Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/chaitin.cpp
32285 views
1
/*
2
* Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "compiler/compileLog.hpp"
27
#include "compiler/oopMap.hpp"
28
#include "memory/allocation.inline.hpp"
29
#include "opto/addnode.hpp"
30
#include "opto/block.hpp"
31
#include "opto/callnode.hpp"
32
#include "opto/cfgnode.hpp"
33
#include "opto/chaitin.hpp"
34
#include "opto/coalesce.hpp"
35
#include "opto/connode.hpp"
36
#include "opto/idealGraphPrinter.hpp"
37
#include "opto/indexSet.hpp"
38
#include "opto/machnode.hpp"
39
#include "opto/memnode.hpp"
40
#include "opto/opcodes.hpp"
41
#include "opto/rootnode.hpp"
42
43
#ifndef PRODUCT
44
void LRG::dump() const {
45
ttyLocker ttyl;
46
tty->print("%d ",num_regs());
47
_mask.dump();
48
if( _msize_valid ) {
49
if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
50
else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
51
} else {
52
tty->print(", #?(%d) ",_mask.Size());
53
}
54
55
tty->print("EffDeg: ");
56
if( _degree_valid ) tty->print( "%d ", _eff_degree );
57
else tty->print("? ");
58
59
if( is_multidef() ) {
60
tty->print("MultiDef ");
61
if (_defs != NULL) {
62
tty->print("(");
63
for (int i = 0; i < _defs->length(); i++) {
64
tty->print("N%d ", _defs->at(i)->_idx);
65
}
66
tty->print(") ");
67
}
68
}
69
else if( _def == 0 ) tty->print("Dead ");
70
else tty->print("Def: N%d ",_def->_idx);
71
72
tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
73
// Flags
74
if( _is_oop ) tty->print("Oop ");
75
if( _is_float ) tty->print("Float ");
76
if( _is_vector ) tty->print("Vector ");
77
if( _was_spilled1 ) tty->print("Spilled ");
78
if( _was_spilled2 ) tty->print("Spilled2 ");
79
if( _direct_conflict ) tty->print("Direct_conflict ");
80
if( _fat_proj ) tty->print("Fat ");
81
if( _was_lo ) tty->print("Lo ");
82
if( _has_copy ) tty->print("Copy ");
83
if( _at_risk ) tty->print("Risk ");
84
85
if( _must_spill ) tty->print("Must_spill ");
86
if( _is_bound ) tty->print("Bound ");
87
if( _msize_valid ) {
88
if( _degree_valid && lo_degree() ) tty->print("Trivial ");
89
}
90
91
tty->cr();
92
}
93
#endif
94
95
// Compute score from cost and area. Low score is best to spill.
96
static double raw_score( double cost, double area ) {
97
return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
98
}
99
100
double LRG::score() const {
101
// Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
102
// Bigger area lowers score, encourages spilling this live range.
103
// Bigger cost raise score, prevents spilling this live range.
104
// (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
105
// to turn a divide by a constant into a multiply by the reciprical).
106
double score = raw_score( _cost, _area);
107
108
// Account for area. Basically, LRGs covering large areas are better
109
// to spill because more other LRGs get freed up.
110
if( _area == 0.0 ) // No area? Then no progress to spill
111
return 1e35;
112
113
if( _was_spilled2 ) // If spilled once before, we are unlikely
114
return score + 1e30; // to make progress again.
115
116
if( _cost >= _area*3.0 ) // Tiny area relative to cost
117
return score + 1e17; // Probably no progress to spill
118
119
if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
120
return score + 1e10; // Likely no progress to spill
121
122
return score;
123
}
124
125
#define NUMBUCKS 3
126
127
// Straight out of Tarjan's union-find algorithm
128
uint LiveRangeMap::find_compress(uint lrg) {
129
uint cur = lrg;
130
uint next = _uf_map.at(cur);
131
while (next != cur) { // Scan chain of equivalences
132
assert( next < cur, "always union smaller");
133
cur = next; // until find a fixed-point
134
next = _uf_map.at(cur);
135
}
136
137
// Core of union-find algorithm: update chain of
138
// equivalences to be equal to the root.
139
while (lrg != next) {
140
uint tmp = _uf_map.at(lrg);
141
_uf_map.at_put(lrg, next);
142
lrg = tmp;
143
}
144
return lrg;
145
}
146
147
// Reset the Union-Find map to identity
148
void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
149
_max_lrg_id= max_lrg_id;
150
// Force the Union-Find mapping to be at least this large
151
_uf_map.at_put_grow(_max_lrg_id, 0);
152
// Initialize it to be the ID mapping.
153
for (uint i = 0; i < _max_lrg_id; ++i) {
154
_uf_map.at_put(i, i);
155
}
156
}
157
158
// Make all Nodes map directly to their final live range; no need for
159
// the Union-Find mapping after this call.
160
void LiveRangeMap::compress_uf_map_for_nodes() {
161
// For all Nodes, compress mapping
162
uint unique = _names.length();
163
for (uint i = 0; i < unique; ++i) {
164
uint lrg = _names.at(i);
165
uint compressed_lrg = find(lrg);
166
if (lrg != compressed_lrg) {
167
_names.at_put(i, compressed_lrg);
168
}
169
}
170
}
171
172
// Like Find above, but no path compress, so bad asymptotic behavior
173
uint LiveRangeMap::find_const(uint lrg) const {
174
if (!lrg) {
175
return lrg; // Ignore the zero LRG
176
}
177
178
// Off the end? This happens during debugging dumps when you got
179
// brand new live ranges but have not told the allocator yet.
180
if (lrg >= _max_lrg_id) {
181
return lrg;
182
}
183
184
uint next = _uf_map.at(lrg);
185
while (next != lrg) { // Scan chain of equivalences
186
assert(next < lrg, "always union smaller");
187
lrg = next; // until find a fixed-point
188
next = _uf_map.at(lrg);
189
}
190
return next;
191
}
192
193
PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
194
: PhaseRegAlloc(unique, cfg, matcher,
195
#ifndef PRODUCT
196
print_chaitin_statistics
197
#else
198
NULL
199
#endif
200
)
201
, _lrg_map(Thread::current()->resource_area(), unique)
202
, _live(0)
203
, _spilled_once(Thread::current()->resource_area())
204
, _spilled_twice(Thread::current()->resource_area())
205
, _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
206
, _oldphi(unique)
207
#ifndef PRODUCT
208
, _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
209
#endif
210
{
211
NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
212
213
_high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
214
215
// Build a list of basic blocks, sorted by frequency
216
_blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
217
// Experiment with sorting strategies to speed compilation
218
double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
219
Block **buckets[NUMBUCKS]; // Array of buckets
220
uint buckcnt[NUMBUCKS]; // Array of bucket counters
221
double buckval[NUMBUCKS]; // Array of bucket value cutoffs
222
for (uint i = 0; i < NUMBUCKS; i++) {
223
buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
224
buckcnt[i] = 0;
225
// Bump by three orders of magnitude each time
226
cutoff *= 0.001;
227
buckval[i] = cutoff;
228
for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
229
buckets[i][j] = NULL;
230
}
231
}
232
// Sort blocks into buckets
233
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
234
for (uint j = 0; j < NUMBUCKS; j++) {
235
if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
236
// Assign block to end of list for appropriate bucket
237
buckets[j][buckcnt[j]++] = _cfg.get_block(i);
238
break; // kick out of inner loop
239
}
240
}
241
}
242
// Dump buckets into final block array
243
uint blkcnt = 0;
244
for (uint i = 0; i < NUMBUCKS; i++) {
245
for (uint j = 0; j < buckcnt[i]; j++) {
246
_blks[blkcnt++] = buckets[i][j];
247
}
248
}
249
250
assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
251
}
252
253
// union 2 sets together.
254
void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
255
uint src = _lrg_map.find(src_n);
256
uint dst = _lrg_map.find(dst_n);
257
assert(src, "");
258
assert(dst, "");
259
assert(src < _lrg_map.max_lrg_id(), "oob");
260
assert(dst < _lrg_map.max_lrg_id(), "oob");
261
assert(src < dst, "always union smaller");
262
_lrg_map.uf_map(dst, src);
263
}
264
265
void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
266
// Make the Node->LRG mapping
267
_lrg_map.extend(x->_idx,lrg);
268
// Make the Union-Find mapping an identity function
269
_lrg_map.uf_extend(lrg, lrg);
270
}
271
272
273
int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
274
assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
275
DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
276
int found_projs = 0;
277
uint cnt = orig->outcnt();
278
for (uint i = 0; i < cnt; i++) {
279
Node* proj = orig->raw_out(i);
280
if (proj->is_MachProj()) {
281
assert(proj->outcnt() == 0, "only kill projections are expected here");
282
assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
283
found_projs++;
284
// Copy kill projections after the cloned node
285
Node* kills = proj->clone();
286
kills->set_req(0, copy);
287
b->insert_node(kills, idx++);
288
_cfg.map_node_to_block(kills, b);
289
new_lrg(kills, max_lrg_id++);
290
}
291
}
292
return found_projs;
293
}
294
295
// Renumber the live ranges to compact them. Makes the IFG smaller.
296
void PhaseChaitin::compact() {
297
// Current the _uf_map contains a series of short chains which are headed
298
// by a self-cycle. All the chains run from big numbers to little numbers.
299
// The Find() call chases the chains & shortens them for the next Find call.
300
// We are going to change this structure slightly. Numbers above a moving
301
// wave 'i' are unchanged. Numbers below 'j' point directly to their
302
// compacted live range with no further chaining. There are no chains or
303
// cycles below 'i', so the Find call no longer works.
304
uint j=1;
305
uint i;
306
for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
307
uint lr = _lrg_map.uf_live_range_id(i);
308
// Ignore unallocated live ranges
309
if (!lr) {
310
continue;
311
}
312
assert(lr <= i, "");
313
_lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
314
}
315
// Now change the Node->LR mapping to reflect the compacted names
316
uint unique = _lrg_map.size();
317
for (i = 0; i < unique; i++) {
318
uint lrg_id = _lrg_map.live_range_id(i);
319
_lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
320
}
321
322
// Reset the Union-Find mapping
323
_lrg_map.reset_uf_map(j);
324
}
325
326
void PhaseChaitin::Register_Allocate() {
327
328
// Above the OLD FP (and in registers) are the incoming arguments. Stack
329
// slots in this area are called "arg_slots". Above the NEW FP (and in
330
// registers) is the outgoing argument area; above that is the spill/temp
331
// area. These are all "frame_slots". Arg_slots start at the zero
332
// stack_slots and count up to the known arg_size. Frame_slots start at
333
// the stack_slot #arg_size and go up. After allocation I map stack
334
// slots to actual offsets. Stack-slots in the arg_slot area are biased
335
// by the frame_size; stack-slots in the frame_slot area are biased by 0.
336
337
_trip_cnt = 0;
338
_alternate = 0;
339
_matcher._allocation_started = true;
340
341
ResourceArea split_arena(mtCompiler); // Arena for Split local resources
342
ResourceArea live_arena(mtCompiler); // Arena for liveness & IFG info
343
ResourceMark rm(&live_arena);
344
345
// Need live-ness for the IFG; need the IFG for coalescing. If the
346
// liveness is JUST for coalescing, then I can get some mileage by renaming
347
// all copy-related live ranges low and then using the max copy-related
348
// live range as a cut-off for LIVE and the IFG. In other words, I can
349
// build a subset of LIVE and IFG just for copies.
350
PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
351
352
// Need IFG for coalescing and coloring
353
PhaseIFG ifg(&live_arena);
354
_ifg = &ifg;
355
356
// Come out of SSA world to the Named world. Assign (virtual) registers to
357
// Nodes. Use the same register for all inputs and the output of PhiNodes
358
// - effectively ending SSA form. This requires either coalescing live
359
// ranges or inserting copies. For the moment, we insert "virtual copies"
360
// - we pretend there is a copy prior to each Phi in predecessor blocks.
361
// We will attempt to coalesce such "virtual copies" before we manifest
362
// them for real.
363
de_ssa();
364
365
#ifdef ASSERT
366
// Veify the graph before RA.
367
verify(&live_arena);
368
#endif
369
370
{
371
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
372
_live = NULL; // Mark live as being not available
373
rm.reset_to_mark(); // Reclaim working storage
374
IndexSet::reset_memory(C, &live_arena);
375
ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
376
gather_lrg_masks( false ); // Collect LRG masks
377
live.compute(_lrg_map.max_lrg_id()); // Compute liveness
378
_live = &live; // Mark LIVE as being available
379
}
380
381
// Base pointers are currently "used" by instructions which define new
382
// derived pointers. This makes base pointers live up to the where the
383
// derived pointer is made, but not beyond. Really, they need to be live
384
// across any GC point where the derived value is live. So this code looks
385
// at all the GC points, and "stretches" the live range of any base pointer
386
// to the GC point.
387
if (stretch_base_pointer_live_ranges(&live_arena)) {
388
NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
389
// Since some live range stretched, I need to recompute live
390
_live = NULL;
391
rm.reset_to_mark(); // Reclaim working storage
392
IndexSet::reset_memory(C, &live_arena);
393
ifg.init(_lrg_map.max_lrg_id());
394
gather_lrg_masks(false);
395
live.compute(_lrg_map.max_lrg_id());
396
_live = &live;
397
}
398
// Create the interference graph using virtual copies
399
build_ifg_virtual(); // Include stack slots this time
400
401
// Aggressive (but pessimistic) copy coalescing.
402
// This pass works on virtual copies. Any virtual copies which are not
403
// coalesced get manifested as actual copies
404
{
405
// The IFG is/was triangular. I am 'squaring it up' so Union can run
406
// faster. Union requires a 'for all' operation which is slow on the
407
// triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
408
// meaning I can visit all the Nodes neighbors less than a Node in time
409
// O(# of neighbors), but I have to visit all the Nodes greater than a
410
// given Node and search them for an instance, i.e., time O(#MaxLRG)).
411
_ifg->SquareUp();
412
413
PhaseAggressiveCoalesce coalesce(*this);
414
coalesce.coalesce_driver();
415
// Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
416
// not match the Phi itself, insert a copy.
417
coalesce.insert_copies(_matcher);
418
if (C->failing()) {
419
return;
420
}
421
}
422
423
// After aggressive coalesce, attempt a first cut at coloring.
424
// To color, we need the IFG and for that we need LIVE.
425
{
426
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
427
_live = NULL;
428
rm.reset_to_mark(); // Reclaim working storage
429
IndexSet::reset_memory(C, &live_arena);
430
ifg.init(_lrg_map.max_lrg_id());
431
gather_lrg_masks( true );
432
live.compute(_lrg_map.max_lrg_id());
433
_live = &live;
434
}
435
436
// Build physical interference graph
437
uint must_spill = 0;
438
must_spill = build_ifg_physical(&live_arena);
439
// If we have a guaranteed spill, might as well spill now
440
if (must_spill) {
441
if(!_lrg_map.max_lrg_id()) {
442
return;
443
}
444
// Bail out if unique gets too large (ie - unique > MaxNodeLimit)
445
C->check_node_count(10*must_spill, "out of nodes before split");
446
if (C->failing()) {
447
return;
448
}
449
450
uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
451
_lrg_map.set_max_lrg_id(new_max_lrg_id);
452
// Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
453
// or we failed to split
454
C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
455
if (C->failing()) {
456
return;
457
}
458
459
NOT_PRODUCT(C->verify_graph_edges();)
460
461
compact(); // Compact LRGs; return new lower max lrg
462
463
{
464
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
465
_live = NULL;
466
rm.reset_to_mark(); // Reclaim working storage
467
IndexSet::reset_memory(C, &live_arena);
468
ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
469
gather_lrg_masks( true ); // Collect intersect mask
470
live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
471
_live = &live;
472
}
473
build_ifg_physical(&live_arena);
474
_ifg->SquareUp();
475
_ifg->Compute_Effective_Degree();
476
// Only do conservative coalescing if requested
477
if (OptoCoalesce) {
478
// Conservative (and pessimistic) copy coalescing of those spills
479
PhaseConservativeCoalesce coalesce(*this);
480
// If max live ranges greater than cutoff, don't color the stack.
481
// This cutoff can be larger than below since it is only done once.
482
coalesce.coalesce_driver();
483
}
484
_lrg_map.compress_uf_map_for_nodes();
485
486
#ifdef ASSERT
487
verify(&live_arena, true);
488
#endif
489
} else {
490
ifg.SquareUp();
491
ifg.Compute_Effective_Degree();
492
#ifdef ASSERT
493
set_was_low();
494
#endif
495
}
496
497
// Prepare for Simplify & Select
498
cache_lrg_info(); // Count degree of LRGs
499
500
// Simplify the InterFerence Graph by removing LRGs of low degree.
501
// LRGs of low degree are trivially colorable.
502
Simplify();
503
504
// Select colors by re-inserting LRGs back into the IFG in reverse order.
505
// Return whether or not something spills.
506
uint spills = Select( );
507
508
// If we spill, split and recycle the entire thing
509
while( spills ) {
510
if( _trip_cnt++ > 24 ) {
511
DEBUG_ONLY( dump_for_spill_split_recycle(); )
512
if( _trip_cnt > 27 ) {
513
C->record_method_not_compilable("failed spill-split-recycle sanity check");
514
return;
515
}
516
}
517
518
if (!_lrg_map.max_lrg_id()) {
519
return;
520
}
521
uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
522
_lrg_map.set_max_lrg_id(new_max_lrg_id);
523
// Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
524
C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
525
if (C->failing()) {
526
return;
527
}
528
529
compact(); // Compact LRGs; return new lower max lrg
530
531
// Nuke the live-ness and interference graph and LiveRanGe info
532
{
533
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
534
_live = NULL;
535
rm.reset_to_mark(); // Reclaim working storage
536
IndexSet::reset_memory(C, &live_arena);
537
ifg.init(_lrg_map.max_lrg_id());
538
539
// Create LiveRanGe array.
540
// Intersect register masks for all USEs and DEFs
541
gather_lrg_masks(true);
542
live.compute(_lrg_map.max_lrg_id());
543
_live = &live;
544
}
545
must_spill = build_ifg_physical(&live_arena);
546
_ifg->SquareUp();
547
_ifg->Compute_Effective_Degree();
548
549
// Only do conservative coalescing if requested
550
if (OptoCoalesce) {
551
// Conservative (and pessimistic) copy coalescing
552
PhaseConservativeCoalesce coalesce(*this);
553
// Check for few live ranges determines how aggressive coalesce is.
554
coalesce.coalesce_driver();
555
}
556
_lrg_map.compress_uf_map_for_nodes();
557
#ifdef ASSERT
558
verify(&live_arena, true);
559
#endif
560
cache_lrg_info(); // Count degree of LRGs
561
562
// Simplify the InterFerence Graph by removing LRGs of low degree.
563
// LRGs of low degree are trivially colorable.
564
Simplify();
565
566
// Select colors by re-inserting LRGs back into the IFG in reverse order.
567
// Return whether or not something spills.
568
spills = Select();
569
}
570
571
// Count number of Simplify-Select trips per coloring success.
572
_allocator_attempts += _trip_cnt + 1;
573
_allocator_successes += 1;
574
575
// Peephole remove copies
576
post_allocate_copy_removal();
577
578
// Merge multidefs if multiple defs representing the same value are used in a single block.
579
merge_multidefs();
580
581
#ifdef ASSERT
582
// Veify the graph after RA.
583
verify(&live_arena);
584
#endif
585
586
// max_reg is past the largest *register* used.
587
// Convert that to a frame_slot number.
588
if (_max_reg <= _matcher._new_SP) {
589
_framesize = C->out_preserve_stack_slots();
590
}
591
else {
592
_framesize = _max_reg -_matcher._new_SP;
593
}
594
assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
595
596
// This frame must preserve the required fp alignment
597
_framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
598
assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
599
#ifndef PRODUCT
600
_total_framesize += _framesize;
601
if ((int)_framesize > _max_framesize) {
602
_max_framesize = _framesize;
603
}
604
#endif
605
606
// Convert CISC spills
607
fixup_spills();
608
609
// Log regalloc results
610
CompileLog* log = Compile::current()->log();
611
if (log != NULL) {
612
log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
613
}
614
615
if (C->failing()) {
616
return;
617
}
618
619
NOT_PRODUCT(C->verify_graph_edges();)
620
621
// Move important info out of the live_arena to longer lasting storage.
622
alloc_node_regs(_lrg_map.size());
623
for (uint i=0; i < _lrg_map.size(); i++) {
624
if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
625
LRG &lrg = lrgs(_lrg_map.live_range_id(i));
626
if (!lrg.alive()) {
627
set_bad(i);
628
} else if (lrg.num_regs() == 1) {
629
set1(i, lrg.reg());
630
} else { // Must be a register-set
631
if (!lrg._fat_proj) { // Must be aligned adjacent register set
632
// Live ranges record the highest register in their mask.
633
// We want the low register for the AD file writer's convenience.
634
OptoReg::Name hi = lrg.reg(); // Get hi register
635
OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
636
// We have to use pair [lo,lo+1] even for wide vectors because
637
// the rest of code generation works only with pairs. It is safe
638
// since for registers encoding only 'lo' is used.
639
// Second reg from pair is used in ScheduleAndBundle on SPARC where
640
// vector max size is 8 which corresponds to registers pair.
641
// It is also used in BuildOopMaps but oop operations are not
642
// vectorized.
643
set2(i, lo);
644
} else { // Misaligned; extract 2 bits
645
OptoReg::Name hi = lrg.reg(); // Get hi register
646
lrg.Remove(hi); // Yank from mask
647
int lo = lrg.mask().find_first_elem(); // Find lo
648
set_pair(i, hi, lo);
649
}
650
}
651
if( lrg._is_oop ) _node_oops.set(i);
652
} else {
653
set_bad(i);
654
}
655
}
656
657
// Done!
658
_live = NULL;
659
_ifg = NULL;
660
C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
661
}
662
663
void PhaseChaitin::de_ssa() {
664
// Set initial Names for all Nodes. Most Nodes get the virtual register
665
// number. A few get the ZERO live range number. These do not
666
// get allocated, but instead rely on correct scheduling to ensure that
667
// only one instance is simultaneously live at a time.
668
uint lr_counter = 1;
669
for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
670
Block* block = _cfg.get_block(i);
671
uint cnt = block->number_of_nodes();
672
673
// Handle all the normal Nodes in the block
674
for( uint j = 0; j < cnt; j++ ) {
675
Node *n = block->get_node(j);
676
// Pre-color to the zero live range, or pick virtual register
677
const RegMask &rm = n->out_RegMask();
678
_lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
679
}
680
}
681
682
// Reset the Union-Find mapping to be identity
683
_lrg_map.reset_uf_map(lr_counter);
684
}
685
686
687
// Gather LiveRanGe information, including register masks. Modification of
688
// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
689
void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
690
691
// Nail down the frame pointer live range
692
uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
693
lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
694
695
// For all blocks
696
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
697
Block* block = _cfg.get_block(i);
698
699
// For all instructions
700
for (uint j = 1; j < block->number_of_nodes(); j++) {
701
Node* n = block->get_node(j);
702
uint input_edge_start =1; // Skip control most nodes
703
if (n->is_Mach()) {
704
input_edge_start = n->as_Mach()->oper_input_base();
705
}
706
uint idx = n->is_Copy();
707
708
// Get virtual register number, same as LiveRanGe index
709
uint vreg = _lrg_map.live_range_id(n);
710
LRG& lrg = lrgs(vreg);
711
if (vreg) { // No vreg means un-allocable (e.g. memory)
712
713
// Collect has-copy bit
714
if (idx) {
715
lrg._has_copy = 1;
716
uint clidx = _lrg_map.live_range_id(n->in(idx));
717
LRG& copy_src = lrgs(clidx);
718
copy_src._has_copy = 1;
719
}
720
721
// Check for float-vs-int live range (used in register-pressure
722
// calculations)
723
const Type *n_type = n->bottom_type();
724
if (n_type->is_floatingpoint()) {
725
lrg._is_float = 1;
726
}
727
728
// Check for twice prior spilling. Once prior spilling might have
729
// spilled 'soft', 2nd prior spill should have spilled 'hard' and
730
// further spilling is unlikely to make progress.
731
if (_spilled_once.test(n->_idx)) {
732
lrg._was_spilled1 = 1;
733
if (_spilled_twice.test(n->_idx)) {
734
lrg._was_spilled2 = 1;
735
}
736
}
737
738
#ifndef PRODUCT
739
if (trace_spilling() && lrg._def != NULL) {
740
// collect defs for MultiDef printing
741
if (lrg._defs == NULL) {
742
lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
743
lrg._defs->append(lrg._def);
744
}
745
lrg._defs->append(n);
746
}
747
#endif
748
749
// Check for a single def LRG; these can spill nicely
750
// via rematerialization. Flag as NULL for no def found
751
// yet, or 'n' for single def or -1 for many defs.
752
lrg._def = lrg._def ? NodeSentinel : n;
753
754
// Limit result register mask to acceptable registers
755
const RegMask &rm = n->out_RegMask();
756
lrg.AND( rm );
757
758
uint ireg = n->ideal_reg();
759
assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
760
"oops must be in Op_RegP's" );
761
762
// Check for vector live range (only if vector register is used).
763
// On SPARC vector uses RegD which could be misaligned so it is not
764
// processes as vector in RA.
765
if (RegMask::is_vector(ireg))
766
lrg._is_vector = 1;
767
assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL,
768
"vector must be in vector registers");
769
770
// Check for bound register masks
771
const RegMask &lrgmask = lrg.mask();
772
if (lrgmask.is_bound(ireg)) {
773
lrg._is_bound = 1;
774
}
775
776
// Check for maximum frequency value
777
if (lrg._maxfreq < block->_freq) {
778
lrg._maxfreq = block->_freq;
779
}
780
781
// Check for oop-iness, or long/double
782
// Check for multi-kill projection
783
switch (ireg) {
784
case MachProjNode::fat_proj:
785
// Fat projections have size equal to number of registers killed
786
lrg.set_num_regs(rm.Size());
787
lrg.set_reg_pressure(lrg.num_regs());
788
lrg._fat_proj = 1;
789
lrg._is_bound = 1;
790
break;
791
case Op_RegP:
792
#ifdef _LP64
793
lrg.set_num_regs(2); // Size is 2 stack words
794
#else
795
lrg.set_num_regs(1); // Size is 1 stack word
796
#endif
797
// Register pressure is tracked relative to the maximum values
798
// suggested for that platform, INTPRESSURE and FLOATPRESSURE,
799
// and relative to other types which compete for the same regs.
800
//
801
// The following table contains suggested values based on the
802
// architectures as defined in each .ad file.
803
// INTPRESSURE and FLOATPRESSURE may be tuned differently for
804
// compile-speed or performance.
805
// Note1:
806
// SPARC and SPARCV9 reg_pressures are at 2 instead of 1
807
// since .ad registers are defined as high and low halves.
808
// These reg_pressure values remain compatible with the code
809
// in is_high_pressure() which relates get_invalid_mask_size(),
810
// Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
811
// Note2:
812
// SPARC -d32 has 24 registers available for integral values,
813
// but only 10 of these are safe for 64-bit longs.
814
// Using set_reg_pressure(2) for both int and long means
815
// the allocator will believe it can fit 26 longs into
816
// registers. Using 2 for longs and 1 for ints means the
817
// allocator will attempt to put 52 integers into registers.
818
// The settings below limit this problem to methods with
819
// many long values which are being run on 32-bit SPARC.
820
//
821
// ------------------- reg_pressure --------------------
822
// Each entry is reg_pressure_per_value,number_of_regs
823
// RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
824
// IA32 2 1 1 1 1 6 6
825
// IA64 1 1 1 1 1 50 41
826
// SPARC 2 2 2 2 2 48 (24) 52 (26)
827
// SPARCV9 2 2 2 2 2 48 (24) 52 (26)
828
// AMD64 1 1 1 1 1 14 15
829
// -----------------------------------------------------
830
#if defined(SPARC)
831
lrg.set_reg_pressure(2); // use for v9 as well
832
#else
833
lrg.set_reg_pressure(1); // normally one value per register
834
#endif
835
if( n_type->isa_oop_ptr() ) {
836
lrg._is_oop = 1;
837
}
838
break;
839
case Op_RegL: // Check for long or double
840
case Op_RegD:
841
lrg.set_num_regs(2);
842
// Define platform specific register pressure
843
#if defined(SPARC) || defined(ARM32)
844
lrg.set_reg_pressure(2);
845
#elif defined(IA32)
846
if( ireg == Op_RegL ) {
847
lrg.set_reg_pressure(2);
848
} else {
849
lrg.set_reg_pressure(1);
850
}
851
#else
852
lrg.set_reg_pressure(1); // normally one value per register
853
#endif
854
// If this def of a double forces a mis-aligned double,
855
// flag as '_fat_proj' - really flag as allowing misalignment
856
// AND changes how we count interferences. A mis-aligned
857
// double can interfere with TWO aligned pairs, or effectively
858
// FOUR registers!
859
if (rm.is_misaligned_pair()) {
860
lrg._fat_proj = 1;
861
lrg._is_bound = 1;
862
}
863
break;
864
case Op_RegF:
865
case Op_RegI:
866
case Op_RegN:
867
case Op_RegFlags:
868
case 0: // not an ideal register
869
lrg.set_num_regs(1);
870
#ifdef SPARC
871
lrg.set_reg_pressure(2);
872
#else
873
lrg.set_reg_pressure(1);
874
#endif
875
break;
876
case Op_VecS:
877
assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
878
assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
879
lrg.set_num_regs(RegMask::SlotsPerVecS);
880
lrg.set_reg_pressure(1);
881
break;
882
case Op_VecD:
883
assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
884
assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
885
assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
886
lrg.set_num_regs(RegMask::SlotsPerVecD);
887
lrg.set_reg_pressure(1);
888
break;
889
case Op_VecX:
890
assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
891
assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
892
assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
893
lrg.set_num_regs(RegMask::SlotsPerVecX);
894
lrg.set_reg_pressure(1);
895
break;
896
case Op_VecY:
897
assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
898
assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
899
assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
900
lrg.set_num_regs(RegMask::SlotsPerVecY);
901
lrg.set_reg_pressure(1);
902
break;
903
default:
904
ShouldNotReachHere();
905
}
906
}
907
908
// Now do the same for inputs
909
uint cnt = n->req();
910
// Setup for CISC SPILLING
911
uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
912
if( UseCISCSpill && after_aggressive ) {
913
inp = n->cisc_operand();
914
if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
915
// Convert operand number to edge index number
916
inp = n->as_Mach()->operand_index(inp);
917
}
918
// Prepare register mask for each input
919
for( uint k = input_edge_start; k < cnt; k++ ) {
920
uint vreg = _lrg_map.live_range_id(n->in(k));
921
if (!vreg) {
922
continue;
923
}
924
925
// If this instruction is CISC Spillable, add the flags
926
// bit to its appropriate input
927
if( UseCISCSpill && after_aggressive && inp == k ) {
928
#ifndef PRODUCT
929
if( TraceCISCSpill ) {
930
tty->print(" use_cisc_RegMask: ");
931
n->dump();
932
}
933
#endif
934
n->as_Mach()->use_cisc_RegMask();
935
}
936
937
LRG &lrg = lrgs(vreg);
938
// // Testing for floating point code shape
939
// Node *test = n->in(k);
940
// if( test->is_Mach() ) {
941
// MachNode *m = test->as_Mach();
942
// int op = m->ideal_Opcode();
943
// if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
944
// int zzz = 1;
945
// }
946
// }
947
948
// Limit result register mask to acceptable registers.
949
// Do not limit registers from uncommon uses before
950
// AggressiveCoalesce. This effectively pre-virtual-splits
951
// around uncommon uses of common defs.
952
const RegMask &rm = n->in_RegMask(k);
953
if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
954
// Since we are BEFORE aggressive coalesce, leave the register
955
// mask untrimmed by the call. This encourages more coalescing.
956
// Later, AFTER aggressive, this live range will have to spill
957
// but the spiller handles slow-path calls very nicely.
958
} else {
959
lrg.AND( rm );
960
}
961
962
// Check for bound register masks
963
const RegMask &lrgmask = lrg.mask();
964
uint kreg = n->in(k)->ideal_reg();
965
bool is_vect = RegMask::is_vector(kreg);
966
assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
967
is_vect || kreg == Op_RegD || kreg == Op_RegL,
968
"vector must be in vector registers");
969
if (lrgmask.is_bound(kreg))
970
lrg._is_bound = 1;
971
972
// If this use of a double forces a mis-aligned double,
973
// flag as '_fat_proj' - really flag as allowing misalignment
974
// AND changes how we count interferences. A mis-aligned
975
// double can interfere with TWO aligned pairs, or effectively
976
// FOUR registers!
977
#ifdef ASSERT
978
if (is_vect) {
979
assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
980
assert(!lrg._fat_proj, "sanity");
981
assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
982
}
983
#endif
984
if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
985
lrg._fat_proj = 1;
986
lrg._is_bound = 1;
987
}
988
// if the LRG is an unaligned pair, we will have to spill
989
// so clear the LRG's register mask if it is not already spilled
990
if (!is_vect && !n->is_SpillCopy() &&
991
(lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
992
lrgmask.is_misaligned_pair()) {
993
lrg.Clear();
994
}
995
996
// Check for maximum frequency value
997
if (lrg._maxfreq < block->_freq) {
998
lrg._maxfreq = block->_freq;
999
}
1000
1001
} // End for all allocated inputs
1002
} // end for all instructions
1003
} // end for all blocks
1004
1005
// Final per-liverange setup
1006
for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1007
LRG &lrg = lrgs(i2);
1008
assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1009
if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1010
lrg.clear_to_sets();
1011
}
1012
lrg.compute_set_mask_size();
1013
if (lrg.not_free()) { // Handle case where we lose from the start
1014
lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1015
lrg._direct_conflict = 1;
1016
}
1017
lrg.set_degree(0); // no neighbors in IFG yet
1018
}
1019
}
1020
1021
// Set the was-lo-degree bit. Conservative coalescing should not change the
1022
// colorability of the graph. If any live range was of low-degree before
1023
// coalescing, it should Simplify. This call sets the was-lo-degree bit.
1024
// The bit is checked in Simplify.
1025
void PhaseChaitin::set_was_low() {
1026
#ifdef ASSERT
1027
for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1028
int size = lrgs(i).num_regs();
1029
uint old_was_lo = lrgs(i)._was_lo;
1030
lrgs(i)._was_lo = 0;
1031
if( lrgs(i).lo_degree() ) {
1032
lrgs(i)._was_lo = 1; // Trivially of low degree
1033
} else { // Else check the Brigg's assertion
1034
// Brigg's observation is that the lo-degree neighbors of a
1035
// hi-degree live range will not interfere with the color choices
1036
// of said hi-degree live range. The Simplify reverse-stack-coloring
1037
// order takes care of the details. Hence you do not have to count
1038
// low-degree neighbors when determining if this guy colors.
1039
int briggs_degree = 0;
1040
IndexSet *s = _ifg->neighbors(i);
1041
IndexSetIterator elements(s);
1042
uint lidx;
1043
while((lidx = elements.next()) != 0) {
1044
if( !lrgs(lidx).lo_degree() )
1045
briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1046
}
1047
if( briggs_degree < lrgs(i).degrees_of_freedom() )
1048
lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
1049
}
1050
assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1051
}
1052
#endif
1053
}
1054
1055
#define REGISTER_CONSTRAINED 16
1056
1057
// Compute cost/area ratio, in case we spill. Build the lo-degree list.
1058
void PhaseChaitin::cache_lrg_info( ) {
1059
1060
for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1061
LRG &lrg = lrgs(i);
1062
1063
// Check for being of low degree: means we can be trivially colored.
1064
// Low degree, dead or must-spill guys just get to simplify right away
1065
if( lrg.lo_degree() ||
1066
!lrg.alive() ||
1067
lrg._must_spill ) {
1068
// Split low degree list into those guys that must get a
1069
// register and those that can go to register or stack.
1070
// The idea is LRGs that can go register or stack color first when
1071
// they have a good chance of getting a register. The register-only
1072
// lo-degree live ranges always get a register.
1073
OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1074
if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1075
lrg._next = _lo_stk_degree;
1076
_lo_stk_degree = i;
1077
} else {
1078
lrg._next = _lo_degree;
1079
_lo_degree = i;
1080
}
1081
} else { // Else high degree
1082
lrgs(_hi_degree)._prev = i;
1083
lrg._next = _hi_degree;
1084
lrg._prev = 0;
1085
_hi_degree = i;
1086
}
1087
}
1088
}
1089
1090
// Simplify the IFG by removing LRGs of low degree that have NO copies
1091
void PhaseChaitin::Pre_Simplify( ) {
1092
1093
// Warm up the lo-degree no-copy list
1094
int lo_no_copy = 0;
1095
for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1096
if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
1097
!lrgs(i).alive() ||
1098
lrgs(i)._must_spill) {
1099
lrgs(i)._next = lo_no_copy;
1100
lo_no_copy = i;
1101
}
1102
}
1103
1104
while( lo_no_copy ) {
1105
uint lo = lo_no_copy;
1106
lo_no_copy = lrgs(lo)._next;
1107
int size = lrgs(lo).num_regs();
1108
1109
// Put the simplified guy on the simplified list.
1110
lrgs(lo)._next = _simplified;
1111
_simplified = lo;
1112
1113
// Yank this guy from the IFG.
1114
IndexSet *adj = _ifg->remove_node( lo );
1115
1116
// If any neighbors' degrees fall below their number of
1117
// allowed registers, then put that neighbor on the low degree
1118
// list. Note that 'degree' can only fall and 'numregs' is
1119
// unchanged by this action. Thus the two are equal at most once,
1120
// so LRGs hit the lo-degree worklists at most once.
1121
IndexSetIterator elements(adj);
1122
uint neighbor;
1123
while ((neighbor = elements.next()) != 0) {
1124
LRG *n = &lrgs(neighbor);
1125
assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1126
1127
// Check for just becoming of-low-degree
1128
if( n->just_lo_degree() && !n->_has_copy ) {
1129
assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1130
// Put on lo-degree list
1131
n->_next = lo_no_copy;
1132
lo_no_copy = neighbor;
1133
}
1134
}
1135
} // End of while lo-degree no_copy worklist not empty
1136
1137
// No more lo-degree no-copy live ranges to simplify
1138
}
1139
1140
// Simplify the IFG by removing LRGs of low degree.
1141
void PhaseChaitin::Simplify( ) {
1142
1143
while( 1 ) { // Repeat till simplified it all
1144
// May want to explore simplifying lo_degree before _lo_stk_degree.
1145
// This might result in more spills coloring into registers during
1146
// Select().
1147
while( _lo_degree || _lo_stk_degree ) {
1148
// If possible, pull from lo_stk first
1149
uint lo;
1150
if( _lo_degree ) {
1151
lo = _lo_degree;
1152
_lo_degree = lrgs(lo)._next;
1153
} else {
1154
lo = _lo_stk_degree;
1155
_lo_stk_degree = lrgs(lo)._next;
1156
}
1157
1158
// Put the simplified guy on the simplified list.
1159
lrgs(lo)._next = _simplified;
1160
_simplified = lo;
1161
// If this guy is "at risk" then mark his current neighbors
1162
if( lrgs(lo)._at_risk ) {
1163
IndexSetIterator elements(_ifg->neighbors(lo));
1164
uint datum;
1165
while ((datum = elements.next()) != 0) {
1166
lrgs(datum)._risk_bias = lo;
1167
}
1168
}
1169
1170
// Yank this guy from the IFG.
1171
IndexSet *adj = _ifg->remove_node( lo );
1172
1173
// If any neighbors' degrees fall below their number of
1174
// allowed registers, then put that neighbor on the low degree
1175
// list. Note that 'degree' can only fall and 'numregs' is
1176
// unchanged by this action. Thus the two are equal at most once,
1177
// so LRGs hit the lo-degree worklist at most once.
1178
IndexSetIterator elements(adj);
1179
uint neighbor;
1180
while ((neighbor = elements.next()) != 0) {
1181
LRG *n = &lrgs(neighbor);
1182
#ifdef ASSERT
1183
if( VerifyOpto || VerifyRegisterAllocator ) {
1184
assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1185
}
1186
#endif
1187
1188
// Check for just becoming of-low-degree just counting registers.
1189
// _must_spill live ranges are already on the low degree list.
1190
if( n->just_lo_degree() && !n->_must_spill ) {
1191
assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1192
// Pull from hi-degree list
1193
uint prev = n->_prev;
1194
uint next = n->_next;
1195
if( prev ) lrgs(prev)._next = next;
1196
else _hi_degree = next;
1197
lrgs(next)._prev = prev;
1198
n->_next = _lo_degree;
1199
_lo_degree = neighbor;
1200
}
1201
}
1202
} // End of while lo-degree/lo_stk_degree worklist not empty
1203
1204
// Check for got everything: is hi-degree list empty?
1205
if( !_hi_degree ) break;
1206
1207
// Time to pick a potential spill guy
1208
uint lo_score = _hi_degree;
1209
double score = lrgs(lo_score).score();
1210
double area = lrgs(lo_score)._area;
1211
double cost = lrgs(lo_score)._cost;
1212
bool bound = lrgs(lo_score)._is_bound;
1213
1214
// Find cheapest guy
1215
debug_only( int lo_no_simplify=0; );
1216
for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1217
assert( !(*_ifg->_yanked)[i], "" );
1218
// It's just vaguely possible to move hi-degree to lo-degree without
1219
// going through a just-lo-degree stage: If you remove a double from
1220
// a float live range it's degree will drop by 2 and you can skip the
1221
// just-lo-degree stage. It's very rare (shows up after 5000+ methods
1222
// in -Xcomp of Java2Demo). So just choose this guy to simplify next.
1223
if( lrgs(i).lo_degree() ) {
1224
lo_score = i;
1225
break;
1226
}
1227
debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1228
double iscore = lrgs(i).score();
1229
double iarea = lrgs(i)._area;
1230
double icost = lrgs(i)._cost;
1231
bool ibound = lrgs(i)._is_bound;
1232
1233
// Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
1234
// wins. Ties happen because all live ranges in question have spilled
1235
// a few times before and the spill-score adds a huge number which
1236
// washes out the low order bits. We are choosing the lesser of 2
1237
// evils; in this case pick largest area to spill.
1238
// Ties also happen when live ranges are defined and used only inside
1239
// one block. In which case their area is 0 and score set to max.
1240
// In such case choose bound live range over unbound to free registers
1241
// or with smaller cost to spill.
1242
if( iscore < score ||
1243
(iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1244
(iscore == score && iarea == area &&
1245
( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1246
lo_score = i;
1247
score = iscore;
1248
area = iarea;
1249
cost = icost;
1250
bound = ibound;
1251
}
1252
}
1253
LRG *lo_lrg = &lrgs(lo_score);
1254
// The live range we choose for spilling is either hi-degree, or very
1255
// rarely it can be low-degree. If we choose a hi-degree live range
1256
// there better not be any lo-degree choices.
1257
assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1258
1259
// Pull from hi-degree list
1260
uint prev = lo_lrg->_prev;
1261
uint next = lo_lrg->_next;
1262
if( prev ) lrgs(prev)._next = next;
1263
else _hi_degree = next;
1264
lrgs(next)._prev = prev;
1265
// Jam him on the lo-degree list, despite his high degree.
1266
// Maybe he'll get a color, and maybe he'll spill.
1267
// Only Select() will know.
1268
lrgs(lo_score)._at_risk = true;
1269
_lo_degree = lo_score;
1270
lo_lrg->_next = 0;
1271
1272
} // End of while not simplified everything
1273
1274
}
1275
1276
// Is 'reg' register legal for 'lrg'?
1277
static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1278
if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1279
lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1280
// RA uses OptoReg which represent the highest element of a registers set.
1281
// For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1282
// in which XMMd is used by RA to represent such vectors. A double value
1283
// uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1284
// The register mask uses largest bits set of overlapping register sets.
1285
// On x86 with AVX it uses 8 bits for each XMM registers set.
1286
//
1287
// The 'lrg' already has cleared-to-set register mask (done in Select()
1288
// before calling choose_color()). Passing mask.Member(reg) check above
1289
// indicates that the size (num_regs) of 'reg' set is less or equal to
1290
// 'lrg' set size.
1291
// For set size 1 any register which is member of 'lrg' mask is legal.
1292
if (lrg.num_regs()==1)
1293
return true;
1294
// For larger sets only an aligned register with the same set size is legal.
1295
int mask = lrg.num_regs()-1;
1296
if ((reg&mask) == mask)
1297
return true;
1298
}
1299
return false;
1300
}
1301
1302
// Choose a color using the biasing heuristic
1303
OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1304
1305
// Check for "at_risk" LRG's
1306
uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1307
if( risk_lrg != 0 ) {
1308
// Walk the colored neighbors of the "at_risk" candidate
1309
// Choose a color which is both legal and already taken by a neighbor
1310
// of the "at_risk" candidate in order to improve the chances of the
1311
// "at_risk" candidate of coloring
1312
IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1313
uint datum;
1314
while ((datum = elements.next()) != 0) {
1315
OptoReg::Name reg = lrgs(datum).reg();
1316
// If this LRG's register is legal for us, choose it
1317
if (is_legal_reg(lrg, reg, chunk))
1318
return reg;
1319
}
1320
}
1321
1322
uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1323
if( copy_lrg != 0 ) {
1324
// If he has a color,
1325
if( !(*(_ifg->_yanked))[copy_lrg] ) {
1326
OptoReg::Name reg = lrgs(copy_lrg).reg();
1327
// And it is legal for you,
1328
if (is_legal_reg(lrg, reg, chunk))
1329
return reg;
1330
} else if( chunk == 0 ) {
1331
// Choose a color which is legal for him
1332
RegMask tempmask = lrg.mask();
1333
tempmask.AND(lrgs(copy_lrg).mask());
1334
tempmask.clear_to_sets(lrg.num_regs());
1335
OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
1336
if (OptoReg::is_valid(reg))
1337
return reg;
1338
}
1339
}
1340
1341
// If no bias info exists, just go with the register selection ordering
1342
if (lrg._is_vector || lrg.num_regs() == 2) {
1343
// Find an aligned set
1344
return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
1345
}
1346
1347
// CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
1348
// copy removal to remove many more copies, by preventing a just-assigned
1349
// register from being repeatedly assigned.
1350
OptoReg::Name reg = lrg.mask().find_first_elem();
1351
if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1352
// This 'Remove; find; Insert' idiom is an expensive way to find the
1353
// SECOND element in the mask.
1354
lrg.Remove(reg);
1355
OptoReg::Name reg2 = lrg.mask().find_first_elem();
1356
lrg.Insert(reg);
1357
if( OptoReg::is_reg(reg2))
1358
reg = reg2;
1359
}
1360
return OptoReg::add( reg, chunk );
1361
}
1362
1363
// Choose a color in the current chunk
1364
OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1365
assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1366
assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1367
1368
if( lrg.num_regs() == 1 || // Common Case
1369
!lrg._fat_proj ) // Aligned+adjacent pairs ok
1370
// Use a heuristic to "bias" the color choice
1371
return bias_color(lrg, chunk);
1372
1373
assert(!lrg._is_vector, "should be not vector here" );
1374
assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1375
1376
// Fat-proj case or misaligned double argument.
1377
assert(lrg.compute_mask_size() == lrg.num_regs() ||
1378
lrg.num_regs() == 2,"fat projs exactly color" );
1379
assert( !chunk, "always color in 1st chunk" );
1380
// Return the highest element in the set.
1381
return lrg.mask().find_last_elem();
1382
}
1383
1384
// Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
1385
// in reverse order of removal. As long as nothing of hi-degree was yanked,
1386
// everything going back is guaranteed a color. Select that color. If some
1387
// hi-degree LRG cannot get a color then we record that we must spill.
1388
uint PhaseChaitin::Select( ) {
1389
uint spill_reg = LRG::SPILL_REG;
1390
_max_reg = OptoReg::Name(0); // Past max register used
1391
while( _simplified ) {
1392
// Pull next LRG from the simplified list - in reverse order of removal
1393
uint lidx = _simplified;
1394
LRG *lrg = &lrgs(lidx);
1395
_simplified = lrg->_next;
1396
1397
1398
#ifndef PRODUCT
1399
if (trace_spilling()) {
1400
ttyLocker ttyl;
1401
tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1402
lrg->degrees_of_freedom());
1403
lrg->dump();
1404
}
1405
#endif
1406
1407
// Re-insert into the IFG
1408
_ifg->re_insert(lidx);
1409
if( !lrg->alive() ) continue;
1410
// capture allstackedness flag before mask is hacked
1411
const int is_allstack = lrg->mask().is_AllStack();
1412
1413
// Yeah, yeah, yeah, I know, I know. I can refactor this
1414
// to avoid the GOTO, although the refactored code will not
1415
// be much clearer. We arrive here IFF we have a stack-based
1416
// live range that cannot color in the current chunk, and it
1417
// has to move into the next free stack chunk.
1418
int chunk = 0; // Current chunk is first chunk
1419
retry_next_chunk:
1420
1421
// Remove neighbor colors
1422
IndexSet *s = _ifg->neighbors(lidx);
1423
1424
debug_only(RegMask orig_mask = lrg->mask();)
1425
IndexSetIterator elements(s);
1426
uint neighbor;
1427
while ((neighbor = elements.next()) != 0) {
1428
// Note that neighbor might be a spill_reg. In this case, exclusion
1429
// of its color will be a no-op, since the spill_reg chunk is in outer
1430
// space. Also, if neighbor is in a different chunk, this exclusion
1431
// will be a no-op. (Later on, if lrg runs out of possible colors in
1432
// its chunk, a new chunk of color may be tried, in which case
1433
// examination of neighbors is started again, at retry_next_chunk.)
1434
LRG &nlrg = lrgs(neighbor);
1435
OptoReg::Name nreg = nlrg.reg();
1436
// Only subtract masks in the same chunk
1437
if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1438
#ifndef PRODUCT
1439
uint size = lrg->mask().Size();
1440
RegMask rm = lrg->mask();
1441
#endif
1442
lrg->SUBTRACT(nlrg.mask());
1443
#ifndef PRODUCT
1444
if (trace_spilling() && lrg->mask().Size() != size) {
1445
ttyLocker ttyl;
1446
tty->print("L%d ", lidx);
1447
rm.dump();
1448
tty->print(" intersected L%d ", neighbor);
1449
nlrg.mask().dump();
1450
tty->print(" removed ");
1451
rm.SUBTRACT(lrg->mask());
1452
rm.dump();
1453
tty->print(" leaving ");
1454
lrg->mask().dump();
1455
tty->cr();
1456
}
1457
#endif
1458
}
1459
}
1460
//assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1461
// Aligned pairs need aligned masks
1462
assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1463
if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1464
lrg->clear_to_sets();
1465
}
1466
1467
// Check if a color is available and if so pick the color
1468
OptoReg::Name reg = choose_color( *lrg, chunk );
1469
#ifdef SPARC
1470
debug_only(lrg->compute_set_mask_size());
1471
assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1472
#endif
1473
1474
//---------------
1475
// If we fail to color and the AllStack flag is set, trigger
1476
// a chunk-rollover event
1477
if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1478
// Bump register mask up to next stack chunk
1479
chunk += RegMask::CHUNK_SIZE;
1480
lrg->Set_All();
1481
1482
goto retry_next_chunk;
1483
}
1484
1485
//---------------
1486
// Did we get a color?
1487
else if( OptoReg::is_valid(reg)) {
1488
#ifndef PRODUCT
1489
RegMask avail_rm = lrg->mask();
1490
#endif
1491
1492
// Record selected register
1493
lrg->set_reg(reg);
1494
1495
if( reg >= _max_reg ) // Compute max register limit
1496
_max_reg = OptoReg::add(reg,1);
1497
// Fold reg back into normal space
1498
reg = OptoReg::add(reg,-chunk);
1499
1500
// If the live range is not bound, then we actually had some choices
1501
// to make. In this case, the mask has more bits in it than the colors
1502
// chosen. Restrict the mask to just what was picked.
1503
int n_regs = lrg->num_regs();
1504
assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1505
if (n_regs == 1 || !lrg->_fat_proj) {
1506
assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
1507
lrg->Clear(); // Clear the mask
1508
lrg->Insert(reg); // Set regmask to match selected reg
1509
// For vectors and pairs, also insert the low bit of the pair
1510
for (int i = 1; i < n_regs; i++)
1511
lrg->Insert(OptoReg::add(reg,-i));
1512
lrg->set_mask_size(n_regs);
1513
} else { // Else fatproj
1514
// mask must be equal to fatproj bits, by definition
1515
}
1516
#ifndef PRODUCT
1517
if (trace_spilling()) {
1518
ttyLocker ttyl;
1519
tty->print("L%d selected ", lidx);
1520
lrg->mask().dump();
1521
tty->print(" from ");
1522
avail_rm.dump();
1523
tty->cr();
1524
}
1525
#endif
1526
// Note that reg is the highest-numbered register in the newly-bound mask.
1527
} // end color available case
1528
1529
//---------------
1530
// Live range is live and no colors available
1531
else {
1532
assert( lrg->alive(), "" );
1533
assert( !lrg->_fat_proj || lrg->is_multidef() ||
1534
lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1535
assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1536
1537
// Assign the special spillreg register
1538
lrg->set_reg(OptoReg::Name(spill_reg++));
1539
// Do not empty the regmask; leave mask_size lying around
1540
// for use during Spilling
1541
#ifndef PRODUCT
1542
if( trace_spilling() ) {
1543
ttyLocker ttyl;
1544
tty->print("L%d spilling with neighbors: ", lidx);
1545
s->dump();
1546
debug_only(tty->print(" original mask: "));
1547
debug_only(orig_mask.dump());
1548
dump_lrg(lidx);
1549
}
1550
#endif
1551
} // end spill case
1552
1553
}
1554
1555
return spill_reg-LRG::SPILL_REG; // Return number of spills
1556
}
1557
1558
// Copy 'was_spilled'-edness from the source Node to the dst Node.
1559
void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1560
if( _spilled_once.test(src->_idx) ) {
1561
_spilled_once.set(dst->_idx);
1562
lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
1563
if( _spilled_twice.test(src->_idx) ) {
1564
_spilled_twice.set(dst->_idx);
1565
lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
1566
}
1567
}
1568
}
1569
1570
// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1571
void PhaseChaitin::set_was_spilled( Node *n ) {
1572
if( _spilled_once.test_set(n->_idx) )
1573
_spilled_twice.set(n->_idx);
1574
}
1575
1576
// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1577
// Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1578
void PhaseChaitin::fixup_spills() {
1579
// This function does only cisc spill work.
1580
if( !UseCISCSpill ) return;
1581
1582
NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1583
1584
// Grab the Frame Pointer
1585
Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1586
1587
// For all blocks
1588
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1589
Block* block = _cfg.get_block(i);
1590
1591
// For all instructions in block
1592
uint last_inst = block->end_idx();
1593
for (uint j = 1; j <= last_inst; j++) {
1594
Node* n = block->get_node(j);
1595
1596
// Dead instruction???
1597
assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1598
C->top() == n || // Or the random TOP node
1599
n->is_Proj(), // Or a fat-proj kill node
1600
"No dead instructions after post-alloc" );
1601
1602
int inp = n->cisc_operand();
1603
if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1604
// Convert operand number to edge index number
1605
MachNode *mach = n->as_Mach();
1606
inp = mach->operand_index(inp);
1607
Node *src = n->in(inp); // Value to load or store
1608
LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1609
OptoReg::Name src_reg = lrg_cisc.reg();
1610
// Doubles record the HIGH register of an adjacent pair.
1611
src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1612
if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1613
// This is a CISC Spill, get stack offset and construct new node
1614
#ifndef PRODUCT
1615
if( TraceCISCSpill ) {
1616
tty->print(" reg-instr: ");
1617
n->dump();
1618
}
1619
#endif
1620
int stk_offset = reg2offset(src_reg);
1621
// Bailout if we might exceed node limit when spilling this instruction
1622
C->check_node_count(0, "out of nodes fixing spills");
1623
if (C->failing()) return;
1624
// Transform node
1625
MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1626
cisc->set_req(inp,fp); // Base register is frame pointer
1627
if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1628
assert( cisc->oper_input_base() == 2, "Only adding one edge");
1629
cisc->ins_req(1,src); // Requires a memory edge
1630
}
1631
block->map_node(cisc, j); // Insert into basic block
1632
n->subsume_by(cisc, C); // Correct graph
1633
//
1634
++_used_cisc_instructions;
1635
#ifndef PRODUCT
1636
if( TraceCISCSpill ) {
1637
tty->print(" cisc-instr: ");
1638
cisc->dump();
1639
}
1640
#endif
1641
} else {
1642
#ifndef PRODUCT
1643
if( TraceCISCSpill ) {
1644
tty->print(" using reg-instr: ");
1645
n->dump();
1646
}
1647
#endif
1648
++_unused_cisc_instructions; // input can be on stack
1649
}
1650
}
1651
1652
} // End of for all instructions
1653
1654
} // End of for all blocks
1655
}
1656
1657
// Helper to stretch above; recursively discover the base Node for a
1658
// given derived Node. Easy for AddP-related machine nodes, but needs
1659
// to be recursive for derived Phis.
1660
Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1661
// See if already computed; if so return it
1662
if( derived_base_map[derived->_idx] )
1663
return derived_base_map[derived->_idx];
1664
1665
// See if this happens to be a base.
1666
// NOTE: we use TypePtr instead of TypeOopPtr because we can have
1667
// pointers derived from NULL! These are always along paths that
1668
// can't happen at run-time but the optimizer cannot deduce it so
1669
// we have to handle it gracefully.
1670
assert(!derived->bottom_type()->isa_narrowoop() ||
1671
derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1672
const TypePtr *tj = derived->bottom_type()->isa_ptr();
1673
// If its an OOP with a non-zero offset, then it is derived.
1674
if( tj == NULL || tj->_offset == 0 ) {
1675
derived_base_map[derived->_idx] = derived;
1676
return derived;
1677
}
1678
// Derived is NULL+offset? Base is NULL!
1679
if( derived->is_Con() ) {
1680
Node *base = _matcher.mach_null();
1681
assert(base != NULL, "sanity");
1682
if (base->in(0) == NULL) {
1683
// Initialize it once and make it shared:
1684
// set control to _root and place it into Start block
1685
// (where top() node is placed).
1686
base->init_req(0, _cfg.get_root_node());
1687
Block *startb = _cfg.get_block_for_node(C->top());
1688
uint node_pos = startb->find_node(C->top());
1689
startb->insert_node(base, node_pos);
1690
_cfg.map_node_to_block(base, startb);
1691
assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1692
1693
// The loadConP0 might have projection nodes depending on architecture
1694
// Add the projection nodes to the CFG
1695
for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1696
Node* use = base->fast_out(i);
1697
if (use->is_MachProj()) {
1698
startb->insert_node(use, ++node_pos);
1699
_cfg.map_node_to_block(use, startb);
1700
new_lrg(use, maxlrg++);
1701
}
1702
}
1703
}
1704
if (_lrg_map.live_range_id(base) == 0) {
1705
new_lrg(base, maxlrg++);
1706
}
1707
assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
1708
derived_base_map[derived->_idx] = base;
1709
return base;
1710
}
1711
1712
// Check for AddP-related opcodes
1713
if (!derived->is_Phi()) {
1714
assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
1715
Node *base = derived->in(AddPNode::Base);
1716
derived_base_map[derived->_idx] = base;
1717
return base;
1718
}
1719
1720
// Recursively find bases for Phis.
1721
// First check to see if we can avoid a base Phi here.
1722
Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1723
uint i;
1724
for( i = 2; i < derived->req(); i++ )
1725
if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1726
break;
1727
// Went to the end without finding any different bases?
1728
if( i == derived->req() ) { // No need for a base Phi here
1729
derived_base_map[derived->_idx] = base;
1730
return base;
1731
}
1732
1733
// Now we see we need a base-Phi here to merge the bases
1734
const Type *t = base->bottom_type();
1735
base = new (C) PhiNode( derived->in(0), t );
1736
for( i = 1; i < derived->req(); i++ ) {
1737
base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1738
t = t->meet(base->in(i)->bottom_type());
1739
}
1740
base->as_Phi()->set_type(t);
1741
1742
// Search the current block for an existing base-Phi
1743
Block *b = _cfg.get_block_for_node(derived);
1744
for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1745
Node *phi = b->get_node(i);
1746
if( !phi->is_Phi() ) { // Found end of Phis with no match?
1747
b->insert_node(base, i); // Must insert created Phi here as base
1748
_cfg.map_node_to_block(base, b);
1749
new_lrg(base,maxlrg++);
1750
break;
1751
}
1752
// See if Phi matches.
1753
uint j;
1754
for( j = 1; j < base->req(); j++ )
1755
if( phi->in(j) != base->in(j) &&
1756
!(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1757
break;
1758
if( j == base->req() ) { // All inputs match?
1759
base = phi; // Then use existing 'phi' and drop 'base'
1760
break;
1761
}
1762
}
1763
1764
1765
// Cache info for later passes
1766
derived_base_map[derived->_idx] = base;
1767
return base;
1768
}
1769
1770
// At each Safepoint, insert extra debug edges for each pair of derived value/
1771
// base pointer that is live across the Safepoint for oopmap building. The
1772
// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1773
// required edge set.
1774
bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1775
int must_recompute_live = false;
1776
uint maxlrg = _lrg_map.max_lrg_id();
1777
Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1778
memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1779
1780
// For all blocks in RPO do...
1781
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1782
Block* block = _cfg.get_block(i);
1783
// Note use of deep-copy constructor. I cannot hammer the original
1784
// liveout bits, because they are needed by the following coalesce pass.
1785
IndexSet liveout(_live->live(block));
1786
1787
for (uint j = block->end_idx() + 1; j > 1; j--) {
1788
Node* n = block->get_node(j - 1);
1789
1790
// Pre-split compares of loop-phis. Loop-phis form a cycle we would
1791
// like to see in the same register. Compare uses the loop-phi and so
1792
// extends its live range BUT cannot be part of the cycle. If this
1793
// extended live range overlaps with the update of the loop-phi value
1794
// we need both alive at the same time -- which requires at least 1
1795
// copy. But because Intel has only 2-address registers we end up with
1796
// at least 2 copies, one before the loop-phi update instruction and
1797
// one after. Instead we split the input to the compare just after the
1798
// phi.
1799
if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1800
Node *phi = n->in(1);
1801
if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1802
Block *phi_block = _cfg.get_block_for_node(phi);
1803
if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1804
const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1805
Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1806
insert_proj( phi_block, 1, spill, maxlrg++ );
1807
n->set_req(1,spill);
1808
must_recompute_live = true;
1809
}
1810
}
1811
}
1812
1813
// Get value being defined
1814
uint lidx = _lrg_map.live_range_id(n);
1815
// Ignore the occasional brand-new live range
1816
if (lidx && lidx < _lrg_map.max_lrg_id()) {
1817
// Remove from live-out set
1818
liveout.remove(lidx);
1819
1820
// Copies do not define a new value and so do not interfere.
1821
// Remove the copies source from the liveout set before interfering.
1822
uint idx = n->is_Copy();
1823
if (idx) {
1824
liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1825
}
1826
}
1827
1828
// Found a safepoint?
1829
JVMState *jvms = n->jvms();
1830
if( jvms ) {
1831
// Now scan for a live derived pointer
1832
IndexSetIterator elements(&liveout);
1833
uint neighbor;
1834
while ((neighbor = elements.next()) != 0) {
1835
// Find reaching DEF for base and derived values
1836
// This works because we are still in SSA during this call.
1837
Node *derived = lrgs(neighbor)._def;
1838
const TypePtr *tj = derived->bottom_type()->isa_ptr();
1839
assert(!derived->bottom_type()->isa_narrowoop() ||
1840
derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1841
// If its an OOP with a non-zero offset, then it is derived.
1842
if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1843
Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1844
assert(base->_idx < _lrg_map.size(), "");
1845
// Add reaching DEFs of derived pointer and base pointer as a
1846
// pair of inputs
1847
n->add_req(derived);
1848
n->add_req(base);
1849
1850
// See if the base pointer is already live to this point.
1851
// Since I'm working on the SSA form, live-ness amounts to
1852
// reaching def's. So if I find the base's live range then
1853
// I know the base's def reaches here.
1854
if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1855
!liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1856
(_lrg_map.live_range_id(base) > 0) && // not a constant
1857
_cfg.get_block_for_node(base) != block) { // base not def'd in blk)
1858
// Base pointer is not currently live. Since I stretched
1859
// the base pointer to here and it crosses basic-block
1860
// boundaries, the global live info is now incorrect.
1861
// Recompute live.
1862
must_recompute_live = true;
1863
} // End of if base pointer is not live to debug info
1864
}
1865
} // End of scan all live data for derived ptrs crossing GC point
1866
} // End of if found a GC point
1867
1868
// Make all inputs live
1869
if (!n->is_Phi()) { // Phi function uses come from prior block
1870
for (uint k = 1; k < n->req(); k++) {
1871
uint lidx = _lrg_map.live_range_id(n->in(k));
1872
if (lidx < _lrg_map.max_lrg_id()) {
1873
liveout.insert(lidx);
1874
}
1875
}
1876
}
1877
1878
} // End of forall instructions in block
1879
liveout.clear(); // Free the memory used by liveout.
1880
1881
} // End of forall blocks
1882
_lrg_map.set_max_lrg_id(maxlrg);
1883
1884
// If I created a new live range I need to recompute live
1885
if (maxlrg != _ifg->_maxlrg) {
1886
must_recompute_live = true;
1887
}
1888
1889
return must_recompute_live != 0;
1890
}
1891
1892
// Extend the node to LRG mapping
1893
1894
void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1895
_lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1896
}
1897
1898
#ifndef PRODUCT
1899
void PhaseChaitin::dump(const Node *n) const {
1900
uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
1901
tty->print("L%d",r);
1902
if (r && n->Opcode() != Op_Phi) {
1903
if( _node_regs ) { // Got a post-allocation copy of allocation?
1904
tty->print("[");
1905
OptoReg::Name second = get_reg_second(n);
1906
if( OptoReg::is_valid(second) ) {
1907
if( OptoReg::is_reg(second) )
1908
tty->print("%s:",Matcher::regName[second]);
1909
else
1910
tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1911
}
1912
OptoReg::Name first = get_reg_first(n);
1913
if( OptoReg::is_reg(first) )
1914
tty->print("%s]",Matcher::regName[first]);
1915
else
1916
tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1917
} else
1918
n->out_RegMask().dump();
1919
}
1920
tty->print("/N%d\t",n->_idx);
1921
tty->print("%s === ", n->Name());
1922
uint k;
1923
for (k = 0; k < n->req(); k++) {
1924
Node *m = n->in(k);
1925
if (!m) {
1926
tty->print("_ ");
1927
}
1928
else {
1929
uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1930
tty->print("L%d",r);
1931
// Data MultiNode's can have projections with no real registers.
1932
// Don't die while dumping them.
1933
int op = n->Opcode();
1934
if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1935
if( _node_regs ) {
1936
tty->print("[");
1937
OptoReg::Name second = get_reg_second(n->in(k));
1938
if( OptoReg::is_valid(second) ) {
1939
if( OptoReg::is_reg(second) )
1940
tty->print("%s:",Matcher::regName[second]);
1941
else
1942
tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1943
reg2offset_unchecked(second));
1944
}
1945
OptoReg::Name first = get_reg_first(n->in(k));
1946
if( OptoReg::is_reg(first) )
1947
tty->print("%s]",Matcher::regName[first]);
1948
else
1949
tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1950
reg2offset_unchecked(first));
1951
} else
1952
n->in_RegMask(k).dump();
1953
}
1954
tty->print("/N%d ",m->_idx);
1955
}
1956
}
1957
if( k < n->len() && n->in(k) ) tty->print("| ");
1958
for( ; k < n->len(); k++ ) {
1959
Node *m = n->in(k);
1960
if(!m) {
1961
break;
1962
}
1963
uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1964
tty->print("L%d",r);
1965
tty->print("/N%d ",m->_idx);
1966
}
1967
if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1968
else n->dump_spec(tty);
1969
if( _spilled_once.test(n->_idx ) ) {
1970
tty->print(" Spill_1");
1971
if( _spilled_twice.test(n->_idx ) )
1972
tty->print(" Spill_2");
1973
}
1974
tty->print("\n");
1975
}
1976
1977
void PhaseChaitin::dump(const Block *b) const {
1978
b->dump_head(&_cfg);
1979
1980
// For all instructions
1981
for( uint j = 0; j < b->number_of_nodes(); j++ )
1982
dump(b->get_node(j));
1983
// Print live-out info at end of block
1984
if( _live ) {
1985
tty->print("Liveout: ");
1986
IndexSet *live = _live->live(b);
1987
IndexSetIterator elements(live);
1988
tty->print("{");
1989
uint i;
1990
while ((i = elements.next()) != 0) {
1991
tty->print("L%d ", _lrg_map.find_const(i));
1992
}
1993
tty->print_cr("}");
1994
}
1995
tty->print("\n");
1996
}
1997
1998
void PhaseChaitin::dump() const {
1999
tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
2000
_matcher._new_SP, _framesize );
2001
2002
// For all blocks
2003
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2004
dump(_cfg.get_block(i));
2005
}
2006
// End of per-block dump
2007
tty->print("\n");
2008
2009
if (!_ifg) {
2010
tty->print("(No IFG.)\n");
2011
return;
2012
}
2013
2014
// Dump LRG array
2015
tty->print("--- Live RanGe Array ---\n");
2016
for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2017
tty->print("L%d: ",i2);
2018
if (i2 < _ifg->_maxlrg) {
2019
lrgs(i2).dump();
2020
}
2021
else {
2022
tty->print_cr("new LRG");
2023
}
2024
}
2025
tty->cr();
2026
2027
// Dump lo-degree list
2028
tty->print("Lo degree: ");
2029
for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2030
tty->print("L%d ",i3);
2031
tty->cr();
2032
2033
// Dump lo-stk-degree list
2034
tty->print("Lo stk degree: ");
2035
for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2036
tty->print("L%d ",i4);
2037
tty->cr();
2038
2039
// Dump lo-degree list
2040
tty->print("Hi degree: ");
2041
for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2042
tty->print("L%d ",i5);
2043
tty->cr();
2044
}
2045
2046
void PhaseChaitin::dump_degree_lists() const {
2047
// Dump lo-degree list
2048
tty->print("Lo degree: ");
2049
for( uint i = _lo_degree; i; i = lrgs(i)._next )
2050
tty->print("L%d ",i);
2051
tty->cr();
2052
2053
// Dump lo-stk-degree list
2054
tty->print("Lo stk degree: ");
2055
for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2056
tty->print("L%d ",i2);
2057
tty->cr();
2058
2059
// Dump lo-degree list
2060
tty->print("Hi degree: ");
2061
for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2062
tty->print("L%d ",i3);
2063
tty->cr();
2064
}
2065
2066
void PhaseChaitin::dump_simplified() const {
2067
tty->print("Simplified: ");
2068
for( uint i = _simplified; i; i = lrgs(i)._next )
2069
tty->print("L%d ",i);
2070
tty->cr();
2071
}
2072
2073
static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
2074
if ((int)reg < 0)
2075
sprintf(buf, "<OptoReg::%d>", (int)reg);
2076
else if (OptoReg::is_reg(reg))
2077
strcpy(buf, Matcher::regName[reg]);
2078
else
2079
sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2080
pc->reg2offset(reg));
2081
return buf+strlen(buf);
2082
}
2083
2084
// Dump a register name into a buffer. Be intelligent if we get called
2085
// before allocation is complete.
2086
char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
2087
if( this == NULL ) { // Not got anything?
2088
sprintf(buf,"N%d",n->_idx); // Then use Node index
2089
} else if( _node_regs ) {
2090
// Post allocation, use direct mappings, no LRG info available
2091
print_reg( get_reg_first(n), this, buf );
2092
} else {
2093
uint lidx = _lrg_map.find_const(n); // Grab LRG number
2094
if( !_ifg ) {
2095
sprintf(buf,"L%d",lidx); // No register binding yet
2096
} else if( !lidx ) { // Special, not allocated value
2097
strcpy(buf,"Special");
2098
} else {
2099
if (lrgs(lidx)._is_vector) {
2100
if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2101
print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2102
else
2103
sprintf(buf,"L%d",lidx); // No register binding yet
2104
} else if( (lrgs(lidx).num_regs() == 1)
2105
? lrgs(lidx).mask().is_bound1()
2106
: lrgs(lidx).mask().is_bound_pair() ) {
2107
// Hah! We have a bound machine register
2108
print_reg( lrgs(lidx).reg(), this, buf );
2109
} else {
2110
sprintf(buf,"L%d",lidx); // No register binding yet
2111
}
2112
}
2113
}
2114
return buf+strlen(buf);
2115
}
2116
2117
void PhaseChaitin::dump_for_spill_split_recycle() const {
2118
if( WizardMode && (PrintCompilation || PrintOpto) ) {
2119
// Display which live ranges need to be split and the allocator's state
2120
tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2121
for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2122
if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2123
tty->print("L%d: ", bidx);
2124
lrgs(bidx).dump();
2125
}
2126
}
2127
tty->cr();
2128
dump();
2129
}
2130
}
2131
2132
void PhaseChaitin::dump_frame() const {
2133
const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2134
const TypeTuple *domain = C->tf()->domain();
2135
const int argcnt = domain->cnt() - TypeFunc::Parms;
2136
2137
// Incoming arguments in registers dump
2138
for( int k = 0; k < argcnt; k++ ) {
2139
OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2140
if( OptoReg::is_reg(parmreg)) {
2141
const char *reg_name = OptoReg::regname(parmreg);
2142
tty->print("#r%3.3d %s", parmreg, reg_name);
2143
parmreg = _matcher._parm_regs[k].second();
2144
if( OptoReg::is_reg(parmreg)) {
2145
tty->print(":%s", OptoReg::regname(parmreg));
2146
}
2147
tty->print(" : parm %d: ", k);
2148
domain->field_at(k + TypeFunc::Parms)->dump();
2149
tty->cr();
2150
}
2151
}
2152
2153
// Check for un-owned padding above incoming args
2154
OptoReg::Name reg = _matcher._new_SP;
2155
if( reg > _matcher._in_arg_limit ) {
2156
reg = OptoReg::add(reg, -1);
2157
tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2158
}
2159
2160
// Incoming argument area dump
2161
OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2162
while( reg > begin_in_arg ) {
2163
reg = OptoReg::add(reg, -1);
2164
tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2165
int j;
2166
for( j = 0; j < argcnt; j++) {
2167
if( _matcher._parm_regs[j].first() == reg ||
2168
_matcher._parm_regs[j].second() == reg ) {
2169
tty->print("parm %d: ",j);
2170
domain->field_at(j + TypeFunc::Parms)->dump();
2171
tty->cr();
2172
break;
2173
}
2174
}
2175
if( j >= argcnt )
2176
tty->print_cr("HOLE, owned by SELF");
2177
}
2178
2179
// Old outgoing preserve area
2180
while( reg > _matcher._old_SP ) {
2181
reg = OptoReg::add(reg, -1);
2182
tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2183
}
2184
2185
// Old SP
2186
tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2187
reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2188
2189
// Preserve area dump
2190
int fixed_slots = C->fixed_slots();
2191
OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2192
OptoReg::Name return_addr = _matcher.return_addr();
2193
2194
reg = OptoReg::add(reg, -1);
2195
while (OptoReg::is_stack(reg)) {
2196
tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2197
if (return_addr == reg) {
2198
tty->print_cr("return address");
2199
} else if (reg >= begin_in_preserve) {
2200
// Preserved slots are present on x86
2201
if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2202
tty->print_cr("saved fp register");
2203
else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2204
VerifyStackAtCalls)
2205
tty->print_cr("0xBADB100D +VerifyStackAtCalls");
2206
else
2207
tty->print_cr("in_preserve");
2208
} else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2209
tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2210
} else {
2211
tty->print_cr("pad2, stack alignment");
2212
}
2213
reg = OptoReg::add(reg, -1);
2214
}
2215
2216
// Spill area dump
2217
reg = OptoReg::add(_matcher._new_SP, _framesize );
2218
while( reg > _matcher._out_arg_limit ) {
2219
reg = OptoReg::add(reg, -1);
2220
tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2221
}
2222
2223
// Outgoing argument area dump
2224
while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2225
reg = OptoReg::add(reg, -1);
2226
tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2227
}
2228
2229
// Outgoing new preserve area
2230
while( reg > _matcher._new_SP ) {
2231
reg = OptoReg::add(reg, -1);
2232
tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2233
}
2234
tty->print_cr("#");
2235
}
2236
2237
void PhaseChaitin::dump_bb( uint pre_order ) const {
2238
tty->print_cr("---dump of B%d---",pre_order);
2239
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2240
Block* block = _cfg.get_block(i);
2241
if (block->_pre_order == pre_order) {
2242
dump(block);
2243
}
2244
}
2245
}
2246
2247
void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2248
tty->print_cr("---dump of L%d---",lidx);
2249
2250
if (_ifg) {
2251
if (lidx >= _lrg_map.max_lrg_id()) {
2252
tty->print("Attempt to print live range index beyond max live range.\n");
2253
return;
2254
}
2255
tty->print("L%d: ",lidx);
2256
if (lidx < _ifg->_maxlrg) {
2257
lrgs(lidx).dump();
2258
} else {
2259
tty->print_cr("new LRG");
2260
}
2261
}
2262
if( _ifg && lidx < _ifg->_maxlrg) {
2263
tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2264
_ifg->neighbors(lidx)->dump();
2265
tty->cr();
2266
}
2267
// For all blocks
2268
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2269
Block* block = _cfg.get_block(i);
2270
int dump_once = 0;
2271
2272
// For all instructions
2273
for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2274
Node *n = block->get_node(j);
2275
if (_lrg_map.find_const(n) == lidx) {
2276
if (!dump_once++) {
2277
tty->cr();
2278
block->dump_head(&_cfg);
2279
}
2280
dump(n);
2281
continue;
2282
}
2283
if (!defs_only) {
2284
uint cnt = n->req();
2285
for( uint k = 1; k < cnt; k++ ) {
2286
Node *m = n->in(k);
2287
if (!m) {
2288
continue; // be robust in the dumper
2289
}
2290
if (_lrg_map.find_const(m) == lidx) {
2291
if (!dump_once++) {
2292
tty->cr();
2293
block->dump_head(&_cfg);
2294
}
2295
dump(n);
2296
}
2297
}
2298
}
2299
}
2300
} // End of per-block dump
2301
tty->cr();
2302
}
2303
#endif // not PRODUCT
2304
2305
int PhaseChaitin::_final_loads = 0;
2306
int PhaseChaitin::_final_stores = 0;
2307
int PhaseChaitin::_final_memoves= 0;
2308
int PhaseChaitin::_final_copies = 0;
2309
double PhaseChaitin::_final_load_cost = 0;
2310
double PhaseChaitin::_final_store_cost = 0;
2311
double PhaseChaitin::_final_memove_cost= 0;
2312
double PhaseChaitin::_final_copy_cost = 0;
2313
int PhaseChaitin::_conserv_coalesce = 0;
2314
int PhaseChaitin::_conserv_coalesce_pair = 0;
2315
int PhaseChaitin::_conserv_coalesce_trie = 0;
2316
int PhaseChaitin::_conserv_coalesce_quad = 0;
2317
int PhaseChaitin::_post_alloc = 0;
2318
int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2319
int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2320
int PhaseChaitin::_used_cisc_instructions = 0;
2321
int PhaseChaitin::_unused_cisc_instructions = 0;
2322
int PhaseChaitin::_allocator_attempts = 0;
2323
int PhaseChaitin::_allocator_successes = 0;
2324
2325
#ifndef PRODUCT
2326
uint PhaseChaitin::_high_pressure = 0;
2327
uint PhaseChaitin::_low_pressure = 0;
2328
2329
void PhaseChaitin::print_chaitin_statistics() {
2330
tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2331
tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2332
tty->print_cr("Adjusted spill cost = %7.0f.",
2333
_final_load_cost*4.0 + _final_store_cost * 2.0 +
2334
_final_copy_cost*1.0 + _final_memove_cost*12.0);
2335
tty->print("Conservatively coalesced %d copies, %d pairs",
2336
_conserv_coalesce, _conserv_coalesce_pair);
2337
if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2338
tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2339
tty->print_cr(", %d post alloc.", _post_alloc);
2340
if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2341
tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2342
_lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2343
if( _used_cisc_instructions || _unused_cisc_instructions )
2344
tty->print_cr("Used cisc instruction %d, remained in register %d",
2345
_used_cisc_instructions, _unused_cisc_instructions);
2346
if( _allocator_successes != 0 )
2347
tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2348
tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2349
}
2350
#endif // not PRODUCT
2351
2352