Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/chaitin.hpp
32285 views
1
/*
2
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_OPTO_CHAITIN_HPP
26
#define SHARE_VM_OPTO_CHAITIN_HPP
27
28
#include "code/vmreg.hpp"
29
#include "libadt/port.hpp"
30
#include "memory/resourceArea.hpp"
31
#include "opto/connode.hpp"
32
#include "opto/live.hpp"
33
#include "opto/matcher.hpp"
34
#include "opto/phase.hpp"
35
#include "opto/regalloc.hpp"
36
#include "opto/regmask.hpp"
37
38
class LoopTree;
39
class MachCallNode;
40
class MachSafePointNode;
41
class Matcher;
42
class PhaseCFG;
43
class PhaseLive;
44
class PhaseRegAlloc;
45
class PhaseChaitin;
46
47
#define OPTO_DEBUG_SPLIT_FREQ BLOCK_FREQUENCY(0.001)
48
#define OPTO_LRG_HIGH_FREQ BLOCK_FREQUENCY(0.25)
49
50
//------------------------------LRG--------------------------------------------
51
// Live-RanGe structure.
52
class LRG : public ResourceObj {
53
friend class VMStructs;
54
public:
55
static const uint AllStack_size = 0xFFFFF; // This mask size is used to tell that the mask of this LRG supports stack positions
56
enum { SPILL_REG=29999 }; // Register number of a spilled LRG
57
58
double _cost; // 2 for loads/1 for stores times block freq
59
double _area; // Sum of all simultaneously live values
60
double score() const; // Compute score from cost and area
61
double _maxfreq; // Maximum frequency of any def or use
62
63
Node *_def; // Check for multi-def live ranges
64
#ifndef PRODUCT
65
GrowableArray<Node*>* _defs;
66
#endif
67
68
uint _risk_bias; // Index of LRG which we want to avoid color
69
uint _copy_bias; // Index of LRG which we want to share color
70
71
uint _next; // Index of next LRG in linked list
72
uint _prev; // Index of prev LRG in linked list
73
private:
74
uint _reg; // Chosen register; undefined if mask is plural
75
public:
76
// Return chosen register for this LRG. Error if the LRG is not bound to
77
// a single register.
78
OptoReg::Name reg() const { return OptoReg::Name(_reg); }
79
void set_reg( OptoReg::Name r ) { _reg = r; }
80
81
private:
82
uint _eff_degree; // Effective degree: Sum of neighbors _num_regs
83
public:
84
int degree() const { assert( _degree_valid , "" ); return _eff_degree; }
85
// Degree starts not valid and any change to the IFG neighbor
86
// set makes it not valid.
87
void set_degree( uint degree ) {
88
_eff_degree = degree;
89
debug_only(_degree_valid = 1;)
90
assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
91
}
92
// Made a change that hammered degree
93
void invalid_degree() { debug_only(_degree_valid=0;) }
94
// Incrementally modify degree. If it was correct, it should remain correct
95
void inc_degree( uint mod ) {
96
_eff_degree += mod;
97
assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
98
}
99
// Compute the degree between 2 live ranges
100
int compute_degree( LRG &l ) const;
101
102
private:
103
RegMask _mask; // Allowed registers for this LRG
104
uint _mask_size; // cache of _mask.Size();
105
public:
106
int compute_mask_size() const { return _mask.is_AllStack() ? AllStack_size : _mask.Size(); }
107
void set_mask_size( int size ) {
108
assert((size == (int)AllStack_size) || (size == (int)_mask.Size()), "");
109
_mask_size = size;
110
#ifdef ASSERT
111
_msize_valid=1;
112
if (_is_vector) {
113
assert(!_fat_proj, "sanity");
114
_mask.verify_sets(_num_regs);
115
} else if (_num_regs == 2 && !_fat_proj) {
116
_mask.verify_pairs();
117
}
118
#endif
119
}
120
void compute_set_mask_size() { set_mask_size(compute_mask_size()); }
121
int mask_size() const { assert( _msize_valid, "mask size not valid" );
122
return _mask_size; }
123
// Get the last mask size computed, even if it does not match the
124
// count of bits in the current mask.
125
int get_invalid_mask_size() const { return _mask_size; }
126
const RegMask &mask() const { return _mask; }
127
void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)}
128
void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)}
129
void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
130
void Clear() { _mask.Clear() ; debug_only(_msize_valid=1); _mask_size = 0; }
131
void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
132
void Insert( OptoReg::Name reg ) { _mask.Insert(reg); debug_only(_msize_valid=0;) }
133
void Remove( OptoReg::Name reg ) { _mask.Remove(reg); debug_only(_msize_valid=0;) }
134
void clear_to_pairs() { _mask.clear_to_pairs(); debug_only(_msize_valid=0;) }
135
void clear_to_sets() { _mask.clear_to_sets(_num_regs); debug_only(_msize_valid=0;) }
136
137
// Number of registers this live range uses when it colors
138
private:
139
uint8 _num_regs; // 2 for Longs and Doubles, 1 for all else
140
// except _num_regs is kill count for fat_proj
141
public:
142
int num_regs() const { return _num_regs; }
143
void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; }
144
145
private:
146
// Number of physical registers this live range uses when it colors
147
// Architecture and register-set dependent
148
uint8 _reg_pressure;
149
public:
150
void set_reg_pressure(int i) { _reg_pressure = i; }
151
int reg_pressure() const { return _reg_pressure; }
152
153
// How much 'wiggle room' does this live range have?
154
// How many color choices can it make (scaled by _num_regs)?
155
int degrees_of_freedom() const { return mask_size() - _num_regs; }
156
// Bound LRGs have ZERO degrees of freedom. We also count
157
// must_spill as bound.
158
bool is_bound () const { return _is_bound; }
159
// Negative degrees-of-freedom; even with no neighbors this
160
// live range must spill.
161
bool not_free() const { return degrees_of_freedom() < 0; }
162
// Is this live range of "low-degree"? Trivially colorable?
163
bool lo_degree () const { return degree() <= degrees_of_freedom(); }
164
// Is this live range just barely "low-degree"? Trivially colorable?
165
bool just_lo_degree () const { return degree() == degrees_of_freedom(); }
166
167
uint _is_oop:1, // Live-range holds an oop
168
_is_float:1, // True if in float registers
169
_is_vector:1, // True if in vector registers
170
_was_spilled1:1, // True if prior spilling on def
171
_was_spilled2:1, // True if twice prior spilling on def
172
_is_bound:1, // live range starts life with no
173
// degrees of freedom.
174
_direct_conflict:1, // True if def and use registers in conflict
175
_must_spill:1, // live range has lost all degrees of freedom
176
// If _fat_proj is set, live range does NOT require aligned, adjacent
177
// registers and has NO interferences.
178
// If _fat_proj is clear, live range requires num_regs() to be a power of
179
// 2, and it requires registers to form an aligned, adjacent set.
180
_fat_proj:1, //
181
_was_lo:1, // Was lo-degree prior to coalesce
182
_msize_valid:1, // _mask_size cache valid
183
_degree_valid:1, // _degree cache valid
184
_has_copy:1, // Adjacent to some copy instruction
185
_at_risk:1; // Simplify says this guy is at risk to spill
186
187
188
// Alive if non-zero, dead if zero
189
bool alive() const { return _def != NULL; }
190
bool is_multidef() const { return _def == NodeSentinel; }
191
bool is_singledef() const { return _def != NodeSentinel; }
192
193
#ifndef PRODUCT
194
void dump( ) const;
195
#endif
196
};
197
198
//------------------------------IFG--------------------------------------------
199
// InterFerence Graph
200
// An undirected graph implementation. Created with a fixed number of
201
// vertices. Edges can be added & tested. Vertices can be removed, then
202
// added back later with all edges intact. Can add edges between one vertex
203
// and a list of other vertices. Can union vertices (and their edges)
204
// together. The IFG needs to be really really fast, and also fairly
205
// abstract! It needs abstraction so I can fiddle with the implementation to
206
// get even more speed.
207
class PhaseIFG : public Phase {
208
friend class VMStructs;
209
// Current implementation: a triangular adjacency list.
210
211
// Array of adjacency-lists, indexed by live-range number
212
IndexSet *_adjs;
213
214
// Assertion bit for proper use of Squaring
215
bool _is_square;
216
217
// Live range structure goes here
218
LRG *_lrgs; // Array of LRG structures
219
220
public:
221
// Largest live-range number
222
uint _maxlrg;
223
224
Arena *_arena;
225
226
// Keep track of inserted and deleted Nodes
227
VectorSet *_yanked;
228
229
PhaseIFG( Arena *arena );
230
void init( uint maxlrg );
231
232
// Add edge between a and b. Returns true if actually addded.
233
int add_edge( uint a, uint b );
234
235
// Add edge between a and everything in the vector
236
void add_vector( uint a, IndexSet *vec );
237
238
// Test for edge existance
239
int test_edge( uint a, uint b ) const;
240
241
// Square-up matrix for faster Union
242
void SquareUp();
243
244
// Return number of LRG neighbors
245
uint neighbor_cnt( uint a ) const { return _adjs[a].count(); }
246
// Union edges of b into a on Squared-up matrix
247
void Union( uint a, uint b );
248
// Test for edge in Squared-up matrix
249
int test_edge_sq( uint a, uint b ) const;
250
// Yank a Node and all connected edges from the IFG. Be prepared to
251
// re-insert the yanked Node in reverse order of yanking. Return a
252
// list of neighbors (edges) yanked.
253
IndexSet *remove_node( uint a );
254
// Reinsert a yanked Node
255
void re_insert( uint a );
256
// Return set of neighbors
257
IndexSet *neighbors( uint a ) const { return &_adjs[a]; }
258
259
#ifndef PRODUCT
260
// Dump the IFG
261
void dump() const;
262
void stats() const;
263
void verify( const PhaseChaitin * ) const;
264
#endif
265
266
//--------------- Live Range Accessors
267
LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; }
268
269
// Compute and set effective degree. Might be folded into SquareUp().
270
void Compute_Effective_Degree();
271
272
// Compute effective degree as the sum of neighbors' _sizes.
273
int effective_degree( uint lidx ) const;
274
};
275
276
// The LiveRangeMap class is responsible for storing node to live range id mapping.
277
// Each node is mapped to a live range id (a virtual register). Nodes that are
278
// not considered for register allocation are given live range id 0.
279
class LiveRangeMap VALUE_OBJ_CLASS_SPEC {
280
281
private:
282
283
uint _max_lrg_id;
284
285
// Union-find map. Declared as a short for speed.
286
// Indexed by live-range number, it returns the compacted live-range number
287
LRG_List _uf_map;
288
289
// Map from Nodes to live ranges
290
LRG_List _names;
291
292
// Straight out of Tarjan's union-find algorithm
293
uint find_compress(const Node *node) {
294
uint lrg_id = find_compress(_names.at(node->_idx));
295
_names.at_put(node->_idx, lrg_id);
296
return lrg_id;
297
}
298
299
uint find_compress(uint lrg);
300
301
public:
302
303
const LRG_List& names() {
304
return _names;
305
}
306
307
uint max_lrg_id() const {
308
return _max_lrg_id;
309
}
310
311
void set_max_lrg_id(uint max_lrg_id) {
312
_max_lrg_id = max_lrg_id;
313
}
314
315
uint size() const {
316
return _names.length();
317
}
318
319
uint live_range_id(uint idx) const {
320
return _names.at(idx);
321
}
322
323
uint live_range_id(const Node *node) const {
324
return _names.at(node->_idx);
325
}
326
327
uint uf_live_range_id(uint lrg_id) const {
328
return _uf_map.at(lrg_id);
329
}
330
331
void map(uint idx, uint lrg_id) {
332
_names.at_put(idx, lrg_id);
333
}
334
335
void uf_map(uint dst_lrg_id, uint src_lrg_id) {
336
_uf_map.at_put(dst_lrg_id, src_lrg_id);
337
}
338
339
void extend(uint idx, uint lrg_id) {
340
_names.at_put_grow(idx, lrg_id);
341
}
342
343
void uf_extend(uint dst_lrg_id, uint src_lrg_id) {
344
_uf_map.at_put_grow(dst_lrg_id, src_lrg_id);
345
}
346
347
LiveRangeMap(Arena* arena, uint unique)
348
: _names(arena, unique, unique, 0)
349
, _uf_map(arena, unique, unique, 0)
350
, _max_lrg_id(0) {}
351
352
uint find_id( const Node *n ) {
353
uint retval = live_range_id(n);
354
assert(retval == find(n),"Invalid node to lidx mapping");
355
return retval;
356
}
357
358
// Reset the Union-Find map to identity
359
void reset_uf_map(uint max_lrg_id);
360
361
// Make all Nodes map directly to their final live range; no need for
362
// the Union-Find mapping after this call.
363
void compress_uf_map_for_nodes();
364
365
uint find(uint lidx) {
366
uint uf_lidx = _uf_map.at(lidx);
367
return (uf_lidx == lidx) ? uf_lidx : find_compress(lidx);
368
}
369
370
// Convert a Node into a Live Range Index - a lidx
371
uint find(const Node *node) {
372
uint lidx = live_range_id(node);
373
uint uf_lidx = _uf_map.at(lidx);
374
return (uf_lidx == lidx) ? uf_lidx : find_compress(node);
375
}
376
377
// Like Find above, but no path compress, so bad asymptotic behavior
378
uint find_const(uint lrg) const;
379
380
// Like Find above, but no path compress, so bad asymptotic behavior
381
uint find_const(const Node *node) const {
382
if(node->_idx >= (uint)_names.length()) {
383
return 0; // not mapped, usual for debug dump
384
}
385
return find_const(_names.at(node->_idx));
386
}
387
};
388
389
//------------------------------Chaitin----------------------------------------
390
// Briggs-Chaitin style allocation, mostly.
391
class PhaseChaitin : public PhaseRegAlloc {
392
friend class VMStructs;
393
394
int _trip_cnt;
395
int _alternate;
396
397
LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); }
398
PhaseLive *_live; // Liveness, used in the interference graph
399
PhaseIFG *_ifg; // Interference graph (for original chunk)
400
Node_List **_lrg_nodes; // Array of node; lists for lrgs which spill
401
VectorSet _spilled_once; // Nodes that have been spilled
402
VectorSet _spilled_twice; // Nodes that have been spilled twice
403
404
// Combine the Live Range Indices for these 2 Nodes into a single live
405
// range. Future requests for any Node in either live range will
406
// return the live range index for the combined live range.
407
void Union( const Node *src, const Node *dst );
408
409
void new_lrg( const Node *x, uint lrg );
410
411
// Compact live ranges, removing unused ones. Return new maxlrg.
412
void compact();
413
414
uint _lo_degree; // Head of lo-degree LRGs list
415
uint _lo_stk_degree; // Head of lo-stk-degree LRGs list
416
uint _hi_degree; // Head of hi-degree LRGs list
417
uint _simplified; // Linked list head of simplified LRGs
418
419
// Helper functions for Split()
420
uint split_DEF( Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
421
uint split_USE( Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
422
423
//------------------------------clone_projs------------------------------------
424
// After cloning some rematerialized instruction, clone any MachProj's that
425
// follow it. Example: Intel zero is XOR, kills flags. Sparc FP constants
426
// use G3 as an address temp.
427
int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id);
428
429
int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) {
430
uint max_lrg_id = lrg_map.max_lrg_id();
431
int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id);
432
if (found_projs > 0) {
433
// max_lrg_id is updated during call above
434
lrg_map.set_max_lrg_id(max_lrg_id);
435
}
436
return found_projs;
437
}
438
439
Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
440
int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
441
// True if lidx is used before any real register is def'd in the block
442
bool prompt_use( Block *b, uint lidx );
443
Node *get_spillcopy_wide( Node *def, Node *use, uint uidx );
444
// Insert the spill at chosen location. Skip over any intervening Proj's or
445
// Phis. Skip over a CatchNode and projs, inserting in the fall-through block
446
// instead. Update high-pressure indices. Create a new live range.
447
void insert_proj( Block *b, uint i, Node *spill, uint maxlrg );
448
449
bool is_high_pressure( Block *b, LRG *lrg, uint insidx );
450
451
uint _oldphi; // Node index which separates pre-allocation nodes
452
453
Block **_blks; // Array of blocks sorted by frequency for coalescing
454
455
float _high_frequency_lrg; // Frequency at which LRG will be spilled for debug info
456
457
#ifndef PRODUCT
458
bool _trace_spilling;
459
#endif
460
461
public:
462
PhaseChaitin( uint unique, PhaseCFG &cfg, Matcher &matcher );
463
~PhaseChaitin() {}
464
465
LiveRangeMap _lrg_map;
466
467
// Do all the real work of allocate
468
void Register_Allocate();
469
470
float high_frequency_lrg() const { return _high_frequency_lrg; }
471
472
#ifndef PRODUCT
473
bool trace_spilling() const { return _trace_spilling; }
474
#endif
475
476
private:
477
// De-SSA the world. Assign registers to Nodes. Use the same register for
478
// all inputs to a PhiNode, effectively coalescing live ranges. Insert
479
// copies as needed.
480
void de_ssa();
481
482
// Add edge between reg and everything in the vector.
483
// Same as _ifg->add_vector(reg,live) EXCEPT use the RegMask
484
// information to trim the set of interferences. Return the
485
// count of edges added.
486
void interfere_with_live( uint reg, IndexSet *live );
487
// Count register pressure for asserts
488
uint count_int_pressure( IndexSet *liveout );
489
uint count_float_pressure( IndexSet *liveout );
490
491
// Build the interference graph using virtual registers only.
492
// Used for aggressive coalescing.
493
void build_ifg_virtual( );
494
495
// Build the interference graph using physical registers when available.
496
// That is, if 2 live ranges are simultaneously alive but in their
497
// acceptable register sets do not overlap, then they do not interfere.
498
uint build_ifg_physical( ResourceArea *a );
499
500
// Gather LiveRanGe information, including register masks and base pointer/
501
// derived pointer relationships.
502
void gather_lrg_masks( bool mod_cisc_masks );
503
504
// Force the bases of derived pointers to be alive at GC points.
505
bool stretch_base_pointer_live_ranges( ResourceArea *a );
506
// Helper to stretch above; recursively discover the base Node for
507
// a given derived Node. Easy for AddP-related machine nodes, but
508
// needs to be recursive for derived Phis.
509
Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg );
510
511
// Set the was-lo-degree bit. Conservative coalescing should not change the
512
// colorability of the graph. If any live range was of low-degree before
513
// coalescing, it should Simplify. This call sets the was-lo-degree bit.
514
void set_was_low();
515
516
// Split live-ranges that must spill due to register conflicts (as opposed
517
// to capacity spills). Typically these are things def'd in a register
518
// and used on the stack or vice-versa.
519
void pre_spill();
520
521
// Init LRG caching of degree, numregs. Init lo_degree list.
522
void cache_lrg_info( );
523
524
// Simplify the IFG by removing LRGs of low degree with no copies
525
void Pre_Simplify();
526
527
// Simplify the IFG by removing LRGs of low degree
528
void Simplify();
529
530
// Select colors by re-inserting edges into the IFG.
531
// Return TRUE if any spills occurred.
532
uint Select( );
533
// Helper function for select which allows biased coloring
534
OptoReg::Name choose_color( LRG &lrg, int chunk );
535
// Helper function which implements biasing heuristic
536
OptoReg::Name bias_color( LRG &lrg, int chunk );
537
538
// Split uncolorable live ranges
539
// Return new number of live ranges
540
uint Split(uint maxlrg, ResourceArea* split_arena);
541
542
// Copy 'was_spilled'-edness from one Node to another.
543
void copy_was_spilled( Node *src, Node *dst );
544
// Set the 'spilled_once' or 'spilled_twice' flag on a node.
545
void set_was_spilled( Node *n );
546
547
// Convert ideal spill-nodes into machine loads & stores
548
// Set C->failing when fixup spills could not complete, node limit exceeded.
549
void fixup_spills();
550
551
// Post-Allocation peephole copy removal
552
void post_allocate_copy_removal();
553
Node *skip_copies( Node *c );
554
// Replace the old node with the current live version of that value
555
// and yank the old value if it's dead.
556
int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg,
557
Block *current_block, Node_List& value, Node_List& regnd ) {
558
Node* v = regnd[nreg];
559
assert(v->outcnt() != 0, "no dead values");
560
old->replace_by(v);
561
return yank_if_dead(old, current_block, &value, &regnd);
562
}
563
564
int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
565
return yank_if_dead_recurse(old, old, current_block, value, regnd);
566
}
567
int yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
568
Node_List *value, Node_List *regnd);
569
int yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd );
570
int elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs );
571
int use_prior_register( Node *copy, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd );
572
bool may_be_copy_of_callee( Node *def ) const;
573
574
// If nreg already contains the same constant as val then eliminate it
575
bool eliminate_copy_of_constant(Node* val, Node* n,
576
Block *current_block, Node_List& value, Node_List &regnd,
577
OptoReg::Name nreg, OptoReg::Name nreg2);
578
// Extend the node to LRG mapping
579
void add_reference( const Node *node, const Node *old_node);
580
581
// Record the first use of a def in the block for a register.
582
class RegDefUse {
583
Node* _def;
584
Node* _first_use;
585
public:
586
RegDefUse() : _def(NULL), _first_use(NULL) { }
587
Node* def() const { return _def; }
588
Node* first_use() const { return _first_use; }
589
590
void update(Node* def, Node* use) {
591
if (_def != def) {
592
_def = def;
593
_first_use = use;
594
}
595
}
596
void clear() {
597
_def = NULL;
598
_first_use = NULL;
599
}
600
};
601
typedef GrowableArray<RegDefUse> RegToDefUseMap;
602
int possibly_merge_multidef(Node *n, uint k, Block *block, RegToDefUseMap& reg2defuse);
603
604
// Merge nodes that are a part of a multidef lrg and produce the same value within a block.
605
void merge_multidefs();
606
607
private:
608
609
static int _final_loads, _final_stores, _final_copies, _final_memoves;
610
static double _final_load_cost, _final_store_cost, _final_copy_cost, _final_memove_cost;
611
static int _conserv_coalesce, _conserv_coalesce_pair;
612
static int _conserv_coalesce_trie, _conserv_coalesce_quad;
613
static int _post_alloc;
614
static int _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce;
615
static int _used_cisc_instructions, _unused_cisc_instructions;
616
static int _allocator_attempts, _allocator_successes;
617
618
#ifndef PRODUCT
619
static uint _high_pressure, _low_pressure;
620
621
void dump() const;
622
void dump( const Node *n ) const;
623
void dump( const Block * b ) const;
624
void dump_degree_lists() const;
625
void dump_simplified() const;
626
void dump_lrg( uint lidx, bool defs_only) const;
627
void dump_lrg( uint lidx) const {
628
// dump defs and uses by default
629
dump_lrg(lidx, false);
630
}
631
void dump_bb( uint pre_order ) const;
632
633
// Verify that base pointers and derived pointers are still sane
634
void verify_base_ptrs( ResourceArea *a ) const;
635
636
void verify( ResourceArea *a, bool verify_ifg = false ) const;
637
638
void dump_for_spill_split_recycle() const;
639
640
public:
641
void dump_frame() const;
642
char *dump_register( const Node *n, char *buf ) const;
643
private:
644
static void print_chaitin_statistics();
645
#endif
646
friend class PhaseCoalesce;
647
friend class PhaseAggressiveCoalesce;
648
friend class PhaseConservativeCoalesce;
649
};
650
651
#endif // SHARE_VM_OPTO_CHAITIN_HPP
652
653