace * trace(Block *b) {
869
return traces[uf->Find_compress(b->_pre_order)];
870
}
871
public:
872
PhaseBlockLayout(PhaseCFG &cfg);
873
874
void find_edges();
875
void grow_traces();
876
void merge_traces(bool loose_connections);
877
void reorder_traces(int count);
878
void union_traces(Trace* from, Trace* to);
879
};
880
881
#endif // SHARE_VM_OPTO_BLOCK_HPP
882
883