Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/cfgnode.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/systemDictionary.hpp"
27
#include "memory/allocation.inline.hpp"
28
#include "oops/objArrayKlass.hpp"
29
#include "opto/addnode.hpp"
30
#include "opto/cfgnode.hpp"
31
#include "opto/connode.hpp"
32
#include "opto/loopnode.hpp"
33
#include "opto/machnode.hpp"
34
#include "opto/mulnode.hpp"
35
#include "opto/phaseX.hpp"
36
#include "opto/regmask.hpp"
37
#include "opto/runtime.hpp"
38
#include "opto/subnode.hpp"
39
#if INCLUDE_ALL_GCS
40
#include "gc_implementation/shenandoah/c2/shenandoahBarrierSetC2.hpp"
41
#include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp"
42
#endif
43
44
// Portions of code courtesy of Clifford Click
45
46
// Optimization - Graph Style
47
48
//=============================================================================
49
//------------------------------Value------------------------------------------
50
// Compute the type of the RegionNode.
51
const Type *RegionNode::Value( PhaseTransform *phase ) const {
52
for( uint i=1; i<req(); ++i ) { // For all paths in
53
Node *n = in(i); // Get Control source
54
if( !n ) continue; // Missing inputs are TOP
55
if( phase->type(n) == Type::CONTROL )
56
return Type::CONTROL;
57
}
58
return Type::TOP; // All paths dead? Then so are we
59
}
60
61
//------------------------------Identity---------------------------------------
62
// Check for Region being Identity.
63
Node *RegionNode::Identity( PhaseTransform *phase ) {
64
// Cannot have Region be an identity, even if it has only 1 input.
65
// Phi users cannot have their Region input folded away for them,
66
// since they need to select the proper data input
67
return this;
68
}
69
70
//------------------------------merge_region-----------------------------------
71
// If a Region flows into a Region, merge into one big happy merge. This is
72
// hard to do if there is stuff that has to happen
73
static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
74
if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
75
return NULL;
76
Node *progress = NULL; // Progress flag
77
PhaseIterGVN *igvn = phase->is_IterGVN();
78
79
uint rreq = region->req();
80
for( uint i = 1; i < rreq; i++ ) {
81
Node *r = region->in(i);
82
if( r && r->Opcode() == Op_Region && // Found a region?
83
r->in(0) == r && // Not already collapsed?
84
r != region && // Avoid stupid situations
85
r->outcnt() == 2 ) { // Self user and 'region' user only?
86
assert(!r->as_Region()->has_phi(), "no phi users");
87
if( !progress ) { // No progress
88
if (region->has_phi()) {
89
return NULL; // Only flatten if no Phi users
90
// igvn->hash_delete( phi );
91
}
92
igvn->hash_delete( region );
93
progress = region; // Making progress
94
}
95
igvn->hash_delete( r );
96
97
// Append inputs to 'r' onto 'region'
98
for( uint j = 1; j < r->req(); j++ ) {
99
// Move an input from 'r' to 'region'
100
region->add_req(r->in(j));
101
r->set_req(j, phase->C->top());
102
// Update phis of 'region'
103
//for( uint k = 0; k < max; k++ ) {
104
// Node *phi = region->out(k);
105
// if( phi->is_Phi() ) {
106
// phi->add_req(phi->in(i));
107
// }
108
//}
109
110
rreq++; // One more input to Region
111
} // Found a region to merge into Region
112
// Clobber pointer to the now dead 'r'
113
region->set_req(i, phase->C->top());
114
}
115
}
116
117
return progress;
118
}
119
120
121
122
//--------------------------------has_phi--------------------------------------
123
// Helper function: Return any PhiNode that uses this region or NULL
124
PhiNode* RegionNode::has_phi() const {
125
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
126
Node* phi = fast_out(i);
127
if (phi->is_Phi()) { // Check for Phi users
128
assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
129
return phi->as_Phi(); // this one is good enough
130
}
131
}
132
133
return NULL;
134
}
135
136
137
//-----------------------------has_unique_phi----------------------------------
138
// Helper function: Return the only PhiNode that uses this region or NULL
139
PhiNode* RegionNode::has_unique_phi() const {
140
// Check that only one use is a Phi
141
PhiNode* only_phi = NULL;
142
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
143
Node* phi = fast_out(i);
144
if (phi->is_Phi()) { // Check for Phi users
145
assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
146
if (only_phi == NULL) {
147
only_phi = phi->as_Phi();
148
} else {
149
return NULL; // multiple phis
150
}
151
}
152
}
153
154
return only_phi;
155
}
156
157
158
//------------------------------check_phi_clipping-----------------------------
159
// Helper function for RegionNode's identification of FP clipping
160
// Check inputs to the Phi
161
static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
162
min = NULL;
163
max = NULL;
164
val = NULL;
165
min_idx = 0;
166
max_idx = 0;
167
val_idx = 0;
168
uint phi_max = phi->req();
169
if( phi_max == 4 ) {
170
for( uint j = 1; j < phi_max; ++j ) {
171
Node *n = phi->in(j);
172
int opcode = n->Opcode();
173
switch( opcode ) {
174
case Op_ConI:
175
{
176
if( min == NULL ) {
177
min = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
178
min_idx = j;
179
} else {
180
max = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
181
max_idx = j;
182
if( min->get_int() > max->get_int() ) {
183
// Swap min and max
184
ConNode *temp;
185
uint temp_idx;
186
temp = min; min = max; max = temp;
187
temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
188
}
189
}
190
}
191
break;
192
default:
193
{
194
val = n;
195
val_idx = j;
196
}
197
break;
198
}
199
}
200
}
201
return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
202
}
203
204
205
//------------------------------check_if_clipping------------------------------
206
// Helper function for RegionNode's identification of FP clipping
207
// Check that inputs to Region come from two IfNodes,
208
//
209
// If
210
// False True
211
// If |
212
// False True |
213
// | | |
214
// RegionNode_inputs
215
//
216
static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
217
top_if = NULL;
218
bot_if = NULL;
219
220
// Check control structure above RegionNode for (if ( if ) )
221
Node *in1 = region->in(1);
222
Node *in2 = region->in(2);
223
Node *in3 = region->in(3);
224
// Check that all inputs are projections
225
if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
226
Node *in10 = in1->in(0);
227
Node *in20 = in2->in(0);
228
Node *in30 = in3->in(0);
229
// Check that #1 and #2 are ifTrue and ifFalse from same If
230
if( in10 != NULL && in10->is_If() &&
231
in20 != NULL && in20->is_If() &&
232
in30 != NULL && in30->is_If() && in10 == in20 &&
233
(in1->Opcode() != in2->Opcode()) ) {
234
Node *in100 = in10->in(0);
235
Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
236
// Check that control for in10 comes from other branch of IF from in3
237
if( in1000 != NULL && in1000->is_If() &&
238
in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
239
// Control pattern checks
240
top_if = (IfNode*)in1000;
241
bot_if = (IfNode*)in10;
242
}
243
}
244
}
245
246
return (top_if != NULL);
247
}
248
249
250
//------------------------------check_convf2i_clipping-------------------------
251
// Helper function for RegionNode's identification of FP clipping
252
// Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
253
static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
254
convf2i = NULL;
255
256
// Check for the RShiftNode
257
Node *rshift = phi->in(idx);
258
assert( rshift, "Previous checks ensure phi input is present");
259
if( rshift->Opcode() != Op_RShiftI ) { return false; }
260
261
// Check for the LShiftNode
262
Node *lshift = rshift->in(1);
263
assert( lshift, "Previous checks ensure phi input is present");
264
if( lshift->Opcode() != Op_LShiftI ) { return false; }
265
266
// Check for the ConvF2INode
267
Node *conv = lshift->in(1);
268
if( conv->Opcode() != Op_ConvF2I ) { return false; }
269
270
// Check that shift amounts are only to get sign bits set after F2I
271
jint max_cutoff = max->get_int();
272
jint min_cutoff = min->get_int();
273
jint left_shift = lshift->in(2)->get_int();
274
jint right_shift = rshift->in(2)->get_int();
275
jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
276
if( left_shift != right_shift ||
277
0 > left_shift || left_shift >= BitsPerJavaInteger ||
278
max_post_shift < max_cutoff ||
279
max_post_shift < -min_cutoff ) {
280
// Shifts are necessary but current transformation eliminates them
281
return false;
282
}
283
284
// OK to return the result of ConvF2I without shifting
285
convf2i = (ConvF2INode*)conv;
286
return true;
287
}
288
289
290
//------------------------------check_compare_clipping-------------------------
291
// Helper function for RegionNode's identification of FP clipping
292
static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
293
Node *i1 = iff->in(1);
294
if ( !i1->is_Bool() ) { return false; }
295
BoolNode *bool1 = i1->as_Bool();
296
if( less_than && bool1->_test._test != BoolTest::le ) { return false; }
297
else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
298
const Node *cmpF = bool1->in(1);
299
if( cmpF->Opcode() != Op_CmpF ) { return false; }
300
// Test that the float value being compared against
301
// is equivalent to the int value used as a limit
302
Node *nodef = cmpF->in(2);
303
if( nodef->Opcode() != Op_ConF ) { return false; }
304
jfloat conf = nodef->getf();
305
jint coni = limit->get_int();
306
if( ((int)conf) != coni ) { return false; }
307
input = cmpF->in(1);
308
return true;
309
}
310
311
//------------------------------is_unreachable_region--------------------------
312
// Find if the Region node is reachable from the root.
313
bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
314
assert(req() == 2, "");
315
316
// First, cut the simple case of fallthrough region when NONE of
317
// region's phis references itself directly or through a data node.
318
uint max = outcnt();
319
uint i;
320
for (i = 0; i < max; i++) {
321
Node* phi = raw_out(i);
322
if (phi != NULL && phi->is_Phi()) {
323
assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
324
if (phi->outcnt() == 0)
325
continue; // Safe case - no loops
326
if (phi->outcnt() == 1) {
327
Node* u = phi->raw_out(0);
328
// Skip if only one use is an other Phi or Call or Uncommon trap.
329
// It is safe to consider this case as fallthrough.
330
if (u != NULL && (u->is_Phi() || u->is_CFG()))
331
continue;
332
}
333
// Check when phi references itself directly or through an other node.
334
if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
335
break; // Found possible unsafe data loop.
336
}
337
}
338
if (i >= max)
339
return false; // An unsafe case was NOT found - don't need graph walk.
340
341
// Unsafe case - check if the Region node is reachable from root.
342
ResourceMark rm;
343
344
Arena *a = Thread::current()->resource_area();
345
Node_List nstack(a);
346
VectorSet visited(a);
347
348
// Mark all control nodes reachable from root outputs
349
Node *n = (Node*)phase->C->root();
350
nstack.push(n);
351
visited.set(n->_idx);
352
while (nstack.size() != 0) {
353
n = nstack.pop();
354
uint max = n->outcnt();
355
for (uint i = 0; i < max; i++) {
356
Node* m = n->raw_out(i);
357
if (m != NULL && m->is_CFG()) {
358
if (phase->eqv(m, this)) {
359
return false; // We reached the Region node - it is not dead.
360
}
361
if (!visited.test_set(m->_idx))
362
nstack.push(m);
363
}
364
}
365
}
366
367
return true; // The Region node is unreachable - it is dead.
368
}
369
370
bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
371
// Incremental inlining + PhaseStringOpts sometimes produce:
372
//
373
// cmpP with 1 top input
374
// |
375
// If
376
// / \
377
// IfFalse IfTrue /- Some Node
378
// \ / / /
379
// Region / /-MergeMem
380
// \---Phi
381
//
382
//
383
// It's expected by PhaseStringOpts that the Region goes away and is
384
// replaced by If's control input but because there's still a Phi,
385
// the Region stays in the graph. The top input from the cmpP is
386
// propagated forward and a subgraph that is useful goes away. The
387
// code below replaces the Phi with the MergeMem so that the Region
388
// is simplified.
389
390
PhiNode* phi = has_unique_phi();
391
if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
392
MergeMemNode* m = NULL;
393
assert(phi->req() == 3, "same as region");
394
for (uint i = 1; i < 3; ++i) {
395
Node *mem = phi->in(i);
396
if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
397
// Nothing is control-dependent on path #i except the region itself.
398
m = mem->as_MergeMem();
399
uint j = 3 - i;
400
Node* other = phi->in(j);
401
if (other && other == m->base_memory()) {
402
// m is a successor memory to other, and is not pinned inside the diamond, so push it out.
403
// This will allow the diamond to collapse completely.
404
phase->is_IterGVN()->replace_node(phi, m);
405
return true;
406
}
407
}
408
}
409
}
410
return false;
411
}
412
413
//------------------------------Ideal------------------------------------------
414
// Return a node which is more "ideal" than the current node. Must preserve
415
// the CFG, but we can still strip out dead paths.
416
Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
417
if( !can_reshape && !in(0) ) return NULL; // Already degraded to a Copy
418
assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
419
420
// Check for RegionNode with no Phi users and both inputs come from either
421
// arm of the same IF. If found, then the control-flow split is useless.
422
bool has_phis = false;
423
if (can_reshape) { // Need DU info to check for Phi users
424
has_phis = (has_phi() != NULL); // Cache result
425
if (has_phis && try_clean_mem_phi(phase)) {
426
has_phis = false;
427
}
428
429
if (!has_phis) { // No Phi users? Nothing merging?
430
for (uint i = 1; i < req()-1; i++) {
431
Node *if1 = in(i);
432
if( !if1 ) continue;
433
Node *iff = if1->in(0);
434
if( !iff || !iff->is_If() ) continue;
435
for( uint j=i+1; j<req(); j++ ) {
436
if( in(j) && in(j)->in(0) == iff &&
437
if1->Opcode() != in(j)->Opcode() ) {
438
// Add the IF Projections to the worklist. They (and the IF itself)
439
// will be eliminated if dead.
440
phase->is_IterGVN()->add_users_to_worklist(iff);
441
set_req(i, iff->in(0));// Skip around the useless IF diamond
442
set_req(j, NULL);
443
return this; // Record progress
444
}
445
}
446
}
447
}
448
}
449
450
// Remove TOP or NULL input paths. If only 1 input path remains, this Region
451
// degrades to a copy.
452
bool add_to_worklist = false;
453
int cnt = 0; // Count of values merging
454
DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
455
int del_it = 0; // The last input path we delete
456
// For all inputs...
457
for( uint i=1; i<req(); ++i ){// For all paths in
458
Node *n = in(i); // Get the input
459
if( n != NULL ) {
460
// Remove useless control copy inputs
461
if( n->is_Region() && n->as_Region()->is_copy() ) {
462
set_req(i, n->nonnull_req());
463
i--;
464
continue;
465
}
466
if( n->is_Proj() ) { // Remove useless rethrows
467
Node *call = n->in(0);
468
if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
469
set_req(i, call->in(0));
470
i--;
471
continue;
472
}
473
}
474
if( phase->type(n) == Type::TOP ) {
475
set_req(i, NULL); // Ignore TOP inputs
476
i--;
477
continue;
478
}
479
cnt++; // One more value merging
480
481
} else if (can_reshape) { // Else found dead path with DU info
482
PhaseIterGVN *igvn = phase->is_IterGVN();
483
del_req(i); // Yank path from self
484
del_it = i;
485
uint max = outcnt();
486
DUIterator j;
487
bool progress = true;
488
while(progress) { // Need to establish property over all users
489
progress = false;
490
for (j = outs(); has_out(j); j++) {
491
Node *n = out(j);
492
if( n->req() != req() && n->is_Phi() ) {
493
assert( n->in(0) == this, "" );
494
igvn->hash_delete(n); // Yank from hash before hacking edges
495
n->set_req_X(i,NULL,igvn);// Correct DU info
496
n->del_req(i); // Yank path from Phis
497
if( max != outcnt() ) {
498
progress = true;
499
j = refresh_out_pos(j);
500
max = outcnt();
501
}
502
}
503
}
504
}
505
add_to_worklist = true;
506
i--;
507
}
508
}
509
510
if (can_reshape && cnt == 1) {
511
// Is it dead loop?
512
// If it is LoopNopde it had 2 (+1 itself) inputs and
513
// one of them was cut. The loop is dead if it was EntryContol.
514
// Loop node may have only one input because entry path
515
// is removed in PhaseIdealLoop::Dominators().
516
assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
517
if (this->is_Loop() && (del_it == LoopNode::EntryControl ||
518
del_it == 0 && is_unreachable_region(phase)) ||
519
!this->is_Loop() && has_phis && is_unreachable_region(phase)) {
520
// Yes, the region will be removed during the next step below.
521
// Cut the backedge input and remove phis since no data paths left.
522
// We don't cut outputs to other nodes here since we need to put them
523
// on the worklist.
524
del_req(1);
525
cnt = 0;
526
assert( req() == 1, "no more inputs expected" );
527
uint max = outcnt();
528
bool progress = true;
529
Node *top = phase->C->top();
530
PhaseIterGVN *igvn = phase->is_IterGVN();
531
DUIterator j;
532
while(progress) {
533
progress = false;
534
for (j = outs(); has_out(j); j++) {
535
Node *n = out(j);
536
if( n->is_Phi() ) {
537
assert( igvn->eqv(n->in(0), this), "" );
538
assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
539
// Break dead loop data path.
540
// Eagerly replace phis with top to avoid phis copies generation.
541
igvn->replace_node(n, top);
542
if( max != outcnt() ) {
543
progress = true;
544
j = refresh_out_pos(j);
545
max = outcnt();
546
}
547
}
548
}
549
}
550
add_to_worklist = true;
551
}
552
}
553
if (add_to_worklist) {
554
phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
555
}
556
557
if( cnt <= 1 ) { // Only 1 path in?
558
set_req(0, NULL); // Null control input for region copy
559
if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
560
// No inputs or all inputs are NULL.
561
return NULL;
562
} else if (can_reshape) { // Optimization phase - remove the node
563
PhaseIterGVN *igvn = phase->is_IterGVN();
564
Node *parent_ctrl;
565
if( cnt == 0 ) {
566
assert( req() == 1, "no inputs expected" );
567
// During IGVN phase such region will be subsumed by TOP node
568
// so region's phis will have TOP as control node.
569
// Kill phis here to avoid it. PhiNode::is_copy() will be always false.
570
// Also set other user's input to top.
571
parent_ctrl = phase->C->top();
572
} else {
573
// The fallthrough case since we already checked dead loops above.
574
parent_ctrl = in(1);
575
assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
576
assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
577
}
578
if (!add_to_worklist)
579
igvn->add_users_to_worklist(this); // Check for further allowed opts
580
for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
581
Node* n = last_out(i);
582
igvn->hash_delete(n); // Remove from worklist before modifying edges
583
if( n->is_Phi() ) { // Collapse all Phis
584
// Eagerly replace phis to avoid copies generation.
585
Node* in;
586
if( cnt == 0 ) {
587
assert( n->req() == 1, "No data inputs expected" );
588
in = parent_ctrl; // replaced by top
589
} else {
590
assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
591
in = n->in(1); // replaced by unique input
592
if( n->as_Phi()->is_unsafe_data_reference(in) )
593
in = phase->C->top(); // replaced by top
594
}
595
if (n->outcnt() == 0) {
596
in = phase->C->top();
597
}
598
igvn->replace_node(n, in);
599
}
600
else if( n->is_Region() ) { // Update all incoming edges
601
assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
602
uint uses_found = 0;
603
for( uint k=1; k < n->req(); k++ ) {
604
if( n->in(k) == this ) {
605
n->set_req(k, parent_ctrl);
606
uses_found++;
607
}
608
}
609
if( uses_found > 1 ) { // (--i) done at the end of the loop.
610
i -= (uses_found - 1);
611
}
612
}
613
else {
614
assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
615
n->set_req(0, parent_ctrl);
616
}
617
#ifdef ASSERT
618
for( uint k=0; k < n->req(); k++ ) {
619
assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
620
}
621
#endif
622
}
623
// Remove the RegionNode itself from DefUse info
624
igvn->remove_dead_node(this);
625
return NULL;
626
}
627
return this; // Record progress
628
}
629
630
631
// If a Region flows into a Region, merge into one big happy merge.
632
if (can_reshape) {
633
Node *m = merge_region(this, phase);
634
if (m != NULL) return m;
635
}
636
637
// Check if this region is the root of a clipping idiom on floats
638
if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
639
// Check that only one use is a Phi and that it simplifies to two constants +
640
PhiNode* phi = has_unique_phi();
641
if (phi != NULL) { // One Phi user
642
// Check inputs to the Phi
643
ConNode *min;
644
ConNode *max;
645
Node *val;
646
uint min_idx;
647
uint max_idx;
648
uint val_idx;
649
if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx ) ) {
650
IfNode *top_if;
651
IfNode *bot_if;
652
if( check_if_clipping( this, bot_if, top_if ) ) {
653
// Control pattern checks, now verify compares
654
Node *top_in = NULL; // value being compared against
655
Node *bot_in = NULL;
656
if( check_compare_clipping( true, bot_if, min, bot_in ) &&
657
check_compare_clipping( false, top_if, max, top_in ) ) {
658
if( bot_in == top_in ) {
659
PhaseIterGVN *gvn = phase->is_IterGVN();
660
assert( gvn != NULL, "Only had DefUse info in IterGVN");
661
// Only remaining check is that bot_in == top_in == (Phi's val + mods)
662
663
// Check for the ConvF2INode
664
ConvF2INode *convf2i;
665
if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
666
convf2i->in(1) == bot_in ) {
667
// Matched pattern, including LShiftI; RShiftI, replace with integer compares
668
// max test
669
Node *cmp = gvn->register_new_node_with_optimizer(new (phase->C) CmpINode( convf2i, min ));
670
Node *boo = gvn->register_new_node_with_optimizer(new (phase->C) BoolNode( cmp, BoolTest::lt ));
671
IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
672
Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C) IfTrueNode (iff));
673
Node *ifF = gvn->register_new_node_with_optimizer(new (phase->C) IfFalseNode(iff));
674
// min test
675
cmp = gvn->register_new_node_with_optimizer(new (phase->C) CmpINode( convf2i, max ));
676
boo = gvn->register_new_node_with_optimizer(new (phase->C) BoolNode( cmp, BoolTest::gt ));
677
iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
678
Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C) IfTrueNode (iff));
679
ifF = gvn->register_new_node_with_optimizer(new (phase->C) IfFalseNode(iff));
680
// update input edges to region node
681
set_req_X( min_idx, if_min, gvn );
682
set_req_X( max_idx, if_max, gvn );
683
set_req_X( val_idx, ifF, gvn );
684
// remove unnecessary 'LShiftI; RShiftI' idiom
685
gvn->hash_delete(phi);
686
phi->set_req_X( val_idx, convf2i, gvn );
687
gvn->hash_find_insert(phi);
688
// Return transformed region node
689
return this;
690
}
691
}
692
}
693
}
694
}
695
}
696
}
697
698
return NULL;
699
}
700
701
702
703
const RegMask &RegionNode::out_RegMask() const {
704
return RegMask::Empty;
705
}
706
707
// Find the one non-null required input. RegionNode only
708
Node *Node::nonnull_req() const {
709
assert( is_Region(), "" );
710
for( uint i = 1; i < _cnt; i++ )
711
if( in(i) )
712
return in(i);
713
ShouldNotReachHere();
714
return NULL;
715
}
716
717
718
//=============================================================================
719
// note that these functions assume that the _adr_type field is flattened
720
uint PhiNode::hash() const {
721
const Type* at = _adr_type;
722
return TypeNode::hash() + (at ? at->hash() : 0);
723
}
724
uint PhiNode::cmp( const Node &n ) const {
725
return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
726
}
727
static inline
728
const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
729
if (at == NULL || at == TypePtr::BOTTOM) return at;
730
return Compile::current()->alias_type(at)->adr_type();
731
}
732
733
//----------------------------make---------------------------------------------
734
// create a new phi with edges matching r and set (initially) to x
735
PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
736
uint preds = r->req(); // Number of predecessor paths
737
assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
738
PhiNode* p = new (Compile::current()) PhiNode(r, t, at);
739
for (uint j = 1; j < preds; j++) {
740
// Fill in all inputs, except those which the region does not yet have
741
if (r->in(j) != NULL)
742
p->init_req(j, x);
743
}
744
return p;
745
}
746
PhiNode* PhiNode::make(Node* r, Node* x) {
747
const Type* t = x->bottom_type();
748
const TypePtr* at = NULL;
749
if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
750
return make(r, x, t, at);
751
}
752
PhiNode* PhiNode::make_blank(Node* r, Node* x) {
753
const Type* t = x->bottom_type();
754
const TypePtr* at = NULL;
755
if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
756
return new (Compile::current()) PhiNode(r, t, at);
757
}
758
759
760
//------------------------slice_memory-----------------------------------------
761
// create a new phi with narrowed memory type
762
PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
763
PhiNode* mem = (PhiNode*) clone();
764
*(const TypePtr**)&mem->_adr_type = adr_type;
765
// convert self-loops, or else we get a bad graph
766
for (uint i = 1; i < req(); i++) {
767
if ((const Node*)in(i) == this) mem->set_req(i, mem);
768
}
769
mem->verify_adr_type();
770
return mem;
771
}
772
773
//------------------------split_out_instance-----------------------------------
774
// Split out an instance type from a bottom phi.
775
PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
776
const TypeOopPtr *t_oop = at->isa_oopptr();
777
assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
778
const TypePtr *t = adr_type();
779
assert(type() == Type::MEMORY &&
780
(t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
781
t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
782
t->is_oopptr()->cast_to_exactness(true)
783
->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
784
->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
785
"bottom or raw memory required");
786
787
// Check if an appropriate node already exists.
788
Node *region = in(0);
789
for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
790
Node* use = region->fast_out(k);
791
if( use->is_Phi()) {
792
PhiNode *phi2 = use->as_Phi();
793
if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
794
return phi2;
795
}
796
}
797
}
798
Compile *C = igvn->C;
799
Arena *a = Thread::current()->resource_area();
800
Node_Array node_map = new Node_Array(a);
801
Node_Stack stack(a, C->live_nodes() >> 4);
802
PhiNode *nphi = slice_memory(at);
803
igvn->register_new_node_with_optimizer( nphi );
804
node_map.map(_idx, nphi);
805
stack.push((Node *)this, 1);
806
while(!stack.is_empty()) {
807
PhiNode *ophi = stack.node()->as_Phi();
808
uint i = stack.index();
809
assert(i >= 1, "not control edge");
810
stack.pop();
811
nphi = node_map[ophi->_idx]->as_Phi();
812
for (; i < ophi->req(); i++) {
813
Node *in = ophi->in(i);
814
if (in == NULL || igvn->type(in) == Type::TOP)
815
continue;
816
Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
817
PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
818
if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
819
opt = node_map[optphi->_idx];
820
if (opt == NULL) {
821
stack.push(ophi, i);
822
nphi = optphi->slice_memory(at);
823
igvn->register_new_node_with_optimizer( nphi );
824
node_map.map(optphi->_idx, nphi);
825
ophi = optphi;
826
i = 0; // will get incremented at top of loop
827
continue;
828
}
829
}
830
nphi->set_req(i, opt);
831
}
832
}
833
return nphi;
834
}
835
836
//------------------------verify_adr_type--------------------------------------
837
#ifdef ASSERT
838
void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
839
if (visited.test_set(_idx)) return; //already visited
840
841
// recheck constructor invariants:
842
verify_adr_type(false);
843
844
// recheck local phi/phi consistency:
845
assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
846
"adr_type must be consistent across phi nest");
847
848
// walk around
849
for (uint i = 1; i < req(); i++) {
850
Node* n = in(i);
851
if (n == NULL) continue;
852
const Node* np = in(i);
853
if (np->is_Phi()) {
854
np->as_Phi()->verify_adr_type(visited, at);
855
} else if (n->bottom_type() == Type::TOP
856
|| (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
857
// ignore top inputs
858
} else {
859
const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
860
// recheck phi/non-phi consistency at leaves:
861
assert((nat != NULL) == (at != NULL), "");
862
assert(nat == at || nat == TypePtr::BOTTOM,
863
"adr_type must be consistent at leaves of phi nest");
864
}
865
}
866
}
867
868
// Verify a whole nest of phis rooted at this one.
869
void PhiNode::verify_adr_type(bool recursive) const {
870
if (is_error_reported()) return; // muzzle asserts when debugging an error
871
if (Node::in_dump()) return; // muzzle asserts when printing
872
873
assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
874
875
if (!VerifyAliases) return; // verify thoroughly only if requested
876
877
assert(_adr_type == flatten_phi_adr_type(_adr_type),
878
"Phi::adr_type must be pre-normalized");
879
880
if (recursive) {
881
VectorSet visited(Thread::current()->resource_area());
882
verify_adr_type(visited, _adr_type);
883
}
884
}
885
#endif
886
887
888
//------------------------------Value------------------------------------------
889
// Compute the type of the PhiNode
890
const Type *PhiNode::Value( PhaseTransform *phase ) const {
891
Node *r = in(0); // RegionNode
892
if( !r ) // Copy or dead
893
return in(1) ? phase->type(in(1)) : Type::TOP;
894
895
// Note: During parsing, phis are often transformed before their regions.
896
// This means we have to use type_or_null to defend against untyped regions.
897
if( phase->type_or_null(r) == Type::TOP ) // Dead code?
898
return Type::TOP;
899
900
// Check for trip-counted loop. If so, be smarter.
901
CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
902
if( l && l->can_be_counted_loop(phase) &&
903
((const Node*)l->phi() == this) ) { // Trip counted loop!
904
// protect against init_trip() or limit() returning NULL
905
const Node *init = l->init_trip();
906
const Node *limit = l->limit();
907
if( init != NULL && limit != NULL && l->stride_is_con() ) {
908
const TypeInt *lo = init ->bottom_type()->isa_int();
909
const TypeInt *hi = limit->bottom_type()->isa_int();
910
if( lo && hi ) { // Dying loops might have TOP here
911
int stride = l->stride_con();
912
if( stride < 0 ) { // Down-counter loop
913
const TypeInt *tmp = lo; lo = hi; hi = tmp;
914
stride = -stride;
915
}
916
if( lo->_hi < hi->_lo ) // Reversed endpoints are well defined :-(
917
return TypeInt::make(lo->_lo,hi->_hi,3);
918
}
919
}
920
}
921
922
// Until we have harmony between classes and interfaces in the type
923
// lattice, we must tread carefully around phis which implicitly
924
// convert the one to the other.
925
const TypePtr* ttp = _type->make_ptr();
926
const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
927
const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
928
bool is_intf = false;
929
if (ttip != NULL) {
930
ciKlass* k = ttip->klass();
931
if (k->is_loaded() && k->is_interface())
932
is_intf = true;
933
}
934
if (ttkp != NULL) {
935
ciKlass* k = ttkp->klass();
936
if (k->is_loaded() && k->is_interface())
937
is_intf = true;
938
}
939
940
// Default case: merge all inputs
941
const Type *t = Type::TOP; // Merged type starting value
942
for (uint i = 1; i < req(); ++i) {// For all paths in
943
// Reachable control path?
944
if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
945
const Type* ti = phase->type(in(i));
946
// We assume that each input of an interface-valued Phi is a true
947
// subtype of that interface. This might not be true of the meet
948
// of all the input types. The lattice is not distributive in
949
// such cases. Ward off asserts in type.cpp by refusing to do
950
// meets between interfaces and proper classes.
951
const TypePtr* tip = ti->make_ptr();
952
const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
953
if (tiip) {
954
bool ti_is_intf = false;
955
ciKlass* k = tiip->klass();
956
if (k->is_loaded() && k->is_interface())
957
ti_is_intf = true;
958
if (is_intf != ti_is_intf)
959
{ t = _type; break; }
960
}
961
t = t->meet_speculative(ti);
962
}
963
}
964
965
// The worst-case type (from ciTypeFlow) should be consistent with "t".
966
// That is, we expect that "t->higher_equal(_type)" holds true.
967
// There are various exceptions:
968
// - Inputs which are phis might in fact be widened unnecessarily.
969
// For example, an input might be a widened int while the phi is a short.
970
// - Inputs might be BotPtrs but this phi is dependent on a null check,
971
// and postCCP has removed the cast which encodes the result of the check.
972
// - The type of this phi is an interface, and the inputs are classes.
973
// - Value calls on inputs might produce fuzzy results.
974
// (Occurrences of this case suggest improvements to Value methods.)
975
//
976
// It is not possible to see Type::BOTTOM values as phi inputs,
977
// because the ciTypeFlow pre-pass produces verifier-quality types.
978
const Type* ft = t->filter_speculative(_type); // Worst case type
979
980
#ifdef ASSERT
981
// The following logic has been moved into TypeOopPtr::filter.
982
const Type* jt = t->join_speculative(_type);
983
if (jt->empty()) { // Emptied out???
984
985
// Check for evil case of 't' being a class and '_type' expecting an
986
// interface. This can happen because the bytecodes do not contain
987
// enough type info to distinguish a Java-level interface variable
988
// from a Java-level object variable. If we meet 2 classes which
989
// both implement interface I, but their meet is at 'j/l/O' which
990
// doesn't implement I, we have no way to tell if the result should
991
// be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
992
// into a Phi which "knows" it's an Interface type we'll have to
993
// uplift the type.
994
if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
995
assert(ft == _type, ""); // Uplift to interface
996
} else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
997
assert(ft == _type, ""); // Uplift to interface
998
} else {
999
// We also have to handle 'evil cases' of interface- vs. class-arrays
1000
Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1001
if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1002
assert(ft == _type, ""); // Uplift to array of interface
1003
} else {
1004
// Otherwise it's something stupid like non-overlapping int ranges
1005
// found on dying counted loops.
1006
assert(ft == Type::TOP, ""); // Canonical empty value
1007
}
1008
}
1009
}
1010
1011
else {
1012
1013
// If we have an interface-typed Phi and we narrow to a class type, the join
1014
// should report back the class. However, if we have a J/L/Object
1015
// class-typed Phi and an interface flows in, it's possible that the meet &
1016
// join report an interface back out. This isn't possible but happens
1017
// because the type system doesn't interact well with interfaces.
1018
const TypePtr *jtp = jt->make_ptr();
1019
const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1020
const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1021
if( jtip && ttip ) {
1022
if( jtip->is_loaded() && jtip->klass()->is_interface() &&
1023
ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1024
// Happens in a CTW of rt.jar, 320-341, no extra flags
1025
assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1026
ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1027
jt = ft;
1028
}
1029
}
1030
if( jtkp && ttkp ) {
1031
if( jtkp->is_loaded() && jtkp->klass()->is_interface() &&
1032
!jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1033
ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1034
assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1035
ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1036
jt = ft;
1037
}
1038
}
1039
if (jt != ft && jt->base() == ft->base()) {
1040
if (jt->isa_int() &&
1041
jt->is_int()->_lo == ft->is_int()->_lo &&
1042
jt->is_int()->_hi == ft->is_int()->_hi)
1043
jt = ft;
1044
if (jt->isa_long() &&
1045
jt->is_long()->_lo == ft->is_long()->_lo &&
1046
jt->is_long()->_hi == ft->is_long()->_hi)
1047
jt = ft;
1048
}
1049
if (jt != ft) {
1050
tty->print("merge type: "); t->dump(); tty->cr();
1051
tty->print("kill type: "); _type->dump(); tty->cr();
1052
tty->print("join type: "); jt->dump(); tty->cr();
1053
tty->print("filter type: "); ft->dump(); tty->cr();
1054
}
1055
assert(jt == ft, "");
1056
}
1057
#endif //ASSERT
1058
1059
// Deal with conversion problems found in data loops.
1060
ft = phase->saturate(ft, phase->type_or_null(this), _type);
1061
1062
return ft;
1063
}
1064
1065
1066
//------------------------------is_diamond_phi---------------------------------
1067
// Does this Phi represent a simple well-shaped diamond merge? Return the
1068
// index of the true path or 0 otherwise.
1069
// If check_control_only is true, do not inspect the If node at the
1070
// top, and return -1 (not an edge number) on success.
1071
int PhiNode::is_diamond_phi(bool check_control_only) const {
1072
// Check for a 2-path merge
1073
Node *region = in(0);
1074
if( !region ) return 0;
1075
if( region->req() != 3 ) return 0;
1076
if( req() != 3 ) return 0;
1077
// Check that both paths come from the same If
1078
Node *ifp1 = region->in(1);
1079
Node *ifp2 = region->in(2);
1080
if( !ifp1 || !ifp2 ) return 0;
1081
Node *iff = ifp1->in(0);
1082
if( !iff || !iff->is_If() ) return 0;
1083
if( iff != ifp2->in(0) ) return 0;
1084
if (check_control_only) return -1;
1085
// Check for a proper bool/cmp
1086
const Node *b = iff->in(1);
1087
if( !b->is_Bool() ) return 0;
1088
const Node *cmp = b->in(1);
1089
if( !cmp->is_Cmp() ) return 0;
1090
1091
// Check for branching opposite expected
1092
if( ifp2->Opcode() == Op_IfTrue ) {
1093
assert( ifp1->Opcode() == Op_IfFalse, "" );
1094
return 2;
1095
} else {
1096
assert( ifp1->Opcode() == Op_IfTrue, "" );
1097
return 1;
1098
}
1099
}
1100
1101
//----------------------------check_cmove_id-----------------------------------
1102
// Check for CMove'ing a constant after comparing against the constant.
1103
// Happens all the time now, since if we compare equality vs a constant in
1104
// the parser, we "know" the variable is constant on one path and we force
1105
// it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1106
// conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
1107
// general in that we don't need constants. Since CMove's are only inserted
1108
// in very special circumstances, we do it here on generic Phi's.
1109
Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1110
assert(true_path !=0, "only diamond shape graph expected");
1111
1112
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1113
// phi->region->if_proj->ifnode->bool->cmp
1114
Node* region = in(0);
1115
Node* iff = region->in(1)->in(0);
1116
BoolNode* b = iff->in(1)->as_Bool();
1117
Node* cmp = b->in(1);
1118
Node* tval = in(true_path);
1119
Node* fval = in(3-true_path);
1120
Node* id = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1121
if (id == NULL)
1122
return NULL;
1123
1124
// Either value might be a cast that depends on a branch of 'iff'.
1125
// Since the 'id' value will float free of the diamond, either
1126
// decast or return failure.
1127
Node* ctl = id->in(0);
1128
if (ctl != NULL && ctl->in(0) == iff) {
1129
if (id->is_ConstraintCast()) {
1130
return id->in(1);
1131
} else {
1132
// Don't know how to disentangle this value.
1133
return NULL;
1134
}
1135
}
1136
1137
return id;
1138
}
1139
1140
//------------------------------Identity---------------------------------------
1141
// Check for Region being Identity.
1142
Node *PhiNode::Identity( PhaseTransform *phase ) {
1143
// Check for no merging going on
1144
// (There used to be special-case code here when this->region->is_Loop.
1145
// It would check for a tributary phi on the backedge that the main phi
1146
// trivially, perhaps with a single cast. The unique_input method
1147
// does all this and more, by reducing such tributaries to 'this'.)
1148
Node* uin = unique_input(phase);
1149
if (uin != NULL) {
1150
return uin;
1151
}
1152
1153
int true_path = is_diamond_phi();
1154
if (true_path != 0) {
1155
Node* id = is_cmove_id(phase, true_path);
1156
if (id != NULL) return id;
1157
}
1158
1159
return this; // No identity
1160
}
1161
1162
//-----------------------------unique_input------------------------------------
1163
// Find the unique value, discounting top, self-loops, and casts.
1164
// Return top if there are no inputs, and self if there are multiple.
1165
Node* PhiNode::unique_input(PhaseTransform* phase) {
1166
// 1) One unique direct input, or
1167
// 2) some of the inputs have an intervening ConstraintCast and
1168
// the type of input is the same or sharper (more specific)
1169
// than the phi's type.
1170
// 3) an input is a self loop
1171
//
1172
// 1) input or 2) input or 3) input __
1173
// / \ / \ \ / \
1174
// \ / | cast phi cast
1175
// phi \ / / \ /
1176
// phi / --
1177
1178
Node* r = in(0); // RegionNode
1179
if (r == NULL) return in(1); // Already degraded to a Copy
1180
Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
1181
Node* direct_input = NULL; // The unique direct input
1182
1183
for (uint i = 1, cnt = req(); i < cnt; ++i) {
1184
Node* rc = r->in(i);
1185
if (rc == NULL || phase->type(rc) == Type::TOP)
1186
continue; // ignore unreachable control path
1187
Node* n = in(i);
1188
if (n == NULL)
1189
continue;
1190
Node* un = n->uncast();
1191
if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1192
continue; // ignore if top, or in(i) and "this" are in a data cycle
1193
}
1194
// Check for a unique uncasted input
1195
if (uncasted_input == NULL) {
1196
uncasted_input = un;
1197
} else if (uncasted_input != un) {
1198
uncasted_input = NodeSentinel; // no unique uncasted input
1199
}
1200
// Check for a unique direct input
1201
if (direct_input == NULL) {
1202
direct_input = n;
1203
} else if (direct_input != n) {
1204
direct_input = NodeSentinel; // no unique direct input
1205
}
1206
}
1207
if (direct_input == NULL) {
1208
return phase->C->top(); // no inputs
1209
}
1210
assert(uncasted_input != NULL,"");
1211
1212
if (direct_input != NodeSentinel) {
1213
return direct_input; // one unique direct input
1214
}
1215
if (uncasted_input != NodeSentinel &&
1216
phase->type(uncasted_input)->higher_equal(type())) {
1217
return uncasted_input; // one unique uncasted input
1218
}
1219
1220
// Nothing.
1221
return NULL;
1222
}
1223
1224
//------------------------------is_x2logic-------------------------------------
1225
// Check for simple convert-to-boolean pattern
1226
// If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1227
// Convert Phi to an ConvIB.
1228
static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1229
assert(true_path !=0, "only diamond shape graph expected");
1230
// Convert the true/false index into an expected 0/1 return.
1231
// Map 2->0 and 1->1.
1232
int flipped = 2-true_path;
1233
1234
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1235
// phi->region->if_proj->ifnode->bool->cmp
1236
Node *region = phi->in(0);
1237
Node *iff = region->in(1)->in(0);
1238
BoolNode *b = (BoolNode*)iff->in(1);
1239
const CmpNode *cmp = (CmpNode*)b->in(1);
1240
1241
Node *zero = phi->in(1);
1242
Node *one = phi->in(2);
1243
const Type *tzero = phase->type( zero );
1244
const Type *tone = phase->type( one );
1245
1246
// Check for compare vs 0
1247
const Type *tcmp = phase->type(cmp->in(2));
1248
if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1249
// Allow cmp-vs-1 if the other input is bounded by 0-1
1250
if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1251
return NULL;
1252
flipped = 1-flipped; // Test is vs 1 instead of 0!
1253
}
1254
1255
// Check for setting zero/one opposite expected
1256
if( tzero == TypeInt::ZERO ) {
1257
if( tone == TypeInt::ONE ) {
1258
} else return NULL;
1259
} else if( tzero == TypeInt::ONE ) {
1260
if( tone == TypeInt::ZERO ) {
1261
flipped = 1-flipped;
1262
} else return NULL;
1263
} else return NULL;
1264
1265
// Check for boolean test backwards
1266
if( b->_test._test == BoolTest::ne ) {
1267
} else if( b->_test._test == BoolTest::eq ) {
1268
flipped = 1-flipped;
1269
} else return NULL;
1270
1271
// Build int->bool conversion
1272
Node *n = new (phase->C) Conv2BNode( cmp->in(1) );
1273
if( flipped )
1274
n = new (phase->C) XorINode( phase->transform(n), phase->intcon(1) );
1275
1276
return n;
1277
}
1278
1279
//------------------------------is_cond_add------------------------------------
1280
// Check for simple conditional add pattern: "(P < Q) ? X+Y : X;"
1281
// To be profitable the control flow has to disappear; there can be no other
1282
// values merging here. We replace the test-and-branch with:
1283
// "(sgn(P-Q))&Y) + X". Basically, convert "(P < Q)" into 0 or -1 by
1284
// moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1285
// Then convert Y to 0-or-Y and finally add.
1286
// This is a key transform for SpecJava _201_compress.
1287
static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1288
assert(true_path !=0, "only diamond shape graph expected");
1289
1290
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1291
// phi->region->if_proj->ifnode->bool->cmp
1292
RegionNode *region = (RegionNode*)phi->in(0);
1293
Node *iff = region->in(1)->in(0);
1294
BoolNode* b = iff->in(1)->as_Bool();
1295
const CmpNode *cmp = (CmpNode*)b->in(1);
1296
1297
// Make sure only merging this one phi here
1298
if (region->has_unique_phi() != phi) return NULL;
1299
1300
// Make sure each arm of the diamond has exactly one output, which we assume
1301
// is the region. Otherwise, the control flow won't disappear.
1302
if (region->in(1)->outcnt() != 1) return NULL;
1303
if (region->in(2)->outcnt() != 1) return NULL;
1304
1305
// Check for "(P < Q)" of type signed int
1306
if (b->_test._test != BoolTest::lt) return NULL;
1307
if (cmp->Opcode() != Op_CmpI) return NULL;
1308
1309
Node *p = cmp->in(1);
1310
Node *q = cmp->in(2);
1311
Node *n1 = phi->in( true_path);
1312
Node *n2 = phi->in(3-true_path);
1313
1314
int op = n1->Opcode();
1315
if( op != Op_AddI // Need zero as additive identity
1316
/*&&op != Op_SubI &&
1317
op != Op_AddP &&
1318
op != Op_XorI &&
1319
op != Op_OrI*/ )
1320
return NULL;
1321
1322
Node *x = n2;
1323
Node *y = NULL;
1324
if( x == n1->in(1) ) {
1325
y = n1->in(2);
1326
} else if( x == n1->in(2) ) {
1327
y = n1->in(1);
1328
} else return NULL;
1329
1330
// Not so profitable if compare and add are constants
1331
if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1332
return NULL;
1333
1334
Node *cmplt = phase->transform( new (phase->C) CmpLTMaskNode(p,q) );
1335
Node *j_and = phase->transform( new (phase->C) AndINode(cmplt,y) );
1336
return new (phase->C) AddINode(j_and,x);
1337
}
1338
1339
//------------------------------is_absolute------------------------------------
1340
// Check for absolute value.
1341
static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1342
assert(true_path !=0, "only diamond shape graph expected");
1343
1344
int cmp_zero_idx = 0; // Index of compare input where to look for zero
1345
int phi_x_idx = 0; // Index of phi input where to find naked x
1346
1347
// ABS ends with the merge of 2 control flow paths.
1348
// Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1349
int false_path = 3 - true_path;
1350
1351
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1352
// phi->region->if_proj->ifnode->bool->cmp
1353
BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1354
1355
// Check bool sense
1356
switch( bol->_test._test ) {
1357
case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path; break;
1358
case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1359
case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path; break;
1360
case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1361
default: return NULL; break;
1362
}
1363
1364
// Test is next
1365
Node *cmp = bol->in(1);
1366
const Type *tzero = NULL;
1367
switch( cmp->Opcode() ) {
1368
case Op_CmpF: tzero = TypeF::ZERO; break; // Float ABS
1369
case Op_CmpD: tzero = TypeD::ZERO; break; // Double ABS
1370
default: return NULL;
1371
}
1372
1373
// Find zero input of compare; the other input is being abs'd
1374
Node *x = NULL;
1375
bool flip = false;
1376
if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1377
x = cmp->in(3 - cmp_zero_idx);
1378
} else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1379
// The test is inverted, we should invert the result...
1380
x = cmp->in(cmp_zero_idx);
1381
flip = true;
1382
} else {
1383
return NULL;
1384
}
1385
1386
// Next get the 2 pieces being selected, one is the original value
1387
// and the other is the negated value.
1388
if( phi_root->in(phi_x_idx) != x ) return NULL;
1389
1390
// Check other phi input for subtract node
1391
Node *sub = phi_root->in(3 - phi_x_idx);
1392
1393
// Allow only Sub(0,X) and fail out for all others; Neg is not OK
1394
if( tzero == TypeF::ZERO ) {
1395
if( sub->Opcode() != Op_SubF ||
1396
sub->in(2) != x ||
1397
phase->type(sub->in(1)) != tzero ) return NULL;
1398
x = new (phase->C) AbsFNode(x);
1399
if (flip) {
1400
x = new (phase->C) SubFNode(sub->in(1), phase->transform(x));
1401
}
1402
} else {
1403
if( sub->Opcode() != Op_SubD ||
1404
sub->in(2) != x ||
1405
phase->type(sub->in(1)) != tzero ) return NULL;
1406
x = new (phase->C) AbsDNode(x);
1407
if (flip) {
1408
x = new (phase->C) SubDNode(sub->in(1), phase->transform(x));
1409
}
1410
}
1411
1412
return x;
1413
}
1414
1415
//------------------------------split_once-------------------------------------
1416
// Helper for split_flow_path
1417
static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1418
igvn->hash_delete(n); // Remove from hash before hacking edges
1419
1420
uint j = 1;
1421
for (uint i = phi->req()-1; i > 0; i--) {
1422
if (phi->in(i) == val) { // Found a path with val?
1423
// Add to NEW Region/Phi, no DU info
1424
newn->set_req( j++, n->in(i) );
1425
// Remove from OLD Region/Phi
1426
n->del_req(i);
1427
}
1428
}
1429
1430
// Register the new node but do not transform it. Cannot transform until the
1431
// entire Region/Phi conglomerate has been hacked as a single huge transform.
1432
igvn->register_new_node_with_optimizer( newn );
1433
1434
// Now I can point to the new node.
1435
n->add_req(newn);
1436
igvn->_worklist.push(n);
1437
}
1438
1439
//------------------------------split_flow_path--------------------------------
1440
// Check for merging identical values and split flow paths
1441
static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1442
BasicType bt = phi->type()->basic_type();
1443
if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1444
return NULL; // Bail out on funny non-value stuff
1445
if( phi->req() <= 3 ) // Need at least 2 matched inputs and a
1446
return NULL; // third unequal input to be worth doing
1447
1448
// Scan for a constant
1449
uint i;
1450
for( i = 1; i < phi->req()-1; i++ ) {
1451
Node *n = phi->in(i);
1452
if( !n ) return NULL;
1453
if( phase->type(n) == Type::TOP ) return NULL;
1454
if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1455
break;
1456
}
1457
if( i >= phi->req() ) // Only split for constants
1458
return NULL;
1459
1460
Node *val = phi->in(i); // Constant to split for
1461
uint hit = 0; // Number of times it occurs
1462
Node *r = phi->region();
1463
1464
for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1465
Node *n = phi->in(i);
1466
if( !n ) return NULL;
1467
if( phase->type(n) == Type::TOP ) return NULL;
1468
if( phi->in(i) == val ) {
1469
hit++;
1470
if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1471
return NULL; // don't split loop entry path
1472
}
1473
}
1474
}
1475
1476
if( hit <= 1 || // Make sure we find 2 or more
1477
hit == phi->req()-1 ) // and not ALL the same value
1478
return NULL;
1479
1480
// Now start splitting out the flow paths that merge the same value.
1481
// Split first the RegionNode.
1482
PhaseIterGVN *igvn = phase->is_IterGVN();
1483
RegionNode *newr = new (phase->C) RegionNode(hit+1);
1484
split_once(igvn, phi, val, r, newr);
1485
1486
// Now split all other Phis than this one
1487
for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1488
Node* phi2 = r->fast_out(k);
1489
if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1490
PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1491
split_once(igvn, phi, val, phi2, newphi);
1492
}
1493
}
1494
1495
// Clean up this guy
1496
igvn->hash_delete(phi);
1497
for( i = phi->req()-1; i > 0; i-- ) {
1498
if( phi->in(i) == val ) {
1499
phi->del_req(i);
1500
}
1501
}
1502
phi->add_req(val);
1503
1504
return phi;
1505
}
1506
1507
//=============================================================================
1508
//------------------------------simple_data_loop_check-------------------------
1509
// Try to determining if the phi node in a simple safe/unsafe data loop.
1510
// Returns:
1511
// enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1512
// Safe - safe case when the phi and it's inputs reference only safe data
1513
// nodes;
1514
// Unsafe - the phi and it's inputs reference unsafe data nodes but there
1515
// is no reference back to the phi - need a graph walk
1516
// to determine if it is in a loop;
1517
// UnsafeLoop - unsafe case when the phi references itself directly or through
1518
// unsafe data node.
1519
// Note: a safe data node is a node which could/never reference itself during
1520
// GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1521
// I mark Phi nodes as safe node not only because they can reference itself
1522
// but also to prevent mistaking the fallthrough case inside an outer loop
1523
// as dead loop when the phi references itselfs through an other phi.
1524
PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1525
// It is unsafe loop if the phi node references itself directly.
1526
if (in == (Node*)this)
1527
return UnsafeLoop; // Unsafe loop
1528
// Unsafe loop if the phi node references itself through an unsafe data node.
1529
// Exclude cases with null inputs or data nodes which could reference
1530
// itself (safe for dead loops).
1531
if (in != NULL && !in->is_dead_loop_safe()) {
1532
// Check inputs of phi's inputs also.
1533
// It is much less expensive then full graph walk.
1534
uint cnt = in->req();
1535
uint i = (in->is_Proj() && !in->is_CFG()) ? 0 : 1;
1536
for (; i < cnt; ++i) {
1537
Node* m = in->in(i);
1538
if (m == (Node*)this)
1539
return UnsafeLoop; // Unsafe loop
1540
if (m != NULL && !m->is_dead_loop_safe()) {
1541
// Check the most common case (about 30% of all cases):
1542
// phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1543
Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1544
if (m1 == (Node*)this)
1545
return UnsafeLoop; // Unsafe loop
1546
if (m1 != NULL && m1 == m->in(2) &&
1547
m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1548
continue; // Safe case
1549
}
1550
// The phi references an unsafe node - need full analysis.
1551
return Unsafe;
1552
}
1553
}
1554
}
1555
return Safe; // Safe case - we can optimize the phi node.
1556
}
1557
1558
//------------------------------is_unsafe_data_reference-----------------------
1559
// If phi can be reached through the data input - it is data loop.
1560
bool PhiNode::is_unsafe_data_reference(Node *in) const {
1561
assert(req() > 1, "");
1562
// First, check simple cases when phi references itself directly or
1563
// through an other node.
1564
LoopSafety safety = simple_data_loop_check(in);
1565
if (safety == UnsafeLoop)
1566
return true; // phi references itself - unsafe loop
1567
else if (safety == Safe)
1568
return false; // Safe case - phi could be replaced with the unique input.
1569
1570
// Unsafe case when we should go through data graph to determine
1571
// if the phi references itself.
1572
1573
ResourceMark rm;
1574
1575
Arena *a = Thread::current()->resource_area();
1576
Node_List nstack(a);
1577
VectorSet visited(a);
1578
1579
nstack.push(in); // Start with unique input.
1580
visited.set(in->_idx);
1581
while (nstack.size() != 0) {
1582
Node* n = nstack.pop();
1583
uint cnt = n->req();
1584
uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1585
for (; i < cnt; i++) {
1586
Node* m = n->in(i);
1587
if (m == (Node*)this) {
1588
return true; // Data loop
1589
}
1590
if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1591
if (!visited.test_set(m->_idx))
1592
nstack.push(m);
1593
}
1594
}
1595
}
1596
return false; // The phi is not reachable from its inputs
1597
}
1598
1599
1600
//------------------------------Ideal------------------------------------------
1601
// Return a node which is more "ideal" than the current node. Must preserve
1602
// the CFG, but we can still strip out dead paths.
1603
Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1604
// The next should never happen after 6297035 fix.
1605
if( is_copy() ) // Already degraded to a Copy ?
1606
return NULL; // No change
1607
1608
Node *r = in(0); // RegionNode
1609
assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1610
1611
// Note: During parsing, phis are often transformed before their regions.
1612
// This means we have to use type_or_null to defend against untyped regions.
1613
if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1614
return NULL; // No change
1615
1616
Node *top = phase->C->top();
1617
bool new_phi = (outcnt() == 0); // transforming new Phi
1618
// No change for igvn if new phi is not hooked
1619
if (new_phi && can_reshape)
1620
return NULL;
1621
1622
// The are 2 situations when only one valid phi's input is left
1623
// (in addition to Region input).
1624
// One: region is not loop - replace phi with this input.
1625
// Two: region is loop - replace phi with top since this data path is dead
1626
// and we need to break the dead data loop.
1627
Node* progress = NULL; // Record if any progress made
1628
for( uint j = 1; j < req(); ++j ){ // For all paths in
1629
// Check unreachable control paths
1630
Node* rc = r->in(j);
1631
Node* n = in(j); // Get the input
1632
if (rc == NULL || phase->type(rc) == Type::TOP) {
1633
if (n != top) { // Not already top?
1634
PhaseIterGVN *igvn = phase->is_IterGVN();
1635
if (can_reshape && igvn != NULL) {
1636
igvn->_worklist.push(r);
1637
}
1638
// Nuke it down
1639
if (can_reshape) {
1640
set_req_X(j, top, igvn);
1641
} else {
1642
set_req(j, top);
1643
}
1644
progress = this; // Record progress
1645
}
1646
}
1647
}
1648
1649
if (can_reshape && outcnt() == 0) {
1650
// set_req() above may kill outputs if Phi is referenced
1651
// only by itself on the dead (top) control path.
1652
return top;
1653
}
1654
1655
Node* uin = unique_input(phase);
1656
if (uin == top) { // Simplest case: no alive inputs.
1657
if (can_reshape) // IGVN transformation
1658
return top;
1659
else
1660
return NULL; // Identity will return TOP
1661
} else if (uin != NULL) {
1662
// Only one not-NULL unique input path is left.
1663
// Determine if this input is backedge of a loop.
1664
// (Skip new phis which have no uses and dead regions).
1665
if (outcnt() > 0 && r->in(0) != NULL) {
1666
// First, take the short cut when we know it is a loop and
1667
// the EntryControl data path is dead.
1668
// Loop node may have only one input because entry path
1669
// is removed in PhaseIdealLoop::Dominators().
1670
assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1671
bool is_loop = (r->is_Loop() && r->req() == 3);
1672
// Then, check if there is a data loop when phi references itself directly
1673
// or through other data nodes.
1674
if (is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl)) ||
1675
!is_loop && is_unsafe_data_reference(uin)) {
1676
// Break this data loop to avoid creation of a dead loop.
1677
if (can_reshape) {
1678
return top;
1679
} else {
1680
// We can't return top if we are in Parse phase - cut inputs only
1681
// let Identity to handle the case.
1682
replace_edge(uin, top);
1683
return NULL;
1684
}
1685
}
1686
}
1687
1688
// One unique input.
1689
debug_only(Node* ident = Identity(phase));
1690
// The unique input must eventually be detected by the Identity call.
1691
#ifdef ASSERT
1692
if (ident != uin && !ident->is_top()) {
1693
// print this output before failing assert
1694
r->dump(3);
1695
this->dump(3);
1696
ident->dump();
1697
uin->dump();
1698
}
1699
#endif
1700
assert(ident == uin || ident->is_top(), "Identity must clean this up");
1701
return NULL;
1702
}
1703
1704
1705
Node* opt = NULL;
1706
int true_path = is_diamond_phi();
1707
if( true_path != 0 ) {
1708
// Check for CMove'ing identity. If it would be unsafe,
1709
// handle it here. In the safe case, let Identity handle it.
1710
Node* unsafe_id = is_cmove_id(phase, true_path);
1711
if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1712
opt = unsafe_id;
1713
1714
// Check for simple convert-to-boolean pattern
1715
if( opt == NULL )
1716
opt = is_x2logic(phase, this, true_path);
1717
1718
// Check for absolute value
1719
if( opt == NULL )
1720
opt = is_absolute(phase, this, true_path);
1721
1722
// Check for conditional add
1723
if( opt == NULL && can_reshape )
1724
opt = is_cond_add(phase, this, true_path);
1725
1726
// These 4 optimizations could subsume the phi:
1727
// have to check for a dead data loop creation.
1728
if( opt != NULL ) {
1729
if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1730
// Found dead loop.
1731
if( can_reshape )
1732
return top;
1733
// We can't return top if we are in Parse phase - cut inputs only
1734
// to stop further optimizations for this phi. Identity will return TOP.
1735
assert(req() == 3, "only diamond merge phi here");
1736
set_req(1, top);
1737
set_req(2, top);
1738
return NULL;
1739
} else {
1740
return opt;
1741
}
1742
}
1743
}
1744
1745
// Check for merging identical values and split flow paths
1746
if (can_reshape) {
1747
opt = split_flow_path(phase, this);
1748
// This optimization only modifies phi - don't need to check for dead loop.
1749
assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1750
if (opt != NULL) return opt;
1751
}
1752
1753
if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1754
// Try to undo Phi of AddP:
1755
// (Phi (AddP base base y) (AddP base2 base2 y))
1756
// becomes:
1757
// newbase := (Phi base base2)
1758
// (AddP newbase newbase y)
1759
//
1760
// This occurs as a result of unsuccessful split_thru_phi and
1761
// interferes with taking advantage of addressing modes. See the
1762
// clone_shift_expressions code in matcher.cpp
1763
Node* addp = in(1);
1764
const Type* type = addp->in(AddPNode::Base)->bottom_type();
1765
Node* y = addp->in(AddPNode::Offset);
1766
if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1767
// make sure that all the inputs are similar to the first one,
1768
// i.e. AddP with base == address and same offset as first AddP
1769
bool doit = true;
1770
for (uint i = 2; i < req(); i++) {
1771
if (in(i) == NULL ||
1772
in(i)->Opcode() != Op_AddP ||
1773
in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1774
in(i)->in(AddPNode::Offset) != y) {
1775
doit = false;
1776
break;
1777
}
1778
// Accumulate type for resulting Phi
1779
type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
1780
}
1781
Node* base = NULL;
1782
if (doit) {
1783
// Check for neighboring AddP nodes in a tree.
1784
// If they have a base, use that it.
1785
for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1786
Node* u = this->fast_out(k);
1787
if (u->is_AddP()) {
1788
Node* base2 = u->in(AddPNode::Base);
1789
if (base2 != NULL && !base2->is_top()) {
1790
if (base == NULL)
1791
base = base2;
1792
else if (base != base2)
1793
{ doit = false; break; }
1794
}
1795
}
1796
}
1797
}
1798
if (doit) {
1799
if (base == NULL) {
1800
base = new (phase->C) PhiNode(in(0), type, NULL);
1801
for (uint i = 1; i < req(); i++) {
1802
base->init_req(i, in(i)->in(AddPNode::Base));
1803
}
1804
phase->is_IterGVN()->register_new_node_with_optimizer(base);
1805
}
1806
return new (phase->C) AddPNode(base, base, y);
1807
}
1808
}
1809
}
1810
1811
// Split phis through memory merges, so that the memory merges will go away.
1812
// Piggy-back this transformation on the search for a unique input....
1813
// It will be as if the merged memory is the unique value of the phi.
1814
// (Do not attempt this optimization unless parsing is complete.
1815
// It would make the parser's memory-merge logic sick.)
1816
// (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1817
if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1818
// see if this phi should be sliced
1819
uint merge_width = 0;
1820
bool saw_self = false;
1821
for( uint i=1; i<req(); ++i ) {// For all paths in
1822
Node *ii = in(i);
1823
if (ii->is_MergeMem()) {
1824
MergeMemNode* n = ii->as_MergeMem();
1825
merge_width = MAX2(merge_width, n->req());
1826
saw_self = saw_self || phase->eqv(n->base_memory(), this);
1827
}
1828
}
1829
1830
// This restriction is temporarily necessary to ensure termination:
1831
if (!saw_self && adr_type() == TypePtr::BOTTOM) merge_width = 0;
1832
1833
if (merge_width > Compile::AliasIdxRaw) {
1834
// found at least one non-empty MergeMem
1835
const TypePtr* at = adr_type();
1836
if (at != TypePtr::BOTTOM) {
1837
// Patch the existing phi to select an input from the merge:
1838
// Phi:AT1(...MergeMem(m0, m1, m2)...) into
1839
// Phi:AT1(...m1...)
1840
int alias_idx = phase->C->get_alias_index(at);
1841
for (uint i=1; i<req(); ++i) {
1842
Node *ii = in(i);
1843
if (ii->is_MergeMem()) {
1844
MergeMemNode* n = ii->as_MergeMem();
1845
// compress paths and change unreachable cycles to TOP
1846
// If not, we can update the input infinitely along a MergeMem cycle
1847
// Equivalent code is in MemNode::Ideal_common
1848
Node *m = phase->transform(n);
1849
if (outcnt() == 0) { // Above transform() may kill us!
1850
return top;
1851
}
1852
// If transformed to a MergeMem, get the desired slice
1853
// Otherwise the returned node represents memory for every slice
1854
Node *new_mem = (m->is_MergeMem()) ?
1855
m->as_MergeMem()->memory_at(alias_idx) : m;
1856
// Update input if it is progress over what we have now
1857
if (new_mem != ii) {
1858
set_req(i, new_mem);
1859
progress = this;
1860
}
1861
}
1862
}
1863
} else {
1864
// We know that at least one MergeMem->base_memory() == this
1865
// (saw_self == true). If all other inputs also references this phi
1866
// (directly or through data nodes) - it is dead loop.
1867
bool saw_safe_input = false;
1868
for (uint j = 1; j < req(); ++j) {
1869
Node *n = in(j);
1870
if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
1871
continue; // skip known cases
1872
if (!is_unsafe_data_reference(n)) {
1873
saw_safe_input = true; // found safe input
1874
break;
1875
}
1876
}
1877
if (!saw_safe_input)
1878
return top; // all inputs reference back to this phi - dead loop
1879
1880
// Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
1881
// MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
1882
PhaseIterGVN *igvn = phase->is_IterGVN();
1883
Node* hook = new (phase->C) Node(1);
1884
PhiNode* new_base = (PhiNode*) clone();
1885
// Must eagerly register phis, since they participate in loops.
1886
if (igvn) {
1887
igvn->register_new_node_with_optimizer(new_base);
1888
hook->add_req(new_base);
1889
}
1890
MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
1891
for (uint i = 1; i < req(); ++i) {
1892
Node *ii = in(i);
1893
if (ii->is_MergeMem()) {
1894
MergeMemNode* n = ii->as_MergeMem();
1895
for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
1896
// If we have not seen this slice yet, make a phi for it.
1897
bool made_new_phi = false;
1898
if (mms.is_empty()) {
1899
Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
1900
made_new_phi = true;
1901
if (igvn) {
1902
igvn->register_new_node_with_optimizer(new_phi);
1903
hook->add_req(new_phi);
1904
}
1905
mms.set_memory(new_phi);
1906
}
1907
Node* phi = mms.memory();
1908
assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
1909
phi->set_req(i, mms.memory2());
1910
}
1911
}
1912
}
1913
// Distribute all self-loops.
1914
{ // (Extra braces to hide mms.)
1915
for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1916
Node* phi = mms.memory();
1917
for (uint i = 1; i < req(); ++i) {
1918
if (phi->in(i) == this) phi->set_req(i, phi);
1919
}
1920
}
1921
}
1922
// now transform the new nodes, and return the mergemem
1923
for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1924
Node* phi = mms.memory();
1925
mms.set_memory(phase->transform(phi));
1926
}
1927
if (igvn) { // Unhook.
1928
igvn->hash_delete(hook);
1929
for (uint i = 1; i < hook->req(); i++) {
1930
hook->set_req(i, NULL);
1931
}
1932
}
1933
// Replace self with the result.
1934
return result;
1935
}
1936
}
1937
//
1938
// Other optimizations on the memory chain
1939
//
1940
const TypePtr* at = adr_type();
1941
for( uint i=1; i<req(); ++i ) {// For all paths in
1942
Node *ii = in(i);
1943
Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
1944
if (ii != new_in ) {
1945
set_req(i, new_in);
1946
progress = this;
1947
}
1948
}
1949
}
1950
1951
#ifdef _LP64
1952
// Push DecodeN/DecodeNKlass down through phi.
1953
// The rest of phi graph will transform by split EncodeP node though phis up.
1954
if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
1955
bool may_push = true;
1956
bool has_decodeN = false;
1957
bool is_decodeN = false;
1958
for (uint i=1; i<req(); ++i) {// For all paths in
1959
Node *ii = in(i);
1960
if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
1961
// Do optimization if a non dead path exist.
1962
if (ii->in(1)->bottom_type() != Type::TOP) {
1963
has_decodeN = true;
1964
is_decodeN = ii->is_DecodeN();
1965
}
1966
} else if (!ii->is_Phi()) {
1967
may_push = false;
1968
}
1969
}
1970
1971
if (has_decodeN && may_push) {
1972
PhaseIterGVN *igvn = phase->is_IterGVN();
1973
// Make narrow type for new phi.
1974
const Type* narrow_t;
1975
if (is_decodeN) {
1976
narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
1977
} else {
1978
narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
1979
}
1980
PhiNode* new_phi = new (phase->C) PhiNode(r, narrow_t);
1981
uint orig_cnt = req();
1982
for (uint i=1; i<req(); ++i) {// For all paths in
1983
Node *ii = in(i);
1984
Node* new_ii = NULL;
1985
if (ii->is_DecodeNarrowPtr()) {
1986
assert(ii->bottom_type() == bottom_type(), "sanity");
1987
new_ii = ii->in(1);
1988
} else {
1989
assert(ii->is_Phi(), "sanity");
1990
if (ii->as_Phi() == this) {
1991
new_ii = new_phi;
1992
} else {
1993
if (is_decodeN) {
1994
new_ii = new (phase->C) EncodePNode(ii, narrow_t);
1995
} else {
1996
new_ii = new (phase->C) EncodePKlassNode(ii, narrow_t);
1997
}
1998
igvn->register_new_node_with_optimizer(new_ii);
1999
}
2000
}
2001
new_phi->set_req(i, new_ii);
2002
}
2003
igvn->register_new_node_with_optimizer(new_phi, this);
2004
if (is_decodeN) {
2005
progress = new (phase->C) DecodeNNode(new_phi, bottom_type());
2006
} else {
2007
progress = new (phase->C) DecodeNKlassNode(new_phi, bottom_type());
2008
}
2009
}
2010
}
2011
#endif
2012
2013
return progress; // Return any progress
2014
}
2015
2016
//------------------------------is_tripcount-----------------------------------
2017
bool PhiNode::is_tripcount() const {
2018
return (in(0) != NULL && in(0)->is_CountedLoop() &&
2019
in(0)->as_CountedLoop()->phi() == this);
2020
}
2021
2022
//------------------------------out_RegMask------------------------------------
2023
const RegMask &PhiNode::in_RegMask(uint i) const {
2024
return i ? out_RegMask() : RegMask::Empty;
2025
}
2026
2027
const RegMask &PhiNode::out_RegMask() const {
2028
uint ideal_reg = _type->ideal_reg();
2029
assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2030
if( ideal_reg == 0 ) return RegMask::Empty;
2031
assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2032
return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2033
}
2034
2035
#ifndef PRODUCT
2036
void PhiNode::dump_spec(outputStream *st) const {
2037
TypeNode::dump_spec(st);
2038
if (is_tripcount()) {
2039
st->print(" #tripcount");
2040
}
2041
}
2042
#endif
2043
2044
2045
//=============================================================================
2046
const Type *GotoNode::Value( PhaseTransform *phase ) const {
2047
// If the input is reachable, then we are executed.
2048
// If the input is not reachable, then we are not executed.
2049
return phase->type(in(0));
2050
}
2051
2052
Node *GotoNode::Identity( PhaseTransform *phase ) {
2053
return in(0); // Simple copy of incoming control
2054
}
2055
2056
const RegMask &GotoNode::out_RegMask() const {
2057
return RegMask::Empty;
2058
}
2059
2060
//=============================================================================
2061
const RegMask &JumpNode::out_RegMask() const {
2062
return RegMask::Empty;
2063
}
2064
2065
//=============================================================================
2066
const RegMask &JProjNode::out_RegMask() const {
2067
return RegMask::Empty;
2068
}
2069
2070
//=============================================================================
2071
const RegMask &CProjNode::out_RegMask() const {
2072
return RegMask::Empty;
2073
}
2074
2075
2076
2077
//=============================================================================
2078
2079
uint PCTableNode::hash() const { return Node::hash() + _size; }
2080
uint PCTableNode::cmp( const Node &n ) const
2081
{ return _size == ((PCTableNode&)n)._size; }
2082
2083
const Type *PCTableNode::bottom_type() const {
2084
const Type** f = TypeTuple::fields(_size);
2085
for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2086
return TypeTuple::make(_size, f);
2087
}
2088
2089
//------------------------------Value------------------------------------------
2090
// Compute the type of the PCTableNode. If reachable it is a tuple of
2091
// Control, otherwise the table targets are not reachable
2092
const Type *PCTableNode::Value( PhaseTransform *phase ) const {
2093
if( phase->type(in(0)) == Type::CONTROL )
2094
return bottom_type();
2095
return Type::TOP; // All paths dead? Then so are we
2096
}
2097
2098
//------------------------------Ideal------------------------------------------
2099
// Return a node which is more "ideal" than the current node. Strip out
2100
// control copies
2101
Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2102
return remove_dead_region(phase, can_reshape) ? this : NULL;
2103
}
2104
2105
//=============================================================================
2106
uint JumpProjNode::hash() const {
2107
return Node::hash() + _dest_bci;
2108
}
2109
2110
uint JumpProjNode::cmp( const Node &n ) const {
2111
return ProjNode::cmp(n) &&
2112
_dest_bci == ((JumpProjNode&)n)._dest_bci;
2113
}
2114
2115
#ifndef PRODUCT
2116
void JumpProjNode::dump_spec(outputStream *st) const {
2117
ProjNode::dump_spec(st);
2118
st->print("@bci %d ",_dest_bci);
2119
}
2120
#endif
2121
2122
//=============================================================================
2123
//------------------------------Value------------------------------------------
2124
// Check for being unreachable, or for coming from a Rethrow. Rethrow's cannot
2125
// have the default "fall_through_index" path.
2126
const Type *CatchNode::Value( PhaseTransform *phase ) const {
2127
// Unreachable? Then so are all paths from here.
2128
if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2129
// First assume all paths are reachable
2130
const Type** f = TypeTuple::fields(_size);
2131
for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2132
// Identify cases that will always throw an exception
2133
// () rethrow call
2134
// () virtual or interface call with NULL receiver
2135
// () call is a check cast with incompatible arguments
2136
if( in(1)->is_Proj() ) {
2137
Node *i10 = in(1)->in(0);
2138
if( i10->is_Call() ) {
2139
CallNode *call = i10->as_Call();
2140
// Rethrows always throw exceptions, never return
2141
if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2142
f[CatchProjNode::fall_through_index] = Type::TOP;
2143
} else if( call->req() > TypeFunc::Parms ) {
2144
const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2145
// Check for null receiver to virtual or interface calls
2146
if( call->is_CallDynamicJava() &&
2147
arg0->higher_equal(TypePtr::NULL_PTR) ) {
2148
f[CatchProjNode::fall_through_index] = Type::TOP;
2149
}
2150
} // End of if not a runtime stub
2151
} // End of if have call above me
2152
} // End of slot 1 is not a projection
2153
return TypeTuple::make(_size, f);
2154
}
2155
2156
//=============================================================================
2157
uint CatchProjNode::hash() const {
2158
return Node::hash() + _handler_bci;
2159
}
2160
2161
2162
uint CatchProjNode::cmp( const Node &n ) const {
2163
return ProjNode::cmp(n) &&
2164
_handler_bci == ((CatchProjNode&)n)._handler_bci;
2165
}
2166
2167
2168
//------------------------------Identity---------------------------------------
2169
// If only 1 target is possible, choose it if it is the main control
2170
Node *CatchProjNode::Identity( PhaseTransform *phase ) {
2171
// If my value is control and no other value is, then treat as ID
2172
const TypeTuple *t = phase->type(in(0))->is_tuple();
2173
if (t->field_at(_con) != Type::CONTROL) return this;
2174
// If we remove the last CatchProj and elide the Catch/CatchProj, then we
2175
// also remove any exception table entry. Thus we must know the call
2176
// feeding the Catch will not really throw an exception. This is ok for
2177
// the main fall-thru control (happens when we know a call can never throw
2178
// an exception) or for "rethrow", because a further optimization will
2179
// yank the rethrow (happens when we inline a function that can throw an
2180
// exception and the caller has no handler). Not legal, e.g., for passing
2181
// a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2182
// These cases MUST throw an exception via the runtime system, so the VM
2183
// will be looking for a table entry.
2184
Node *proj = in(0)->in(1); // Expect a proj feeding CatchNode
2185
CallNode *call;
2186
if (_con != TypeFunc::Control && // Bail out if not the main control.
2187
!(proj->is_Proj() && // AND NOT a rethrow
2188
proj->in(0)->is_Call() &&
2189
(call = proj->in(0)->as_Call()) &&
2190
call->entry_point() == OptoRuntime::rethrow_stub()))
2191
return this;
2192
2193
// Search for any other path being control
2194
for (uint i = 0; i < t->cnt(); i++) {
2195
if (i != _con && t->field_at(i) == Type::CONTROL)
2196
return this;
2197
}
2198
// Only my path is possible; I am identity on control to the jump
2199
return in(0)->in(0);
2200
}
2201
2202
2203
#ifndef PRODUCT
2204
void CatchProjNode::dump_spec(outputStream *st) const {
2205
ProjNode::dump_spec(st);
2206
st->print("@bci %d ",_handler_bci);
2207
}
2208
#endif
2209
2210
//=============================================================================
2211
//------------------------------Identity---------------------------------------
2212
// Check for CreateEx being Identity.
2213
Node *CreateExNode::Identity( PhaseTransform *phase ) {
2214
if( phase->type(in(1)) == Type::TOP ) return in(1);
2215
if( phase->type(in(0)) == Type::TOP ) return in(0);
2216
// We only come from CatchProj, unless the CatchProj goes away.
2217
// If the CatchProj is optimized away, then we just carry the
2218
// exception oop through.
2219
CallNode *call = in(1)->in(0)->as_Call();
2220
2221
return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2222
? this
2223
: call->in(TypeFunc::Parms);
2224
}
2225
2226
//=============================================================================
2227
//------------------------------Value------------------------------------------
2228
// Check for being unreachable.
2229
const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
2230
if (!in(0) || in(0)->is_top()) return Type::TOP;
2231
return bottom_type();
2232
}
2233
2234
//------------------------------Ideal------------------------------------------
2235
// Check for no longer being part of a loop
2236
Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2237
if (can_reshape && !in(0)->is_Loop()) {
2238
// Dead code elimination can sometimes delete this projection so
2239
// if it's not there, there's nothing to do.
2240
Node* fallthru = proj_out(0);
2241
if (fallthru != NULL) {
2242
phase->is_IterGVN()->replace_node(fallthru, in(0));
2243
}
2244
return phase->C->top();
2245
}
2246
return NULL;
2247
}
2248
2249
#ifndef PRODUCT
2250
void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2251
st->print("%s", Name());
2252
}
2253
#endif
2254
2255