Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/callnode.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "compiler/compileLog.hpp"
27
#include "ci/bcEscapeAnalyzer.hpp"
28
#include "compiler/oopMap.hpp"
29
#include "opto/callGenerator.hpp"
30
#include "opto/callnode.hpp"
31
#include "opto/escape.hpp"
32
#include "opto/locknode.hpp"
33
#include "opto/machnode.hpp"
34
#include "opto/matcher.hpp"
35
#include "opto/parse.hpp"
36
#include "opto/regalloc.hpp"
37
#include "opto/regmask.hpp"
38
#include "opto/rootnode.hpp"
39
#include "opto/runtime.hpp"
40
#if INCLUDE_ALL_GCS
41
#include "gc_implementation/shenandoah/c2/shenandoahBarrierSetC2.hpp"
42
#endif
43
44
// Portions of code courtesy of Clifford Click
45
46
// Optimization - Graph Style
47
48
//=============================================================================
49
uint StartNode::size_of() const { return sizeof(*this); }
50
uint StartNode::cmp( const Node &n ) const
51
{ return _domain == ((StartNode&)n)._domain; }
52
const Type *StartNode::bottom_type() const { return _domain; }
53
const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
54
#ifndef PRODUCT
55
void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
56
#endif
57
58
//------------------------------Ideal------------------------------------------
59
Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
60
return remove_dead_region(phase, can_reshape) ? this : NULL;
61
}
62
63
//------------------------------calling_convention-----------------------------
64
void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
65
Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
66
}
67
68
//------------------------------Registers--------------------------------------
69
const RegMask &StartNode::in_RegMask(uint) const {
70
return RegMask::Empty;
71
}
72
73
//------------------------------match------------------------------------------
74
// Construct projections for incoming parameters, and their RegMask info
75
Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
76
switch (proj->_con) {
77
case TypeFunc::Control:
78
case TypeFunc::I_O:
79
case TypeFunc::Memory:
80
return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
81
case TypeFunc::FramePtr:
82
return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
83
case TypeFunc::ReturnAdr:
84
return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
85
case TypeFunc::Parms:
86
default: {
87
uint parm_num = proj->_con - TypeFunc::Parms;
88
const Type *t = _domain->field_at(proj->_con);
89
if (t->base() == Type::Half) // 2nd half of Longs and Doubles
90
return new (match->C) ConNode(Type::TOP);
91
uint ideal_reg = t->ideal_reg();
92
RegMask &rm = match->_calling_convention_mask[parm_num];
93
return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
94
}
95
}
96
return NULL;
97
}
98
99
//------------------------------StartOSRNode----------------------------------
100
// The method start node for an on stack replacement adapter
101
102
//------------------------------osr_domain-----------------------------
103
const TypeTuple *StartOSRNode::osr_domain() {
104
const Type **fields = TypeTuple::fields(2);
105
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
106
107
return TypeTuple::make(TypeFunc::Parms+1, fields);
108
}
109
110
//=============================================================================
111
const char * const ParmNode::names[TypeFunc::Parms+1] = {
112
"Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
113
};
114
115
#ifndef PRODUCT
116
void ParmNode::dump_spec(outputStream *st) const {
117
if( _con < TypeFunc::Parms ) {
118
st->print("%s", names[_con]);
119
} else {
120
st->print("Parm%d: ",_con-TypeFunc::Parms);
121
// Verbose and WizardMode dump bottom_type for all nodes
122
if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
123
}
124
}
125
#endif
126
127
uint ParmNode::ideal_reg() const {
128
switch( _con ) {
129
case TypeFunc::Control : // fall through
130
case TypeFunc::I_O : // fall through
131
case TypeFunc::Memory : return 0;
132
case TypeFunc::FramePtr : // fall through
133
case TypeFunc::ReturnAdr: return Op_RegP;
134
default : assert( _con > TypeFunc::Parms, "" );
135
// fall through
136
case TypeFunc::Parms : {
137
// Type of argument being passed
138
const Type *t = in(0)->as_Start()->_domain->field_at(_con);
139
return t->ideal_reg();
140
}
141
}
142
ShouldNotReachHere();
143
return 0;
144
}
145
146
//=============================================================================
147
ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
148
init_req(TypeFunc::Control,cntrl);
149
init_req(TypeFunc::I_O,i_o);
150
init_req(TypeFunc::Memory,memory);
151
init_req(TypeFunc::FramePtr,frameptr);
152
init_req(TypeFunc::ReturnAdr,retadr);
153
}
154
155
Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
156
return remove_dead_region(phase, can_reshape) ? this : NULL;
157
}
158
159
const Type *ReturnNode::Value( PhaseTransform *phase ) const {
160
return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
161
? Type::TOP
162
: Type::BOTTOM;
163
}
164
165
// Do we Match on this edge index or not? No edges on return nodes
166
uint ReturnNode::match_edge(uint idx) const {
167
return 0;
168
}
169
170
171
#ifndef PRODUCT
172
void ReturnNode::dump_req(outputStream *st) const {
173
// Dump the required inputs, enclosed in '(' and ')'
174
uint i; // Exit value of loop
175
for (i = 0; i < req(); i++) { // For all required inputs
176
if (i == TypeFunc::Parms) st->print("returns");
177
if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
178
else st->print("_ ");
179
}
180
}
181
#endif
182
183
//=============================================================================
184
RethrowNode::RethrowNode(
185
Node* cntrl,
186
Node* i_o,
187
Node* memory,
188
Node* frameptr,
189
Node* ret_adr,
190
Node* exception
191
) : Node(TypeFunc::Parms + 1) {
192
init_req(TypeFunc::Control , cntrl );
193
init_req(TypeFunc::I_O , i_o );
194
init_req(TypeFunc::Memory , memory );
195
init_req(TypeFunc::FramePtr , frameptr );
196
init_req(TypeFunc::ReturnAdr, ret_adr);
197
init_req(TypeFunc::Parms , exception);
198
}
199
200
Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
201
return remove_dead_region(phase, can_reshape) ? this : NULL;
202
}
203
204
const Type *RethrowNode::Value( PhaseTransform *phase ) const {
205
return (phase->type(in(TypeFunc::Control)) == Type::TOP)
206
? Type::TOP
207
: Type::BOTTOM;
208
}
209
210
uint RethrowNode::match_edge(uint idx) const {
211
return 0;
212
}
213
214
#ifndef PRODUCT
215
void RethrowNode::dump_req(outputStream *st) const {
216
// Dump the required inputs, enclosed in '(' and ')'
217
uint i; // Exit value of loop
218
for (i = 0; i < req(); i++) { // For all required inputs
219
if (i == TypeFunc::Parms) st->print("exception");
220
if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
221
else st->print("_ ");
222
}
223
}
224
#endif
225
226
//=============================================================================
227
// Do we Match on this edge index or not? Match only target address & method
228
uint TailCallNode::match_edge(uint idx) const {
229
return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
230
}
231
232
//=============================================================================
233
// Do we Match on this edge index or not? Match only target address & oop
234
uint TailJumpNode::match_edge(uint idx) const {
235
return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
236
}
237
238
//=============================================================================
239
JVMState::JVMState(ciMethod* method, JVMState* caller) :
240
_method(method) {
241
assert(method != NULL, "must be valid call site");
242
_reexecute = Reexecute_Undefined;
243
debug_only(_bci = -99); // random garbage value
244
debug_only(_map = (SafePointNode*)-1);
245
_caller = caller;
246
_depth = 1 + (caller == NULL ? 0 : caller->depth());
247
_locoff = TypeFunc::Parms;
248
_stkoff = _locoff + _method->max_locals();
249
_monoff = _stkoff + _method->max_stack();
250
_scloff = _monoff;
251
_endoff = _monoff;
252
_sp = 0;
253
}
254
JVMState::JVMState(int stack_size) :
255
_method(NULL) {
256
_bci = InvocationEntryBci;
257
_reexecute = Reexecute_Undefined;
258
debug_only(_map = (SafePointNode*)-1);
259
_caller = NULL;
260
_depth = 1;
261
_locoff = TypeFunc::Parms;
262
_stkoff = _locoff;
263
_monoff = _stkoff + stack_size;
264
_scloff = _monoff;
265
_endoff = _monoff;
266
_sp = 0;
267
}
268
269
//--------------------------------of_depth-------------------------------------
270
JVMState* JVMState::of_depth(int d) const {
271
const JVMState* jvmp = this;
272
assert(0 < d && (uint)d <= depth(), "oob");
273
for (int skip = depth() - d; skip > 0; skip--) {
274
jvmp = jvmp->caller();
275
}
276
assert(jvmp->depth() == (uint)d, "found the right one");
277
return (JVMState*)jvmp;
278
}
279
280
//-----------------------------same_calls_as-----------------------------------
281
bool JVMState::same_calls_as(const JVMState* that) const {
282
if (this == that) return true;
283
if (this->depth() != that->depth()) return false;
284
const JVMState* p = this;
285
const JVMState* q = that;
286
for (;;) {
287
if (p->_method != q->_method) return false;
288
if (p->_method == NULL) return true; // bci is irrelevant
289
if (p->_bci != q->_bci) return false;
290
if (p->_reexecute != q->_reexecute) return false;
291
p = p->caller();
292
q = q->caller();
293
if (p == q) return true;
294
assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
295
}
296
}
297
298
//------------------------------debug_start------------------------------------
299
uint JVMState::debug_start() const {
300
debug_only(JVMState* jvmroot = of_depth(1));
301
assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
302
return of_depth(1)->locoff();
303
}
304
305
//-------------------------------debug_end-------------------------------------
306
uint JVMState::debug_end() const {
307
debug_only(JVMState* jvmroot = of_depth(1));
308
assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
309
return endoff();
310
}
311
312
//------------------------------debug_depth------------------------------------
313
uint JVMState::debug_depth() const {
314
uint total = 0;
315
for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
316
total += jvmp->debug_size();
317
}
318
return total;
319
}
320
321
#ifndef PRODUCT
322
323
//------------------------------format_helper----------------------------------
324
// Given an allocation (a Chaitin object) and a Node decide if the Node carries
325
// any defined value or not. If it does, print out the register or constant.
326
static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
327
if (n == NULL) { st->print(" NULL"); return; }
328
if (n->is_SafePointScalarObject()) {
329
// Scalar replacement.
330
SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
331
scobjs->append_if_missing(spobj);
332
int sco_n = scobjs->find(spobj);
333
assert(sco_n >= 0, "");
334
st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
335
return;
336
}
337
if (regalloc->node_regs_max_index() > 0 &&
338
OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
339
char buf[50];
340
regalloc->dump_register(n,buf);
341
st->print(" %s%d]=%s",msg,i,buf);
342
} else { // No register, but might be constant
343
const Type *t = n->bottom_type();
344
switch (t->base()) {
345
case Type::Int:
346
st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
347
break;
348
case Type::AnyPtr:
349
assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
350
st->print(" %s%d]=#NULL",msg,i);
351
break;
352
case Type::AryPtr:
353
case Type::InstPtr:
354
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
355
break;
356
case Type::KlassPtr:
357
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
358
break;
359
case Type::MetadataPtr:
360
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
361
break;
362
case Type::NarrowOop:
363
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
364
break;
365
case Type::RawPtr:
366
st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
367
break;
368
case Type::DoubleCon:
369
st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
370
break;
371
case Type::FloatCon:
372
st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
373
break;
374
case Type::Long:
375
st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
376
break;
377
case Type::Half:
378
case Type::Top:
379
st->print(" %s%d]=_",msg,i);
380
break;
381
default: ShouldNotReachHere();
382
}
383
}
384
}
385
386
//------------------------------format-----------------------------------------
387
void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
388
st->print(" #");
389
if (_method) {
390
_method->print_short_name(st);
391
st->print(" @ bci:%d ",_bci);
392
} else {
393
st->print_cr(" runtime stub ");
394
return;
395
}
396
if (n->is_MachSafePoint()) {
397
GrowableArray<SafePointScalarObjectNode*> scobjs;
398
MachSafePointNode *mcall = n->as_MachSafePoint();
399
uint i;
400
// Print locals
401
for (i = 0; i < (uint)loc_size(); i++)
402
format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
403
// Print stack
404
for (i = 0; i < (uint)stk_size(); i++) {
405
if ((uint)(_stkoff + i) >= mcall->len())
406
st->print(" oob ");
407
else
408
format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
409
}
410
for (i = 0; (int)i < nof_monitors(); i++) {
411
Node *box = mcall->monitor_box(this, i);
412
Node *obj = mcall->monitor_obj(this, i);
413
if (regalloc->node_regs_max_index() > 0 &&
414
OptoReg::is_valid(regalloc->get_reg_first(box))) {
415
box = BoxLockNode::box_node(box);
416
format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
417
} else {
418
OptoReg::Name box_reg = BoxLockNode::reg(box);
419
st->print(" MON-BOX%d=%s+%d",
420
i,
421
OptoReg::regname(OptoReg::c_frame_pointer),
422
regalloc->reg2offset(box_reg));
423
}
424
const char* obj_msg = "MON-OBJ[";
425
if (EliminateLocks) {
426
if (BoxLockNode::box_node(box)->is_eliminated())
427
obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
428
}
429
format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
430
}
431
432
for (i = 0; i < (uint)scobjs.length(); i++) {
433
// Scalar replaced objects.
434
st->cr();
435
st->print(" # ScObj" INT32_FORMAT " ", i);
436
SafePointScalarObjectNode* spobj = scobjs.at(i);
437
ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
438
assert(cik->is_instance_klass() ||
439
cik->is_array_klass(), "Not supported allocation.");
440
ciInstanceKlass *iklass = NULL;
441
if (cik->is_instance_klass()) {
442
cik->print_name_on(st);
443
iklass = cik->as_instance_klass();
444
} else if (cik->is_type_array_klass()) {
445
cik->as_array_klass()->base_element_type()->print_name_on(st);
446
st->print("[%d]", spobj->n_fields());
447
} else if (cik->is_obj_array_klass()) {
448
ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
449
if (cie->is_instance_klass()) {
450
cie->print_name_on(st);
451
} else if (cie->is_type_array_klass()) {
452
cie->as_array_klass()->base_element_type()->print_name_on(st);
453
} else {
454
ShouldNotReachHere();
455
}
456
st->print("[%d]", spobj->n_fields());
457
int ndim = cik->as_array_klass()->dimension() - 1;
458
while (ndim-- > 0) {
459
st->print("[]");
460
}
461
}
462
st->print("={");
463
uint nf = spobj->n_fields();
464
if (nf > 0) {
465
uint first_ind = spobj->first_index(mcall->jvms());
466
Node* fld_node = mcall->in(first_ind);
467
ciField* cifield;
468
if (iklass != NULL) {
469
st->print(" [");
470
cifield = iklass->nonstatic_field_at(0);
471
cifield->print_name_on(st);
472
format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
473
} else {
474
format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
475
}
476
for (uint j = 1; j < nf; j++) {
477
fld_node = mcall->in(first_ind+j);
478
if (iklass != NULL) {
479
st->print(", [");
480
cifield = iklass->nonstatic_field_at(j);
481
cifield->print_name_on(st);
482
format_helper(regalloc, st, fld_node, ":", j, &scobjs);
483
} else {
484
format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
485
}
486
}
487
}
488
st->print(" }");
489
}
490
}
491
st->cr();
492
if (caller() != NULL) caller()->format(regalloc, n, st);
493
}
494
495
496
void JVMState::dump_spec(outputStream *st) const {
497
if (_method != NULL) {
498
bool printed = false;
499
if (!Verbose) {
500
// The JVMS dumps make really, really long lines.
501
// Take out the most boring parts, which are the package prefixes.
502
char buf[500];
503
stringStream namest(buf, sizeof(buf));
504
_method->print_short_name(&namest);
505
if (namest.count() < sizeof(buf)) {
506
const char* name = namest.base();
507
if (name[0] == ' ') ++name;
508
const char* endcn = strchr(name, ':'); // end of class name
509
if (endcn == NULL) endcn = strchr(name, '(');
510
if (endcn == NULL) endcn = name + strlen(name);
511
while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
512
--endcn;
513
st->print(" %s", endcn);
514
printed = true;
515
}
516
}
517
if (!printed)
518
_method->print_short_name(st);
519
st->print(" @ bci:%d",_bci);
520
if(_reexecute == Reexecute_True)
521
st->print(" reexecute");
522
} else {
523
st->print(" runtime stub");
524
}
525
if (caller() != NULL) caller()->dump_spec(st);
526
}
527
528
529
void JVMState::dump_on(outputStream* st) const {
530
bool print_map = _map && !((uintptr_t)_map & 1) &&
531
((caller() == NULL) || (caller()->map() != _map));
532
if (print_map) {
533
if (_map->len() > _map->req()) { // _map->has_exceptions()
534
Node* ex = _map->in(_map->req()); // _map->next_exception()
535
// skip the first one; it's already being printed
536
while (ex != NULL && ex->len() > ex->req()) {
537
ex = ex->in(ex->req()); // ex->next_exception()
538
ex->dump(1);
539
}
540
}
541
_map->dump(Verbose ? 2 : 1);
542
}
543
if (caller() != NULL) {
544
caller()->dump_on(st);
545
}
546
st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
547
depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
548
if (_method == NULL) {
549
st->print_cr("(none)");
550
} else {
551
_method->print_name(st);
552
st->cr();
553
if (bci() >= 0 && bci() < _method->code_size()) {
554
st->print(" bc: ");
555
_method->print_codes_on(bci(), bci()+1, st);
556
}
557
}
558
}
559
560
// Extra way to dump a jvms from the debugger,
561
// to avoid a bug with C++ member function calls.
562
void dump_jvms(JVMState* jvms) {
563
jvms->dump();
564
}
565
#endif
566
567
//--------------------------clone_shallow--------------------------------------
568
JVMState* JVMState::clone_shallow(Compile* C) const {
569
JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
570
n->set_bci(_bci);
571
n->_reexecute = _reexecute;
572
n->set_locoff(_locoff);
573
n->set_stkoff(_stkoff);
574
n->set_monoff(_monoff);
575
n->set_scloff(_scloff);
576
n->set_endoff(_endoff);
577
n->set_sp(_sp);
578
n->set_map(_map);
579
return n;
580
}
581
582
//---------------------------clone_deep----------------------------------------
583
JVMState* JVMState::clone_deep(Compile* C) const {
584
JVMState* n = clone_shallow(C);
585
for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
586
p->_caller = p->_caller->clone_shallow(C);
587
}
588
assert(n->depth() == depth(), "sanity");
589
assert(n->debug_depth() == debug_depth(), "sanity");
590
return n;
591
}
592
593
/**
594
* Reset map for all callers
595
*/
596
void JVMState::set_map_deep(SafePointNode* map) {
597
for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
598
p->set_map(map);
599
}
600
}
601
602
// Adapt offsets in in-array after adding or removing an edge.
603
// Prerequisite is that the JVMState is used by only one node.
604
void JVMState::adapt_position(int delta) {
605
for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
606
jvms->set_locoff(jvms->locoff() + delta);
607
jvms->set_stkoff(jvms->stkoff() + delta);
608
jvms->set_monoff(jvms->monoff() + delta);
609
jvms->set_scloff(jvms->scloff() + delta);
610
jvms->set_endoff(jvms->endoff() + delta);
611
}
612
}
613
614
// Mirror the stack size calculation in the deopt code
615
// How much stack space would we need at this point in the program in
616
// case of deoptimization?
617
int JVMState::interpreter_frame_size() const {
618
const JVMState* jvms = this;
619
int size = 0;
620
int callee_parameters = 0;
621
int callee_locals = 0;
622
int extra_args = method()->max_stack() - stk_size();
623
624
while (jvms != NULL) {
625
int locks = jvms->nof_monitors();
626
int temps = jvms->stk_size();
627
bool is_top_frame = (jvms == this);
628
ciMethod* method = jvms->method();
629
630
int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
631
temps + callee_parameters,
632
extra_args,
633
locks,
634
callee_parameters,
635
callee_locals,
636
is_top_frame);
637
size += frame_size;
638
639
callee_parameters = method->size_of_parameters();
640
callee_locals = method->max_locals();
641
extra_args = 0;
642
jvms = jvms->caller();
643
}
644
return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
645
}
646
647
//=============================================================================
648
uint CallNode::cmp( const Node &n ) const
649
{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
650
#ifndef PRODUCT
651
void CallNode::dump_req(outputStream *st) const {
652
// Dump the required inputs, enclosed in '(' and ')'
653
uint i; // Exit value of loop
654
for (i = 0; i < req(); i++) { // For all required inputs
655
if (i == TypeFunc::Parms) st->print("(");
656
if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
657
else st->print("_ ");
658
}
659
st->print(")");
660
}
661
662
void CallNode::dump_spec(outputStream *st) const {
663
st->print(" ");
664
tf()->dump_on(st);
665
if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
666
if (jvms() != NULL) jvms()->dump_spec(st);
667
}
668
#endif
669
670
const Type *CallNode::bottom_type() const { return tf()->range(); }
671
const Type *CallNode::Value(PhaseTransform *phase) const {
672
if (phase->type(in(0)) == Type::TOP) return Type::TOP;
673
return tf()->range();
674
}
675
676
//------------------------------calling_convention-----------------------------
677
void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
678
// Use the standard compiler calling convention
679
Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
680
}
681
682
683
//------------------------------match------------------------------------------
684
// Construct projections for control, I/O, memory-fields, ..., and
685
// return result(s) along with their RegMask info
686
Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
687
switch (proj->_con) {
688
case TypeFunc::Control:
689
case TypeFunc::I_O:
690
case TypeFunc::Memory:
691
return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
692
693
case TypeFunc::Parms+1: // For LONG & DOUBLE returns
694
assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
695
// 2nd half of doubles and longs
696
return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
697
698
case TypeFunc::Parms: { // Normal returns
699
uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
700
OptoRegPair regs = is_CallRuntime()
701
? match->c_return_value(ideal_reg,true) // Calls into C runtime
702
: match-> return_value(ideal_reg,true); // Calls into compiled Java code
703
RegMask rm = RegMask(regs.first());
704
if( OptoReg::is_valid(regs.second()) )
705
rm.Insert( regs.second() );
706
return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
707
}
708
709
case TypeFunc::ReturnAdr:
710
case TypeFunc::FramePtr:
711
default:
712
ShouldNotReachHere();
713
}
714
return NULL;
715
}
716
717
// Do we Match on this edge index or not? Match no edges
718
uint CallNode::match_edge(uint idx) const {
719
return 0;
720
}
721
722
//
723
// Determine whether the call could modify the field of the specified
724
// instance at the specified offset.
725
//
726
bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
727
assert((t_oop != NULL), "sanity");
728
if (t_oop->is_known_instance()) {
729
// The instance_id is set only for scalar-replaceable allocations which
730
// are not passed as arguments according to Escape Analysis.
731
return false;
732
}
733
if (t_oop->is_ptr_to_boxed_value()) {
734
ciKlass* boxing_klass = t_oop->klass();
735
if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
736
// Skip unrelated boxing methods.
737
Node* proj = proj_out(TypeFunc::Parms);
738
if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
739
return false;
740
}
741
}
742
if (is_CallJava() && as_CallJava()->method() != NULL) {
743
ciMethod* meth = as_CallJava()->method();
744
if (meth->is_accessor()) {
745
return false;
746
}
747
// May modify (by reflection) if an boxing object is passed
748
// as argument or returned.
749
Node* proj = returns_pointer() ? proj_out(TypeFunc::Parms) : NULL;
750
if (proj != NULL) {
751
const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
752
if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
753
(inst_t->klass() == boxing_klass))) {
754
return true;
755
}
756
}
757
const TypeTuple* d = tf()->domain();
758
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
759
const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
760
if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
761
(inst_t->klass() == boxing_klass))) {
762
return true;
763
}
764
}
765
return false;
766
}
767
}
768
return true;
769
}
770
771
// Does this call have a direct reference to n other than debug information?
772
bool CallNode::has_non_debug_use(Node *n) {
773
const TypeTuple * d = tf()->domain();
774
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
775
Node *arg = in(i);
776
if (arg == n) {
777
return true;
778
}
779
}
780
return false;
781
}
782
783
// Returns the unique CheckCastPP of a call
784
// or 'this' if there are several CheckCastPP or unexpected uses
785
// or returns NULL if there is no one.
786
Node *CallNode::result_cast() {
787
Node *cast = NULL;
788
789
Node *p = proj_out(TypeFunc::Parms);
790
if (p == NULL)
791
return NULL;
792
793
for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
794
Node *use = p->fast_out(i);
795
if (use->is_CheckCastPP()) {
796
if (cast != NULL) {
797
return this; // more than 1 CheckCastPP
798
}
799
cast = use;
800
} else if (!use->is_Initialize() &&
801
!use->is_AddP()) {
802
// Expected uses are restricted to a CheckCastPP, an Initialize
803
// node, and AddP nodes. If we encounter any other use (a Phi
804
// node can be seen in rare cases) return this to prevent
805
// incorrect optimizations.
806
return this;
807
}
808
}
809
return cast;
810
}
811
812
813
void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) {
814
projs->fallthrough_proj = NULL;
815
projs->fallthrough_catchproj = NULL;
816
projs->fallthrough_ioproj = NULL;
817
projs->catchall_ioproj = NULL;
818
projs->catchall_catchproj = NULL;
819
projs->fallthrough_memproj = NULL;
820
projs->catchall_memproj = NULL;
821
projs->resproj = NULL;
822
projs->exobj = NULL;
823
824
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
825
ProjNode *pn = fast_out(i)->as_Proj();
826
if (pn->outcnt() == 0) continue;
827
switch (pn->_con) {
828
case TypeFunc::Control:
829
{
830
// For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
831
projs->fallthrough_proj = pn;
832
DUIterator_Fast jmax, j = pn->fast_outs(jmax);
833
const Node *cn = pn->fast_out(j);
834
if (cn->is_Catch()) {
835
ProjNode *cpn = NULL;
836
for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
837
cpn = cn->fast_out(k)->as_Proj();
838
assert(cpn->is_CatchProj(), "must be a CatchProjNode");
839
if (cpn->_con == CatchProjNode::fall_through_index)
840
projs->fallthrough_catchproj = cpn;
841
else {
842
assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
843
projs->catchall_catchproj = cpn;
844
}
845
}
846
}
847
break;
848
}
849
case TypeFunc::I_O:
850
if (pn->_is_io_use)
851
projs->catchall_ioproj = pn;
852
else
853
projs->fallthrough_ioproj = pn;
854
for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
855
Node* e = pn->out(j);
856
if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
857
assert(projs->exobj == NULL, "only one");
858
projs->exobj = e;
859
}
860
}
861
break;
862
case TypeFunc::Memory:
863
if (pn->_is_io_use)
864
projs->catchall_memproj = pn;
865
else
866
projs->fallthrough_memproj = pn;
867
break;
868
case TypeFunc::Parms:
869
projs->resproj = pn;
870
break;
871
default:
872
assert(false, "unexpected projection from allocation node.");
873
}
874
}
875
876
// The resproj may not exist because the result could be ignored
877
// and the exception object may not exist if an exception handler
878
// swallows the exception but all the other must exist and be found.
879
assert(projs->fallthrough_proj != NULL, "must be found");
880
do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
881
assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found");
882
assert(!do_asserts || projs->fallthrough_memproj != NULL, "must be found");
883
assert(!do_asserts || projs->fallthrough_ioproj != NULL, "must be found");
884
assert(!do_asserts || projs->catchall_catchproj != NULL, "must be found");
885
if (separate_io_proj) {
886
assert(!do_asserts || projs->catchall_memproj != NULL, "must be found");
887
assert(!do_asserts || projs->catchall_ioproj != NULL, "must be found");
888
}
889
}
890
891
Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
892
CallGenerator* cg = generator();
893
if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
894
// Check whether this MH handle call becomes a candidate for inlining
895
ciMethod* callee = cg->method();
896
vmIntrinsics::ID iid = callee->intrinsic_id();
897
if (iid == vmIntrinsics::_invokeBasic) {
898
if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
899
phase->C->prepend_late_inline(cg);
900
set_generator(NULL);
901
}
902
} else {
903
assert(callee->has_member_arg(), "wrong type of call?");
904
if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
905
phase->C->prepend_late_inline(cg);
906
set_generator(NULL);
907
}
908
}
909
}
910
return SafePointNode::Ideal(phase, can_reshape);
911
}
912
913
//=============================================================================
914
uint CallJavaNode::size_of() const { return sizeof(*this); }
915
uint CallJavaNode::cmp( const Node &n ) const {
916
CallJavaNode &call = (CallJavaNode&)n;
917
return CallNode::cmp(call) && _method == call._method;
918
}
919
#ifndef PRODUCT
920
void CallJavaNode::dump_spec(outputStream *st) const {
921
if( _method ) _method->print_short_name(st);
922
CallNode::dump_spec(st);
923
}
924
#endif
925
926
//=============================================================================
927
uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
928
uint CallStaticJavaNode::cmp( const Node &n ) const {
929
CallStaticJavaNode &call = (CallStaticJavaNode&)n;
930
return CallJavaNode::cmp(call);
931
}
932
933
//----------------------------uncommon_trap_request----------------------------
934
// If this is an uncommon trap, return the request code, else zero.
935
int CallStaticJavaNode::uncommon_trap_request() const {
936
if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
937
return extract_uncommon_trap_request(this);
938
}
939
return 0;
940
}
941
int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
942
#ifndef PRODUCT
943
if (!(call->req() > TypeFunc::Parms &&
944
call->in(TypeFunc::Parms) != NULL &&
945
call->in(TypeFunc::Parms)->is_Con())) {
946
assert(in_dump() != 0, "OK if dumping");
947
tty->print("[bad uncommon trap]");
948
return 0;
949
}
950
#endif
951
return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
952
}
953
954
#ifndef PRODUCT
955
void CallStaticJavaNode::dump_spec(outputStream *st) const {
956
st->print("# Static ");
957
if (_name != NULL) {
958
st->print("%s", _name);
959
int trap_req = uncommon_trap_request();
960
if (trap_req != 0) {
961
char buf[100];
962
st->print("(%s)",
963
Deoptimization::format_trap_request(buf, sizeof(buf),
964
trap_req));
965
}
966
st->print(" ");
967
}
968
CallJavaNode::dump_spec(st);
969
}
970
#endif
971
972
//=============================================================================
973
uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
974
uint CallDynamicJavaNode::cmp( const Node &n ) const {
975
CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
976
return CallJavaNode::cmp(call);
977
}
978
#ifndef PRODUCT
979
void CallDynamicJavaNode::dump_spec(outputStream *st) const {
980
st->print("# Dynamic ");
981
CallJavaNode::dump_spec(st);
982
}
983
#endif
984
985
//=============================================================================
986
uint CallRuntimeNode::size_of() const { return sizeof(*this); }
987
uint CallRuntimeNode::cmp( const Node &n ) const {
988
CallRuntimeNode &call = (CallRuntimeNode&)n;
989
return CallNode::cmp(call) && !strcmp(_name,call._name);
990
}
991
#ifndef PRODUCT
992
void CallRuntimeNode::dump_spec(outputStream *st) const {
993
st->print("# ");
994
st->print("%s", _name);
995
CallNode::dump_spec(st);
996
}
997
#endif
998
999
//------------------------------calling_convention-----------------------------
1000
void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1001
Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
1002
}
1003
1004
bool CallRuntimeNode::is_call_to_arraycopystub() const {
1005
if (_name != NULL && strstr(_name, "arraycopy") != 0) {
1006
return true;
1007
}
1008
return false;
1009
}
1010
1011
//=============================================================================
1012
//------------------------------calling_convention-----------------------------
1013
1014
1015
//=============================================================================
1016
#ifndef PRODUCT
1017
void CallLeafNode::dump_spec(outputStream *st) const {
1018
st->print("# ");
1019
st->print("%s", _name);
1020
CallNode::dump_spec(st);
1021
}
1022
#endif
1023
1024
Node *CallLeafNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1025
if (UseShenandoahGC && is_g1_wb_pre_call()) {
1026
uint cnt = OptoRuntime::g1_wb_pre_Type()->domain()->cnt();
1027
if (req() > cnt) {
1028
Node* addp = in(cnt);
1029
if (has_only_g1_wb_pre_uses(addp)) {
1030
del_req(cnt);
1031
if (can_reshape) {
1032
phase->is_IterGVN()->_worklist.push(addp);
1033
}
1034
return this;
1035
}
1036
}
1037
}
1038
1039
return CallNode::Ideal(phase, can_reshape);
1040
}
1041
1042
bool CallLeafNode::has_only_g1_wb_pre_uses(Node* n) {
1043
if (UseShenandoahGC) {
1044
return false;
1045
}
1046
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1047
Node* u = n->fast_out(i);
1048
if (!u->is_g1_wb_pre_call()) {
1049
return false;
1050
}
1051
}
1052
return n->outcnt() > 0;
1053
}
1054
1055
//=============================================================================
1056
1057
void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1058
assert(verify_jvms(jvms), "jvms must match");
1059
int loc = jvms->locoff() + idx;
1060
if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1061
// If current local idx is top then local idx - 1 could
1062
// be a long/double that needs to be killed since top could
1063
// represent the 2nd half ofthe long/double.
1064
uint ideal = in(loc -1)->ideal_reg();
1065
if (ideal == Op_RegD || ideal == Op_RegL) {
1066
// set other (low index) half to top
1067
set_req(loc - 1, in(loc));
1068
}
1069
}
1070
set_req(loc, c);
1071
}
1072
1073
uint SafePointNode::size_of() const { return sizeof(*this); }
1074
uint SafePointNode::cmp( const Node &n ) const {
1075
return (&n == this); // Always fail except on self
1076
}
1077
1078
//-------------------------set_next_exception----------------------------------
1079
void SafePointNode::set_next_exception(SafePointNode* n) {
1080
assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1081
if (len() == req()) {
1082
if (n != NULL) add_prec(n);
1083
} else {
1084
set_prec(req(), n);
1085
}
1086
}
1087
1088
1089
//----------------------------next_exception-----------------------------------
1090
SafePointNode* SafePointNode::next_exception() const {
1091
if (len() == req()) {
1092
return NULL;
1093
} else {
1094
Node* n = in(req());
1095
assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1096
return (SafePointNode*) n;
1097
}
1098
}
1099
1100
1101
//------------------------------Ideal------------------------------------------
1102
// Skip over any collapsed Regions
1103
Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1104
return remove_dead_region(phase, can_reshape) ? this : NULL;
1105
}
1106
1107
//------------------------------Identity---------------------------------------
1108
// Remove obviously duplicate safepoints
1109
Node *SafePointNode::Identity( PhaseTransform *phase ) {
1110
1111
// If you have back to back safepoints, remove one
1112
if( in(TypeFunc::Control)->is_SafePoint() )
1113
return in(TypeFunc::Control);
1114
1115
if( in(0)->is_Proj() ) {
1116
Node *n0 = in(0)->in(0);
1117
// Check if he is a call projection (except Leaf Call)
1118
if( n0->is_Catch() ) {
1119
n0 = n0->in(0)->in(0);
1120
assert( n0->is_Call(), "expect a call here" );
1121
}
1122
if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1123
// Useless Safepoint, so remove it
1124
return in(TypeFunc::Control);
1125
}
1126
}
1127
1128
return this;
1129
}
1130
1131
//------------------------------Value------------------------------------------
1132
const Type *SafePointNode::Value( PhaseTransform *phase ) const {
1133
if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1134
if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
1135
return Type::CONTROL;
1136
}
1137
1138
#ifndef PRODUCT
1139
void SafePointNode::dump_spec(outputStream *st) const {
1140
st->print(" SafePoint ");
1141
_replaced_nodes.dump(st);
1142
}
1143
#endif
1144
1145
const RegMask &SafePointNode::in_RegMask(uint idx) const {
1146
if( idx < TypeFunc::Parms ) return RegMask::Empty;
1147
// Values outside the domain represent debug info
1148
return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1149
}
1150
const RegMask &SafePointNode::out_RegMask() const {
1151
return RegMask::Empty;
1152
}
1153
1154
1155
void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1156
assert((int)grow_by > 0, "sanity");
1157
int monoff = jvms->monoff();
1158
int scloff = jvms->scloff();
1159
int endoff = jvms->endoff();
1160
assert(endoff == (int)req(), "no other states or debug info after me");
1161
Node* top = Compile::current()->top();
1162
for (uint i = 0; i < grow_by; i++) {
1163
ins_req(monoff, top);
1164
}
1165
jvms->set_monoff(monoff + grow_by);
1166
jvms->set_scloff(scloff + grow_by);
1167
jvms->set_endoff(endoff + grow_by);
1168
}
1169
1170
void SafePointNode::push_monitor(const FastLockNode *lock) {
1171
// Add a LockNode, which points to both the original BoxLockNode (the
1172
// stack space for the monitor) and the Object being locked.
1173
const int MonitorEdges = 2;
1174
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1175
assert(req() == jvms()->endoff(), "correct sizing");
1176
int nextmon = jvms()->scloff();
1177
if (GenerateSynchronizationCode) {
1178
ins_req(nextmon, lock->box_node());
1179
ins_req(nextmon+1, lock->obj_node());
1180
} else {
1181
Node* top = Compile::current()->top();
1182
ins_req(nextmon, top);
1183
ins_req(nextmon, top);
1184
}
1185
jvms()->set_scloff(nextmon + MonitorEdges);
1186
jvms()->set_endoff(req());
1187
}
1188
1189
void SafePointNode::pop_monitor() {
1190
// Delete last monitor from debug info
1191
debug_only(int num_before_pop = jvms()->nof_monitors());
1192
const int MonitorEdges = 2;
1193
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1194
int scloff = jvms()->scloff();
1195
int endoff = jvms()->endoff();
1196
int new_scloff = scloff - MonitorEdges;
1197
int new_endoff = endoff - MonitorEdges;
1198
jvms()->set_scloff(new_scloff);
1199
jvms()->set_endoff(new_endoff);
1200
while (scloff > new_scloff) del_req_ordered(--scloff);
1201
assert(jvms()->nof_monitors() == num_before_pop-1, "");
1202
}
1203
1204
Node *SafePointNode::peek_monitor_box() const {
1205
int mon = jvms()->nof_monitors() - 1;
1206
assert(mon >= 0, "most have a monitor");
1207
return monitor_box(jvms(), mon);
1208
}
1209
1210
Node *SafePointNode::peek_monitor_obj() const {
1211
int mon = jvms()->nof_monitors() - 1;
1212
assert(mon >= 0, "most have a monitor");
1213
return monitor_obj(jvms(), mon);
1214
}
1215
1216
// Do we Match on this edge index or not? Match no edges
1217
uint SafePointNode::match_edge(uint idx) const {
1218
if( !needs_polling_address_input() )
1219
return 0;
1220
1221
return (TypeFunc::Parms == idx);
1222
}
1223
1224
void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1225
assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1226
int nb = igvn->C->root()->find_prec_edge(this);
1227
if (nb != -1) {
1228
igvn->C->root()->rm_prec(nb);
1229
}
1230
}
1231
1232
//============== SafePointScalarObjectNode ==============
1233
1234
SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1235
#ifdef ASSERT
1236
AllocateNode* alloc,
1237
#endif
1238
uint first_index,
1239
uint n_fields) :
1240
TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1241
#ifdef ASSERT
1242
_alloc(alloc),
1243
#endif
1244
_first_index(first_index),
1245
_n_fields(n_fields)
1246
{
1247
init_class_id(Class_SafePointScalarObject);
1248
}
1249
1250
// Do not allow value-numbering for SafePointScalarObject node.
1251
uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1252
uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1253
return (&n == this); // Always fail except on self
1254
}
1255
1256
uint SafePointScalarObjectNode::ideal_reg() const {
1257
return 0; // No matching to machine instruction
1258
}
1259
1260
const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1261
return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1262
}
1263
1264
const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1265
return RegMask::Empty;
1266
}
1267
1268
uint SafePointScalarObjectNode::match_edge(uint idx) const {
1269
return 0;
1270
}
1271
1272
SafePointScalarObjectNode*
1273
SafePointScalarObjectNode::clone(Dict* sosn_map) const {
1274
void* cached = (*sosn_map)[(void*)this];
1275
if (cached != NULL) {
1276
return (SafePointScalarObjectNode*)cached;
1277
}
1278
SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1279
sosn_map->Insert((void*)this, (void*)res);
1280
return res;
1281
}
1282
1283
1284
#ifndef PRODUCT
1285
void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1286
st->print(" # fields@[%d..%d]", first_index(),
1287
first_index() + n_fields() - 1);
1288
}
1289
1290
#endif
1291
1292
//=============================================================================
1293
uint AllocateNode::size_of() const { return sizeof(*this); }
1294
1295
AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1296
Node *ctrl, Node *mem, Node *abio,
1297
Node *size, Node *klass_node, Node *initial_test)
1298
: CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1299
{
1300
init_class_id(Class_Allocate);
1301
init_flags(Flag_is_macro);
1302
_is_scalar_replaceable = false;
1303
_is_non_escaping = false;
1304
Node *topnode = C->top();
1305
1306
init_req( TypeFunc::Control , ctrl );
1307
init_req( TypeFunc::I_O , abio );
1308
init_req( TypeFunc::Memory , mem );
1309
init_req( TypeFunc::ReturnAdr, topnode );
1310
init_req( TypeFunc::FramePtr , topnode );
1311
init_req( AllocSize , size);
1312
init_req( KlassNode , klass_node);
1313
init_req( InitialTest , initial_test);
1314
init_req( ALength , topnode);
1315
C->add_macro_node(this);
1316
}
1317
1318
//=============================================================================
1319
Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1320
if (remove_dead_region(phase, can_reshape)) return this;
1321
// Don't bother trying to transform a dead node
1322
if (in(0) && in(0)->is_top()) return NULL;
1323
1324
const Type* type = phase->type(Ideal_length());
1325
if (type->isa_int() && type->is_int()->_hi < 0) {
1326
if (can_reshape) {
1327
PhaseIterGVN *igvn = phase->is_IterGVN();
1328
// Unreachable fall through path (negative array length),
1329
// the allocation can only throw so disconnect it.
1330
Node* proj = proj_out(TypeFunc::Control);
1331
Node* catchproj = NULL;
1332
if (proj != NULL) {
1333
for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1334
Node *cn = proj->fast_out(i);
1335
if (cn->is_Catch()) {
1336
catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1337
break;
1338
}
1339
}
1340
}
1341
if (catchproj != NULL && catchproj->outcnt() > 0 &&
1342
(catchproj->outcnt() > 1 ||
1343
catchproj->unique_out()->Opcode() != Op_Halt)) {
1344
assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1345
Node* nproj = catchproj->clone();
1346
igvn->register_new_node_with_optimizer(nproj);
1347
1348
Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1349
frame = phase->transform(frame);
1350
// Halt & Catch Fire
1351
Node *halt = new (phase->C) HaltNode( nproj, frame );
1352
phase->C->root()->add_req(halt);
1353
phase->transform(halt);
1354
1355
igvn->replace_node(catchproj, phase->C->top());
1356
return this;
1357
}
1358
} else {
1359
// Can't correct it during regular GVN so register for IGVN
1360
phase->C->record_for_igvn(this);
1361
}
1362
}
1363
return NULL;
1364
}
1365
1366
// Retrieve the length from the AllocateArrayNode. Narrow the type with a
1367
// CastII, if appropriate. If we are not allowed to create new nodes, and
1368
// a CastII is appropriate, return NULL.
1369
Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1370
Node *length = in(AllocateNode::ALength);
1371
assert(length != NULL, "length is not null");
1372
1373
const TypeInt* length_type = phase->find_int_type(length);
1374
const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1375
1376
if (ary_type != NULL && length_type != NULL) {
1377
const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1378
if (narrow_length_type != length_type) {
1379
// Assert one of:
1380
// - the narrow_length is 0
1381
// - the narrow_length is not wider than length
1382
assert(narrow_length_type == TypeInt::ZERO ||
1383
length_type->is_con() && narrow_length_type->is_con() &&
1384
(narrow_length_type->_hi <= length_type->_lo) ||
1385
(narrow_length_type->_hi <= length_type->_hi &&
1386
narrow_length_type->_lo >= length_type->_lo),
1387
"narrow type must be narrower than length type");
1388
1389
// Return NULL if new nodes are not allowed
1390
if (!allow_new_nodes) return NULL;
1391
// Create a cast which is control dependent on the initialization to
1392
// propagate the fact that the array length must be positive.
1393
length = new (phase->C) CastIINode(length, narrow_length_type);
1394
length->set_req(0, initialization()->proj_out(0));
1395
}
1396
}
1397
1398
return length;
1399
}
1400
1401
//=============================================================================
1402
uint LockNode::size_of() const { return sizeof(*this); }
1403
1404
// Redundant lock elimination
1405
//
1406
// There are various patterns of locking where we release and
1407
// immediately reacquire a lock in a piece of code where no operations
1408
// occur in between that would be observable. In those cases we can
1409
// skip releasing and reacquiring the lock without violating any
1410
// fairness requirements. Doing this around a loop could cause a lock
1411
// to be held for a very long time so we concentrate on non-looping
1412
// control flow. We also require that the operations are fully
1413
// redundant meaning that we don't introduce new lock operations on
1414
// some paths so to be able to eliminate it on others ala PRE. This
1415
// would probably require some more extensive graph manipulation to
1416
// guarantee that the memory edges were all handled correctly.
1417
//
1418
// Assuming p is a simple predicate which can't trap in any way and s
1419
// is a synchronized method consider this code:
1420
//
1421
// s();
1422
// if (p)
1423
// s();
1424
// else
1425
// s();
1426
// s();
1427
//
1428
// 1. The unlocks of the first call to s can be eliminated if the
1429
// locks inside the then and else branches are eliminated.
1430
//
1431
// 2. The unlocks of the then and else branches can be eliminated if
1432
// the lock of the final call to s is eliminated.
1433
//
1434
// Either of these cases subsumes the simple case of sequential control flow
1435
//
1436
// Addtionally we can eliminate versions without the else case:
1437
//
1438
// s();
1439
// if (p)
1440
// s();
1441
// s();
1442
//
1443
// 3. In this case we eliminate the unlock of the first s, the lock
1444
// and unlock in the then case and the lock in the final s.
1445
//
1446
// Note also that in all these cases the then/else pieces don't have
1447
// to be trivial as long as they begin and end with synchronization
1448
// operations.
1449
//
1450
// s();
1451
// if (p)
1452
// s();
1453
// f();
1454
// s();
1455
// s();
1456
//
1457
// The code will work properly for this case, leaving in the unlock
1458
// before the call to f and the relock after it.
1459
//
1460
// A potentially interesting case which isn't handled here is when the
1461
// locking is partially redundant.
1462
//
1463
// s();
1464
// if (p)
1465
// s();
1466
//
1467
// This could be eliminated putting unlocking on the else case and
1468
// eliminating the first unlock and the lock in the then side.
1469
// Alternatively the unlock could be moved out of the then side so it
1470
// was after the merge and the first unlock and second lock
1471
// eliminated. This might require less manipulation of the memory
1472
// state to get correct.
1473
//
1474
// Additionally we might allow work between a unlock and lock before
1475
// giving up eliminating the locks. The current code disallows any
1476
// conditional control flow between these operations. A formulation
1477
// similar to partial redundancy elimination computing the
1478
// availability of unlocking and the anticipatability of locking at a
1479
// program point would allow detection of fully redundant locking with
1480
// some amount of work in between. I'm not sure how often I really
1481
// think that would occur though. Most of the cases I've seen
1482
// indicate it's likely non-trivial work would occur in between.
1483
// There may be other more complicated constructs where we could
1484
// eliminate locking but I haven't seen any others appear as hot or
1485
// interesting.
1486
//
1487
// Locking and unlocking have a canonical form in ideal that looks
1488
// roughly like this:
1489
//
1490
// <obj>
1491
// | \\------+
1492
// | \ \
1493
// | BoxLock \
1494
// | | | \
1495
// | | \ \
1496
// | | FastLock
1497
// | | /
1498
// | | /
1499
// | | |
1500
//
1501
// Lock
1502
// |
1503
// Proj #0
1504
// |
1505
// MembarAcquire
1506
// |
1507
// Proj #0
1508
//
1509
// MembarRelease
1510
// |
1511
// Proj #0
1512
// |
1513
// Unlock
1514
// |
1515
// Proj #0
1516
//
1517
//
1518
// This code proceeds by processing Lock nodes during PhaseIterGVN
1519
// and searching back through its control for the proper code
1520
// patterns. Once it finds a set of lock and unlock operations to
1521
// eliminate they are marked as eliminatable which causes the
1522
// expansion of the Lock and Unlock macro nodes to make the operation a NOP
1523
//
1524
//=============================================================================
1525
1526
//
1527
// Utility function to skip over uninteresting control nodes. Nodes skipped are:
1528
// - copy regions. (These may not have been optimized away yet.)
1529
// - eliminated locking nodes
1530
//
1531
static Node *next_control(Node *ctrl) {
1532
if (ctrl == NULL)
1533
return NULL;
1534
while (1) {
1535
if (ctrl->is_Region()) {
1536
RegionNode *r = ctrl->as_Region();
1537
Node *n = r->is_copy();
1538
if (n == NULL)
1539
break; // hit a region, return it
1540
else
1541
ctrl = n;
1542
} else if (ctrl->is_Proj()) {
1543
Node *in0 = ctrl->in(0);
1544
if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1545
ctrl = in0->in(0);
1546
} else {
1547
break;
1548
}
1549
} else {
1550
break; // found an interesting control
1551
}
1552
}
1553
return ctrl;
1554
}
1555
//
1556
// Given a control, see if it's the control projection of an Unlock which
1557
// operating on the same object as lock.
1558
//
1559
bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1560
GrowableArray<AbstractLockNode*> &lock_ops) {
1561
ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1562
if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1563
Node *n = ctrl_proj->in(0);
1564
if (n != NULL && n->is_Unlock()) {
1565
UnlockNode *unlock = n->as_Unlock();
1566
Node* lock_obj = lock->obj_node();
1567
Node* unlock_obj = unlock->obj_node();
1568
#if INCLUDE_ALL_GCS
1569
if (UseShenandoahGC) {
1570
lock_obj = ShenandoahBarrierSetC2::bsc2()->step_over_gc_barrier(lock_obj);
1571
unlock_obj = ShenandoahBarrierSetC2::bsc2()->step_over_gc_barrier(unlock_obj);
1572
}
1573
#endif
1574
if (lock_obj->eqv_uncast(unlock_obj) &&
1575
BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1576
!unlock->is_eliminated()) {
1577
lock_ops.append(unlock);
1578
return true;
1579
}
1580
}
1581
}
1582
return false;
1583
}
1584
1585
//
1586
// Find the lock matching an unlock. Returns null if a safepoint
1587
// or complicated control is encountered first.
1588
LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1589
LockNode *lock_result = NULL;
1590
// find the matching lock, or an intervening safepoint
1591
Node *ctrl = next_control(unlock->in(0));
1592
while (1) {
1593
assert(ctrl != NULL, "invalid control graph");
1594
assert(!ctrl->is_Start(), "missing lock for unlock");
1595
if (ctrl->is_top()) break; // dead control path
1596
if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1597
if (ctrl->is_SafePoint()) {
1598
break; // found a safepoint (may be the lock we are searching for)
1599
} else if (ctrl->is_Region()) {
1600
// Check for a simple diamond pattern. Punt on anything more complicated
1601
if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1602
Node *in1 = next_control(ctrl->in(1));
1603
Node *in2 = next_control(ctrl->in(2));
1604
if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1605
(in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1606
ctrl = next_control(in1->in(0)->in(0));
1607
} else {
1608
break;
1609
}
1610
} else {
1611
break;
1612
}
1613
} else {
1614
ctrl = next_control(ctrl->in(0)); // keep searching
1615
}
1616
}
1617
if (ctrl->is_Lock()) {
1618
LockNode *lock = ctrl->as_Lock();
1619
Node* lock_obj = lock->obj_node();
1620
Node* unlock_obj = unlock->obj_node();
1621
#if INCLUDE_ALL_GCS
1622
if (UseShenandoahGC) {
1623
lock_obj = ShenandoahBarrierSetC2::bsc2()->step_over_gc_barrier(lock_obj);
1624
unlock_obj = ShenandoahBarrierSetC2::bsc2()->step_over_gc_barrier(unlock_obj);
1625
}
1626
#endif
1627
if (lock_obj->eqv_uncast(unlock_obj) &&
1628
BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1629
lock_result = lock;
1630
}
1631
}
1632
return lock_result;
1633
}
1634
1635
// This code corresponds to case 3 above.
1636
1637
bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1638
GrowableArray<AbstractLockNode*> &lock_ops) {
1639
Node* if_node = node->in(0);
1640
bool if_true = node->is_IfTrue();
1641
1642
if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1643
Node *lock_ctrl = next_control(if_node->in(0));
1644
if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1645
Node* lock1_node = NULL;
1646
ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1647
if (if_true) {
1648
if (proj->is_IfFalse() && proj->outcnt() == 1) {
1649
lock1_node = proj->unique_out();
1650
}
1651
} else {
1652
if (proj->is_IfTrue() && proj->outcnt() == 1) {
1653
lock1_node = proj->unique_out();
1654
}
1655
}
1656
if (lock1_node != NULL && lock1_node->is_Lock()) {
1657
LockNode *lock1 = lock1_node->as_Lock();
1658
Node* lock_obj = lock->obj_node();
1659
Node* lock1_obj = lock1->obj_node();
1660
#if INCLUDE_ALL_GCS
1661
if (UseShenandoahGC) {
1662
lock_obj = ShenandoahBarrierSetC2::bsc2()->step_over_gc_barrier(lock_obj);
1663
lock1_obj = ShenandoahBarrierSetC2::bsc2()->step_over_gc_barrier(lock1_obj);
1664
}
1665
#endif
1666
if (lock_obj->eqv_uncast(lock1_obj) &&
1667
BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1668
!lock1->is_eliminated()) {
1669
lock_ops.append(lock1);
1670
return true;
1671
}
1672
}
1673
}
1674
}
1675
1676
lock_ops.trunc_to(0);
1677
return false;
1678
}
1679
1680
bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1681
GrowableArray<AbstractLockNode*> &lock_ops) {
1682
// check each control merging at this point for a matching unlock.
1683
// in(0) should be self edge so skip it.
1684
for (int i = 1; i < (int)region->req(); i++) {
1685
Node *in_node = next_control(region->in(i));
1686
if (in_node != NULL) {
1687
if (find_matching_unlock(in_node, lock, lock_ops)) {
1688
// found a match so keep on checking.
1689
continue;
1690
} else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1691
continue;
1692
}
1693
1694
// If we fall through to here then it was some kind of node we
1695
// don't understand or there wasn't a matching unlock, so give
1696
// up trying to merge locks.
1697
lock_ops.trunc_to(0);
1698
return false;
1699
}
1700
}
1701
return true;
1702
1703
}
1704
1705
#ifndef PRODUCT
1706
//
1707
// Create a counter which counts the number of times this lock is acquired
1708
//
1709
void AbstractLockNode::create_lock_counter(JVMState* state) {
1710
_counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1711
}
1712
1713
void AbstractLockNode::set_eliminated_lock_counter() {
1714
if (_counter) {
1715
// Update the counter to indicate that this lock was eliminated.
1716
// The counter update code will stay around even though the
1717
// optimizer will eliminate the lock operation itself.
1718
_counter->set_tag(NamedCounter::EliminatedLockCounter);
1719
}
1720
}
1721
#endif
1722
1723
//=============================================================================
1724
Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1725
1726
// perform any generic optimizations first (returns 'this' or NULL)
1727
Node *result = SafePointNode::Ideal(phase, can_reshape);
1728
if (result != NULL) return result;
1729
// Don't bother trying to transform a dead node
1730
if (in(0) && in(0)->is_top()) return NULL;
1731
1732
// Now see if we can optimize away this lock. We don't actually
1733
// remove the locking here, we simply set the _eliminate flag which
1734
// prevents macro expansion from expanding the lock. Since we don't
1735
// modify the graph, the value returned from this function is the
1736
// one computed above.
1737
if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1738
//
1739
// If we are locking an unescaped object, the lock/unlock is unnecessary
1740
//
1741
ConnectionGraph *cgr = phase->C->congraph();
1742
if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1743
assert(!is_eliminated() || is_coarsened(), "sanity");
1744
// The lock could be marked eliminated by lock coarsening
1745
// code during first IGVN before EA. Replace coarsened flag
1746
// to eliminate all associated locks/unlocks.
1747
#ifdef ASSERT
1748
this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
1749
#endif
1750
this->set_non_esc_obj();
1751
return result;
1752
}
1753
1754
//
1755
// Try lock coarsening
1756
//
1757
PhaseIterGVN* iter = phase->is_IterGVN();
1758
if (iter != NULL && !is_eliminated()) {
1759
1760
GrowableArray<AbstractLockNode*> lock_ops;
1761
1762
Node *ctrl = next_control(in(0));
1763
1764
// now search back for a matching Unlock
1765
if (find_matching_unlock(ctrl, this, lock_ops)) {
1766
// found an unlock directly preceding this lock. This is the
1767
// case of single unlock directly control dependent on a
1768
// single lock which is the trivial version of case 1 or 2.
1769
} else if (ctrl->is_Region() ) {
1770
if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1771
// found lock preceded by multiple unlocks along all paths
1772
// joining at this point which is case 3 in description above.
1773
}
1774
} else {
1775
// see if this lock comes from either half of an if and the
1776
// predecessors merges unlocks and the other half of the if
1777
// performs a lock.
1778
if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1779
// found unlock splitting to an if with locks on both branches.
1780
}
1781
}
1782
1783
if (lock_ops.length() > 0) {
1784
// add ourselves to the list of locks to be eliminated.
1785
lock_ops.append(this);
1786
1787
#ifndef PRODUCT
1788
if (PrintEliminateLocks) {
1789
int locks = 0;
1790
int unlocks = 0;
1791
for (int i = 0; i < lock_ops.length(); i++) {
1792
AbstractLockNode* lock = lock_ops.at(i);
1793
if (lock->Opcode() == Op_Lock)
1794
locks++;
1795
else
1796
unlocks++;
1797
if (Verbose) {
1798
lock->dump(1);
1799
}
1800
}
1801
tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1802
}
1803
#endif
1804
1805
// for each of the identified locks, mark them
1806
// as eliminatable
1807
for (int i = 0; i < lock_ops.length(); i++) {
1808
AbstractLockNode* lock = lock_ops.at(i);
1809
1810
// Mark it eliminated by coarsening and update any counters
1811
#ifdef ASSERT
1812
lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
1813
#endif
1814
lock->set_coarsened();
1815
}
1816
} else if (ctrl->is_Region() &&
1817
iter->_worklist.member(ctrl)) {
1818
// We weren't able to find any opportunities but the region this
1819
// lock is control dependent on hasn't been processed yet so put
1820
// this lock back on the worklist so we can check again once any
1821
// region simplification has occurred.
1822
iter->_worklist.push(this);
1823
}
1824
}
1825
}
1826
1827
return result;
1828
}
1829
1830
//=============================================================================
1831
bool LockNode::is_nested_lock_region() {
1832
return is_nested_lock_region(NULL);
1833
}
1834
1835
// p is used for access to compilation log; no logging if NULL
1836
bool LockNode::is_nested_lock_region(Compile * c) {
1837
BoxLockNode* box = box_node()->as_BoxLock();
1838
int stk_slot = box->stack_slot();
1839
if (stk_slot <= 0) {
1840
#ifdef ASSERT
1841
this->log_lock_optimization(c, "eliminate_lock_INLR_1");
1842
#endif
1843
return false; // External lock or it is not Box (Phi node).
1844
}
1845
1846
// Ignore complex cases: merged locks or multiple locks.
1847
Node* obj = obj_node();
1848
LockNode* unique_lock = NULL;
1849
if (!box->is_simple_lock_region(&unique_lock, obj)) {
1850
#ifdef ASSERT
1851
this->log_lock_optimization(c, "eliminate_lock_INLR_2a");
1852
#endif
1853
return false;
1854
}
1855
if (unique_lock != this) {
1856
#ifdef ASSERT
1857
this->log_lock_optimization(c, "eliminate_lock_INLR_2b");
1858
#endif
1859
return false;
1860
}
1861
1862
#if INCLUDE_ALL_GCS
1863
if (UseShenandoahGC) {
1864
obj = ShenandoahBarrierSetC2::bsc2()->step_over_gc_barrier(obj);
1865
}
1866
#endif
1867
// Look for external lock for the same object.
1868
SafePointNode* sfn = this->as_SafePoint();
1869
JVMState* youngest_jvms = sfn->jvms();
1870
int max_depth = youngest_jvms->depth();
1871
for (int depth = 1; depth <= max_depth; depth++) {
1872
JVMState* jvms = youngest_jvms->of_depth(depth);
1873
int num_mon = jvms->nof_monitors();
1874
// Loop over monitors
1875
for (int idx = 0; idx < num_mon; idx++) {
1876
Node* obj_node = sfn->monitor_obj(jvms, idx);
1877
#if INCLUDE_ALL_GCS
1878
if (UseShenandoahGC) {
1879
obj_node = ShenandoahBarrierSetC2::bsc2()->step_over_gc_barrier(obj_node);
1880
}
1881
#endif
1882
BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1883
if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1884
return true;
1885
}
1886
}
1887
}
1888
#ifdef ASSERT
1889
this->log_lock_optimization(c, "eliminate_lock_INLR_3");
1890
#endif
1891
return false;
1892
}
1893
1894
//=============================================================================
1895
uint UnlockNode::size_of() const { return sizeof(*this); }
1896
1897
//=============================================================================
1898
Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1899
1900
// perform any generic optimizations first (returns 'this' or NULL)
1901
Node *result = SafePointNode::Ideal(phase, can_reshape);
1902
if (result != NULL) return result;
1903
// Don't bother trying to transform a dead node
1904
if (in(0) && in(0)->is_top()) return NULL;
1905
1906
// Now see if we can optimize away this unlock. We don't actually
1907
// remove the unlocking here, we simply set the _eliminate flag which
1908
// prevents macro expansion from expanding the unlock. Since we don't
1909
// modify the graph, the value returned from this function is the
1910
// one computed above.
1911
// Escape state is defined after Parse phase.
1912
if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1913
//
1914
// If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1915
//
1916
ConnectionGraph *cgr = phase->C->congraph();
1917
if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1918
assert(!is_eliminated() || is_coarsened(), "sanity");
1919
// The lock could be marked eliminated by lock coarsening
1920
// code during first IGVN before EA. Replace coarsened flag
1921
// to eliminate all associated locks/unlocks.
1922
#ifdef ASSERT
1923
this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
1924
#endif
1925
this->set_non_esc_obj();
1926
}
1927
}
1928
return result;
1929
}
1930
1931
const char * AbstractLockNode::kind_as_string() const {
1932
return is_coarsened() ? "coarsened" :
1933
is_nested() ? "nested" :
1934
is_non_esc_obj() ? "non_escaping" :
1935
"?";
1936
}
1937
1938
void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag) const {
1939
if (C == NULL) {
1940
return;
1941
}
1942
CompileLog* log = C->log();
1943
if (log != NULL) {
1944
log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'",
1945
tag, is_Lock(), C->compile_id(),
1946
is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
1947
kind_as_string());
1948
log->stamp();
1949
log->end_head();
1950
JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
1951
while (p != NULL) {
1952
log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1953
p = p->caller();
1954
}
1955
log->tail(tag);
1956
}
1957
}
1958
1959
1960