Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/compile.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "asm/macroAssembler.hpp"
27
#include "asm/macroAssembler.inline.hpp"
28
#include "ci/ciReplay.hpp"
29
#include "classfile/systemDictionary.hpp"
30
#include "code/exceptionHandlerTable.hpp"
31
#include "code/nmethod.hpp"
32
#include "compiler/compileLog.hpp"
33
#include "compiler/disassembler.hpp"
34
#include "compiler/oopMap.hpp"
35
#include "jfr/jfrEvents.hpp"
36
#include "opto/addnode.hpp"
37
#include "opto/block.hpp"
38
#include "opto/c2compiler.hpp"
39
#include "opto/callGenerator.hpp"
40
#include "opto/callnode.hpp"
41
#include "opto/cfgnode.hpp"
42
#include "opto/chaitin.hpp"
43
#include "opto/compile.hpp"
44
#include "opto/connode.hpp"
45
#include "opto/divnode.hpp"
46
#include "opto/escape.hpp"
47
#include "opto/idealGraphPrinter.hpp"
48
#include "opto/loopnode.hpp"
49
#include "opto/machnode.hpp"
50
#include "opto/macro.hpp"
51
#include "opto/matcher.hpp"
52
#include "opto/mathexactnode.hpp"
53
#include "opto/memnode.hpp"
54
#include "opto/mulnode.hpp"
55
#include "opto/node.hpp"
56
#include "opto/opcodes.hpp"
57
#include "opto/output.hpp"
58
#include "opto/parse.hpp"
59
#include "opto/phaseX.hpp"
60
#include "opto/rootnode.hpp"
61
#include "opto/runtime.hpp"
62
#include "opto/stringopts.hpp"
63
#include "opto/type.hpp"
64
#include "opto/vectornode.hpp"
65
#include "runtime/arguments.hpp"
66
#include "runtime/signature.hpp"
67
#include "runtime/stubRoutines.hpp"
68
#include "runtime/timer.hpp"
69
#include "utilities/copy.hpp"
70
#if defined AD_MD_HPP
71
# include AD_MD_HPP
72
#elif defined TARGET_ARCH_MODEL_x86_32
73
# include "adfiles/ad_x86_32.hpp"
74
#elif defined TARGET_ARCH_MODEL_x86_64
75
# include "adfiles/ad_x86_64.hpp"
76
#elif defined TARGET_ARCH_MODEL_aarch64
77
# include "adfiles/ad_aarch64.hpp"
78
#elif defined TARGET_ARCH_MODEL_sparc
79
# include "adfiles/ad_sparc.hpp"
80
#elif defined TARGET_ARCH_MODEL_zero
81
# include "adfiles/ad_zero.hpp"
82
#elif defined TARGET_ARCH_MODEL_ppc_64
83
# include "adfiles/ad_ppc_64.hpp"
84
#endif
85
86
#if INCLUDE_ALL_GCS
87
#include "gc_implementation/shenandoah/shenandoahForwarding.hpp"
88
#include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp"
89
#endif
90
91
// -------------------- Compile::mach_constant_base_node -----------------------
92
// Constant table base node singleton.
93
MachConstantBaseNode* Compile::mach_constant_base_node() {
94
if (_mach_constant_base_node == NULL) {
95
_mach_constant_base_node = new (C) MachConstantBaseNode();
96
_mach_constant_base_node->add_req(C->root());
97
}
98
return _mach_constant_base_node;
99
}
100
101
102
/// Support for intrinsics.
103
104
// Return the index at which m must be inserted (or already exists).
105
// The sort order is by the address of the ciMethod, with is_virtual as minor key.
106
int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
107
#ifdef ASSERT
108
for (int i = 1; i < _intrinsics->length(); i++) {
109
CallGenerator* cg1 = _intrinsics->at(i-1);
110
CallGenerator* cg2 = _intrinsics->at(i);
111
assert(cg1->method() != cg2->method()
112
? cg1->method() < cg2->method()
113
: cg1->is_virtual() < cg2->is_virtual(),
114
"compiler intrinsics list must stay sorted");
115
}
116
#endif
117
// Binary search sorted list, in decreasing intervals [lo, hi].
118
int lo = 0, hi = _intrinsics->length()-1;
119
while (lo <= hi) {
120
int mid = (uint)(hi + lo) / 2;
121
ciMethod* mid_m = _intrinsics->at(mid)->method();
122
if (m < mid_m) {
123
hi = mid-1;
124
} else if (m > mid_m) {
125
lo = mid+1;
126
} else {
127
// look at minor sort key
128
bool mid_virt = _intrinsics->at(mid)->is_virtual();
129
if (is_virtual < mid_virt) {
130
hi = mid-1;
131
} else if (is_virtual > mid_virt) {
132
lo = mid+1;
133
} else {
134
return mid; // exact match
135
}
136
}
137
}
138
return lo; // inexact match
139
}
140
141
void Compile::register_intrinsic(CallGenerator* cg) {
142
if (_intrinsics == NULL) {
143
_intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
144
}
145
// This code is stolen from ciObjectFactory::insert.
146
// Really, GrowableArray should have methods for
147
// insert_at, remove_at, and binary_search.
148
int len = _intrinsics->length();
149
int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
150
if (index == len) {
151
_intrinsics->append(cg);
152
} else {
153
#ifdef ASSERT
154
CallGenerator* oldcg = _intrinsics->at(index);
155
assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
156
#endif
157
_intrinsics->append(_intrinsics->at(len-1));
158
int pos;
159
for (pos = len-2; pos >= index; pos--) {
160
_intrinsics->at_put(pos+1,_intrinsics->at(pos));
161
}
162
_intrinsics->at_put(index, cg);
163
}
164
assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
165
}
166
167
CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
168
assert(m->is_loaded(), "don't try this on unloaded methods");
169
if (_intrinsics != NULL) {
170
int index = intrinsic_insertion_index(m, is_virtual);
171
if (index < _intrinsics->length()
172
&& _intrinsics->at(index)->method() == m
173
&& _intrinsics->at(index)->is_virtual() == is_virtual) {
174
return _intrinsics->at(index);
175
}
176
}
177
// Lazily create intrinsics for intrinsic IDs well-known in the runtime.
178
if (m->intrinsic_id() != vmIntrinsics::_none &&
179
m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
180
CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
181
if (cg != NULL) {
182
// Save it for next time:
183
register_intrinsic(cg);
184
return cg;
185
} else {
186
gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
187
}
188
}
189
return NULL;
190
}
191
192
// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
193
// in library_call.cpp.
194
195
196
#ifndef PRODUCT
197
// statistics gathering...
198
199
juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
200
jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
201
202
bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
203
assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
204
int oflags = _intrinsic_hist_flags[id];
205
assert(flags != 0, "what happened?");
206
if (is_virtual) {
207
flags |= _intrinsic_virtual;
208
}
209
bool changed = (flags != oflags);
210
if ((flags & _intrinsic_worked) != 0) {
211
juint count = (_intrinsic_hist_count[id] += 1);
212
if (count == 1) {
213
changed = true; // first time
214
}
215
// increment the overall count also:
216
_intrinsic_hist_count[vmIntrinsics::_none] += 1;
217
}
218
if (changed) {
219
if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
220
// Something changed about the intrinsic's virtuality.
221
if ((flags & _intrinsic_virtual) != 0) {
222
// This is the first use of this intrinsic as a virtual call.
223
if (oflags != 0) {
224
// We already saw it as a non-virtual, so note both cases.
225
flags |= _intrinsic_both;
226
}
227
} else if ((oflags & _intrinsic_both) == 0) {
228
// This is the first use of this intrinsic as a non-virtual
229
flags |= _intrinsic_both;
230
}
231
}
232
_intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
233
}
234
// update the overall flags also:
235
_intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
236
return changed;
237
}
238
239
static char* format_flags(int flags, char* buf) {
240
buf[0] = 0;
241
if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
242
if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
243
if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
244
if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
245
if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
246
if (buf[0] == 0) strcat(buf, ",");
247
assert(buf[0] == ',', "must be");
248
return &buf[1];
249
}
250
251
void Compile::print_intrinsic_statistics() {
252
char flagsbuf[100];
253
ttyLocker ttyl;
254
if (xtty != NULL) xtty->head("statistics type='intrinsic'");
255
tty->print_cr("Compiler intrinsic usage:");
256
juint total = _intrinsic_hist_count[vmIntrinsics::_none];
257
if (total == 0) total = 1; // avoid div0 in case of no successes
258
#define PRINT_STAT_LINE(name, c, f) \
259
tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
260
for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
261
vmIntrinsics::ID id = (vmIntrinsics::ID) index;
262
int flags = _intrinsic_hist_flags[id];
263
juint count = _intrinsic_hist_count[id];
264
if ((flags | count) != 0) {
265
PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
266
}
267
}
268
PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
269
if (xtty != NULL) xtty->tail("statistics");
270
}
271
272
void Compile::print_statistics() {
273
{ ttyLocker ttyl;
274
if (xtty != NULL) xtty->head("statistics type='opto'");
275
Parse::print_statistics();
276
PhaseCCP::print_statistics();
277
PhaseRegAlloc::print_statistics();
278
Scheduling::print_statistics();
279
PhasePeephole::print_statistics();
280
PhaseIdealLoop::print_statistics();
281
if (xtty != NULL) xtty->tail("statistics");
282
}
283
if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
284
// put this under its own <statistics> element.
285
print_intrinsic_statistics();
286
}
287
}
288
#endif //PRODUCT
289
290
// Support for bundling info
291
Bundle* Compile::node_bundling(const Node *n) {
292
assert(valid_bundle_info(n), "oob");
293
return &_node_bundling_base[n->_idx];
294
}
295
296
bool Compile::valid_bundle_info(const Node *n) {
297
return (_node_bundling_limit > n->_idx);
298
}
299
300
301
void Compile::gvn_replace_by(Node* n, Node* nn) {
302
for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
303
Node* use = n->last_out(i);
304
bool is_in_table = initial_gvn()->hash_delete(use);
305
uint uses_found = 0;
306
for (uint j = 0; j < use->len(); j++) {
307
if (use->in(j) == n) {
308
if (j < use->req())
309
use->set_req(j, nn);
310
else
311
use->set_prec(j, nn);
312
uses_found++;
313
}
314
}
315
if (is_in_table) {
316
// reinsert into table
317
initial_gvn()->hash_find_insert(use);
318
}
319
record_for_igvn(use);
320
i -= uses_found; // we deleted 1 or more copies of this edge
321
}
322
}
323
324
325
static inline bool not_a_node(const Node* n) {
326
if (n == NULL) return true;
327
if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
328
if (*(address*)n == badAddress) return true; // kill by Node::destruct
329
return false;
330
}
331
332
// Identify all nodes that are reachable from below, useful.
333
// Use breadth-first pass that records state in a Unique_Node_List,
334
// recursive traversal is slower.
335
void Compile::identify_useful_nodes(Unique_Node_List &useful) {
336
int estimated_worklist_size = live_nodes();
337
useful.map( estimated_worklist_size, NULL ); // preallocate space
338
339
// Initialize worklist
340
if (root() != NULL) { useful.push(root()); }
341
// If 'top' is cached, declare it useful to preserve cached node
342
if( cached_top_node() ) { useful.push(cached_top_node()); }
343
344
// Push all useful nodes onto the list, breadthfirst
345
for( uint next = 0; next < useful.size(); ++next ) {
346
assert( next < unique(), "Unique useful nodes < total nodes");
347
Node *n = useful.at(next);
348
uint max = n->len();
349
for( uint i = 0; i < max; ++i ) {
350
Node *m = n->in(i);
351
if (not_a_node(m)) continue;
352
useful.push(m);
353
}
354
}
355
}
356
357
// Update dead_node_list with any missing dead nodes using useful
358
// list. Consider all non-useful nodes to be useless i.e., dead nodes.
359
void Compile::update_dead_node_list(Unique_Node_List &useful) {
360
uint max_idx = unique();
361
VectorSet& useful_node_set = useful.member_set();
362
363
for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
364
// If node with index node_idx is not in useful set,
365
// mark it as dead in dead node list.
366
if (! useful_node_set.test(node_idx) ) {
367
record_dead_node(node_idx);
368
}
369
}
370
}
371
372
void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
373
int shift = 0;
374
for (int i = 0; i < inlines->length(); i++) {
375
CallGenerator* cg = inlines->at(i);
376
CallNode* call = cg->call_node();
377
if (shift > 0) {
378
inlines->at_put(i-shift, cg);
379
}
380
if (!useful.member(call)) {
381
shift++;
382
}
383
}
384
inlines->trunc_to(inlines->length()-shift);
385
}
386
387
// Disconnect all useless nodes by disconnecting those at the boundary.
388
void Compile::remove_useless_nodes(Unique_Node_List &useful) {
389
uint next = 0;
390
while (next < useful.size()) {
391
Node *n = useful.at(next++);
392
if (n->is_SafePoint()) {
393
// We're done with a parsing phase. Replaced nodes are not valid
394
// beyond that point.
395
n->as_SafePoint()->delete_replaced_nodes();
396
}
397
// Use raw traversal of out edges since this code removes out edges
398
int max = n->outcnt();
399
for (int j = 0; j < max; ++j) {
400
Node* child = n->raw_out(j);
401
if (! useful.member(child)) {
402
assert(!child->is_top() || child != top(),
403
"If top is cached in Compile object it is in useful list");
404
// Only need to remove this out-edge to the useless node
405
n->raw_del_out(j);
406
--j;
407
--max;
408
}
409
}
410
if (n->outcnt() == 1 && n->has_special_unique_user()) {
411
record_for_igvn(n->unique_out());
412
}
413
if (n->Opcode() == Op_AddP && CallLeafNode::has_only_g1_wb_pre_uses(n)) {
414
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
415
record_for_igvn(n->fast_out(i));
416
}
417
}
418
}
419
// Remove useless macro and predicate opaq nodes
420
for (int i = C->macro_count()-1; i >= 0; i--) {
421
Node* n = C->macro_node(i);
422
if (!useful.member(n)) {
423
remove_macro_node(n);
424
}
425
}
426
// Remove useless CastII nodes with range check dependency
427
for (int i = range_check_cast_count() - 1; i >= 0; i--) {
428
Node* cast = range_check_cast_node(i);
429
if (!useful.member(cast)) {
430
remove_range_check_cast(cast);
431
}
432
}
433
// Remove useless expensive node
434
for (int i = C->expensive_count()-1; i >= 0; i--) {
435
Node* n = C->expensive_node(i);
436
if (!useful.member(n)) {
437
remove_expensive_node(n);
438
}
439
}
440
for (int i = C->shenandoah_barriers_count()-1; i >= 0; i--) {
441
ShenandoahLoadReferenceBarrierNode* n = C->shenandoah_barrier(i);
442
if (!useful.member(n)) {
443
remove_shenandoah_barrier(n);
444
}
445
}
446
// clean up the late inline lists
447
remove_useless_late_inlines(&_string_late_inlines, useful);
448
remove_useless_late_inlines(&_boxing_late_inlines, useful);
449
remove_useless_late_inlines(&_late_inlines, useful);
450
debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
451
}
452
453
//------------------------------frame_size_in_words-----------------------------
454
// frame_slots in units of words
455
int Compile::frame_size_in_words() const {
456
// shift is 0 in LP32 and 1 in LP64
457
const int shift = (LogBytesPerWord - LogBytesPerInt);
458
int words = _frame_slots >> shift;
459
assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
460
return words;
461
}
462
463
// To bang the stack of this compiled method we use the stack size
464
// that the interpreter would need in case of a deoptimization. This
465
// removes the need to bang the stack in the deoptimization blob which
466
// in turn simplifies stack overflow handling.
467
int Compile::bang_size_in_bytes() const {
468
return MAX2(_interpreter_frame_size, frame_size_in_bytes());
469
}
470
471
// ============================================================================
472
//------------------------------CompileWrapper---------------------------------
473
class CompileWrapper : public StackObj {
474
Compile *const _compile;
475
public:
476
CompileWrapper(Compile* compile);
477
478
~CompileWrapper();
479
};
480
481
CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
482
// the Compile* pointer is stored in the current ciEnv:
483
ciEnv* env = compile->env();
484
assert(env == ciEnv::current(), "must already be a ciEnv active");
485
assert(env->compiler_data() == NULL, "compile already active?");
486
env->set_compiler_data(compile);
487
assert(compile == Compile::current(), "sanity");
488
489
compile->set_type_dict(NULL);
490
compile->set_type_hwm(NULL);
491
compile->set_type_last_size(0);
492
compile->set_last_tf(NULL, NULL);
493
compile->set_indexSet_arena(NULL);
494
compile->set_indexSet_free_block_list(NULL);
495
compile->init_type_arena();
496
Type::Initialize(compile);
497
_compile->set_scratch_buffer_blob(NULL);
498
_compile->begin_method();
499
}
500
CompileWrapper::~CompileWrapper() {
501
_compile->end_method();
502
if (_compile->scratch_buffer_blob() != NULL)
503
BufferBlob::free(_compile->scratch_buffer_blob());
504
_compile->env()->set_compiler_data(NULL);
505
}
506
507
508
//----------------------------print_compile_messages---------------------------
509
void Compile::print_compile_messages() {
510
#ifndef PRODUCT
511
// Check if recompiling
512
if (_subsume_loads == false && PrintOpto) {
513
// Recompiling without allowing machine instructions to subsume loads
514
tty->print_cr("*********************************************************");
515
tty->print_cr("** Bailout: Recompile without subsuming loads **");
516
tty->print_cr("*********************************************************");
517
}
518
if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
519
// Recompiling without escape analysis
520
tty->print_cr("*********************************************************");
521
tty->print_cr("** Bailout: Recompile without escape analysis **");
522
tty->print_cr("*********************************************************");
523
}
524
if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
525
// Recompiling without boxing elimination
526
tty->print_cr("*********************************************************");
527
tty->print_cr("** Bailout: Recompile without boxing elimination **");
528
tty->print_cr("*********************************************************");
529
}
530
if (env()->break_at_compile()) {
531
// Open the debugger when compiling this method.
532
tty->print("### Breaking when compiling: ");
533
method()->print_short_name();
534
tty->cr();
535
BREAKPOINT;
536
}
537
538
if( PrintOpto ) {
539
if (is_osr_compilation()) {
540
tty->print("[OSR]%3d", _compile_id);
541
} else {
542
tty->print("%3d", _compile_id);
543
}
544
}
545
#endif
546
}
547
548
549
//-----------------------init_scratch_buffer_blob------------------------------
550
// Construct a temporary BufferBlob and cache it for this compile.
551
void Compile::init_scratch_buffer_blob(int const_size) {
552
// If there is already a scratch buffer blob allocated and the
553
// constant section is big enough, use it. Otherwise free the
554
// current and allocate a new one.
555
BufferBlob* blob = scratch_buffer_blob();
556
if ((blob != NULL) && (const_size <= _scratch_const_size)) {
557
// Use the current blob.
558
} else {
559
if (blob != NULL) {
560
BufferBlob::free(blob);
561
}
562
563
ResourceMark rm;
564
_scratch_const_size = const_size;
565
int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
566
blob = BufferBlob::create("Compile::scratch_buffer", size);
567
// Record the buffer blob for next time.
568
set_scratch_buffer_blob(blob);
569
// Have we run out of code space?
570
if (scratch_buffer_blob() == NULL) {
571
// Let CompilerBroker disable further compilations.
572
record_failure("Not enough space for scratch buffer in CodeCache");
573
return;
574
}
575
}
576
577
// Initialize the relocation buffers
578
relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
579
set_scratch_locs_memory(locs_buf);
580
}
581
582
583
//-----------------------scratch_emit_size-------------------------------------
584
// Helper function that computes size by emitting code
585
uint Compile::scratch_emit_size(const Node* n) {
586
// Start scratch_emit_size section.
587
set_in_scratch_emit_size(true);
588
589
// Emit into a trash buffer and count bytes emitted.
590
// This is a pretty expensive way to compute a size,
591
// but it works well enough if seldom used.
592
// All common fixed-size instructions are given a size
593
// method by the AD file.
594
// Note that the scratch buffer blob and locs memory are
595
// allocated at the beginning of the compile task, and
596
// may be shared by several calls to scratch_emit_size.
597
// The allocation of the scratch buffer blob is particularly
598
// expensive, since it has to grab the code cache lock.
599
BufferBlob* blob = this->scratch_buffer_blob();
600
assert(blob != NULL, "Initialize BufferBlob at start");
601
assert(blob->size() > MAX_inst_size, "sanity");
602
relocInfo* locs_buf = scratch_locs_memory();
603
address blob_begin = blob->content_begin();
604
address blob_end = (address)locs_buf;
605
assert(blob->content_contains(blob_end), "sanity");
606
CodeBuffer buf(blob_begin, blob_end - blob_begin);
607
buf.initialize_consts_size(_scratch_const_size);
608
buf.initialize_stubs_size(MAX_stubs_size);
609
assert(locs_buf != NULL, "sanity");
610
int lsize = MAX_locs_size / 3;
611
buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
612
buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
613
buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
614
615
// Do the emission.
616
617
Label fakeL; // Fake label for branch instructions.
618
Label* saveL = NULL;
619
uint save_bnum = 0;
620
bool is_branch = n->is_MachBranch();
621
if (is_branch) {
622
MacroAssembler masm(&buf);
623
masm.bind(fakeL);
624
n->as_MachBranch()->save_label(&saveL, &save_bnum);
625
n->as_MachBranch()->label_set(&fakeL, 0);
626
}
627
n->emit(buf, this->regalloc());
628
629
// Emitting into the scratch buffer should not fail
630
assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
631
632
if (is_branch) // Restore label.
633
n->as_MachBranch()->label_set(saveL, save_bnum);
634
635
// End scratch_emit_size section.
636
set_in_scratch_emit_size(false);
637
638
return buf.insts_size();
639
}
640
641
642
// ============================================================================
643
//------------------------------Compile standard-------------------------------
644
debug_only( int Compile::_debug_idx = 100000; )
645
646
// Compile a method. entry_bci is -1 for normal compilations and indicates
647
// the continuation bci for on stack replacement.
648
649
650
Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
651
bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
652
: Phase(Compiler),
653
_env(ci_env),
654
_log(ci_env->log()),
655
_compile_id(ci_env->compile_id()),
656
_save_argument_registers(false),
657
_stub_name(NULL),
658
_stub_function(NULL),
659
_stub_entry_point(NULL),
660
_method(target),
661
_entry_bci(osr_bci),
662
_initial_gvn(NULL),
663
_for_igvn(NULL),
664
_warm_calls(NULL),
665
_subsume_loads(subsume_loads),
666
_do_escape_analysis(do_escape_analysis),
667
_eliminate_boxing(eliminate_boxing),
668
_failure_reason(NULL),
669
_code_buffer("Compile::Fill_buffer"),
670
_orig_pc_slot(0),
671
_orig_pc_slot_offset_in_bytes(0),
672
_has_method_handle_invokes(false),
673
_mach_constant_base_node(NULL),
674
_node_bundling_limit(0),
675
_node_bundling_base(NULL),
676
_java_calls(0),
677
_inner_loops(0),
678
_scratch_const_size(-1),
679
_in_scratch_emit_size(false),
680
_dead_node_list(comp_arena()),
681
_dead_node_count(0),
682
#ifndef PRODUCT
683
_trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
684
_in_dump_cnt(0),
685
_printer(IdealGraphPrinter::printer()),
686
#endif
687
_congraph(NULL),
688
_comp_arena(mtCompiler),
689
_node_arena(mtCompiler),
690
_old_arena(mtCompiler),
691
_Compile_types(mtCompiler),
692
_replay_inline_data(NULL),
693
_late_inlines(comp_arena(), 2, 0, NULL),
694
_string_late_inlines(comp_arena(), 2, 0, NULL),
695
_boxing_late_inlines(comp_arena(), 2, 0, NULL),
696
_late_inlines_pos(0),
697
_number_of_mh_late_inlines(0),
698
_inlining_progress(false),
699
_inlining_incrementally(false),
700
_print_inlining_list(NULL),
701
_print_inlining_idx(0),
702
_interpreter_frame_size(0),
703
_max_node_limit(MaxNodeLimit) {
704
C = this;
705
706
CompileWrapper cw(this);
707
#ifndef PRODUCT
708
if (TimeCompiler2) {
709
tty->print(" ");
710
target->holder()->name()->print();
711
tty->print(".");
712
target->print_short_name();
713
tty->print(" ");
714
}
715
TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
716
TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
717
bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
718
if (!print_opto_assembly) {
719
bool print_assembly = (PrintAssembly || _method->should_print_assembly());
720
if (print_assembly && !Disassembler::can_decode()) {
721
tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
722
print_opto_assembly = true;
723
}
724
}
725
set_print_assembly(print_opto_assembly);
726
set_parsed_irreducible_loop(false);
727
728
if (method()->has_option("ReplayInline")) {
729
_replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
730
}
731
#endif
732
set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
733
set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
734
set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
735
736
if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
737
// Make sure the method being compiled gets its own MDO,
738
// so we can at least track the decompile_count().
739
// Need MDO to record RTM code generation state.
740
method()->ensure_method_data();
741
}
742
743
Init(::AliasLevel);
744
745
746
print_compile_messages();
747
748
_ilt = InlineTree::build_inline_tree_root();
749
750
// Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
751
assert(num_alias_types() >= AliasIdxRaw, "");
752
753
#define MINIMUM_NODE_HASH 1023
754
// Node list that Iterative GVN will start with
755
Unique_Node_List for_igvn(comp_arena());
756
set_for_igvn(&for_igvn);
757
758
// GVN that will be run immediately on new nodes
759
uint estimated_size = method()->code_size()*4+64;
760
estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
761
PhaseGVN gvn(node_arena(), estimated_size);
762
set_initial_gvn(&gvn);
763
764
if (print_inlining() || print_intrinsics()) {
765
_print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
766
}
767
{ // Scope for timing the parser
768
TracePhase t3("parse", &_t_parser, true);
769
770
// Put top into the hash table ASAP.
771
initial_gvn()->transform_no_reclaim(top());
772
773
// Set up tf(), start(), and find a CallGenerator.
774
CallGenerator* cg = NULL;
775
if (is_osr_compilation()) {
776
const TypeTuple *domain = StartOSRNode::osr_domain();
777
const TypeTuple *range = TypeTuple::make_range(method()->signature());
778
init_tf(TypeFunc::make(domain, range));
779
StartNode* s = new (this) StartOSRNode(root(), domain);
780
initial_gvn()->set_type_bottom(s);
781
init_start(s);
782
cg = CallGenerator::for_osr(method(), entry_bci());
783
} else {
784
// Normal case.
785
init_tf(TypeFunc::make(method()));
786
StartNode* s = new (this) StartNode(root(), tf()->domain());
787
initial_gvn()->set_type_bottom(s);
788
init_start(s);
789
if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && (UseG1GC || UseShenandoahGC)) {
790
// With java.lang.ref.reference.get() we must go through the
791
// intrinsic when G1 is enabled - even when get() is the root
792
// method of the compile - so that, if necessary, the value in
793
// the referent field of the reference object gets recorded by
794
// the pre-barrier code.
795
// Specifically, if G1 is enabled, the value in the referent
796
// field is recorded by the G1 SATB pre barrier. This will
797
// result in the referent being marked live and the reference
798
// object removed from the list of discovered references during
799
// reference processing.
800
cg = find_intrinsic(method(), false);
801
}
802
if (cg == NULL) {
803
float past_uses = method()->interpreter_invocation_count();
804
float expected_uses = past_uses;
805
cg = CallGenerator::for_inline(method(), expected_uses);
806
}
807
}
808
if (failing()) return;
809
if (cg == NULL) {
810
record_method_not_compilable_all_tiers("cannot parse method");
811
return;
812
}
813
JVMState* jvms = build_start_state(start(), tf());
814
if ((jvms = cg->generate(jvms)) == NULL) {
815
if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
816
record_method_not_compilable("method parse failed");
817
}
818
return;
819
}
820
GraphKit kit(jvms);
821
822
if (!kit.stopped()) {
823
// Accept return values, and transfer control we know not where.
824
// This is done by a special, unique ReturnNode bound to root.
825
return_values(kit.jvms());
826
}
827
828
if (kit.has_exceptions()) {
829
// Any exceptions that escape from this call must be rethrown
830
// to whatever caller is dynamically above us on the stack.
831
// This is done by a special, unique RethrowNode bound to root.
832
rethrow_exceptions(kit.transfer_exceptions_into_jvms());
833
}
834
835
assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
836
837
if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
838
inline_string_calls(true);
839
}
840
841
if (failing()) return;
842
843
print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
844
845
// Remove clutter produced by parsing.
846
if (!failing()) {
847
ResourceMark rm;
848
PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
849
}
850
}
851
852
// Note: Large methods are capped off in do_one_bytecode().
853
if (failing()) return;
854
855
// After parsing, node notes are no longer automagic.
856
// They must be propagated by register_new_node_with_optimizer(),
857
// clone(), or the like.
858
set_default_node_notes(NULL);
859
860
for (;;) {
861
int successes = Inline_Warm();
862
if (failing()) return;
863
if (successes == 0) break;
864
}
865
866
// Drain the list.
867
Finish_Warm();
868
#ifndef PRODUCT
869
if (_printer) {
870
_printer->print_inlining(this);
871
}
872
#endif
873
874
if (failing()) return;
875
NOT_PRODUCT( verify_graph_edges(); )
876
877
// Now optimize
878
Optimize();
879
if (failing()) return;
880
NOT_PRODUCT( verify_graph_edges(); )
881
882
#ifndef PRODUCT
883
if (PrintIdeal) {
884
ttyLocker ttyl; // keep the following output all in one block
885
// This output goes directly to the tty, not the compiler log.
886
// To enable tools to match it up with the compilation activity,
887
// be sure to tag this tty output with the compile ID.
888
if (xtty != NULL) {
889
xtty->head("ideal compile_id='%d'%s", compile_id(),
890
is_osr_compilation() ? " compile_kind='osr'" :
891
"");
892
}
893
root()->dump(9999);
894
if (xtty != NULL) {
895
xtty->tail("ideal");
896
}
897
}
898
#endif
899
900
NOT_PRODUCT( verify_barriers(); )
901
902
// Dump compilation data to replay it.
903
if (method()->has_option("DumpReplay")) {
904
env()->dump_replay_data(_compile_id);
905
}
906
if (method()->has_option("DumpInline") && (ilt() != NULL)) {
907
env()->dump_inline_data(_compile_id);
908
}
909
910
// Now that we know the size of all the monitors we can add a fixed slot
911
// for the original deopt pc.
912
913
_orig_pc_slot = fixed_slots();
914
int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
915
set_fixed_slots(next_slot);
916
917
// Compute when to use implicit null checks. Used by matching trap based
918
// nodes and NullCheck optimization.
919
set_allowed_deopt_reasons();
920
921
// Now generate code
922
Code_Gen();
923
if (failing()) return;
924
925
// Check if we want to skip execution of all compiled code.
926
{
927
#ifndef PRODUCT
928
if (OptoNoExecute) {
929
record_method_not_compilable("+OptoNoExecute"); // Flag as failed
930
return;
931
}
932
TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
933
#endif
934
935
if (is_osr_compilation()) {
936
_code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
937
_code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
938
} else {
939
_code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
940
_code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
941
}
942
943
env()->register_method(_method, _entry_bci,
944
&_code_offsets,
945
_orig_pc_slot_offset_in_bytes,
946
code_buffer(),
947
frame_size_in_words(), _oop_map_set,
948
&_handler_table, &_inc_table,
949
compiler,
950
env()->comp_level(),
951
has_unsafe_access(),
952
SharedRuntime::is_wide_vector(max_vector_size()),
953
rtm_state()
954
);
955
956
if (log() != NULL) // Print code cache state into compiler log
957
log()->code_cache_state();
958
}
959
}
960
961
//------------------------------Compile----------------------------------------
962
// Compile a runtime stub
963
Compile::Compile( ciEnv* ci_env,
964
TypeFunc_generator generator,
965
address stub_function,
966
const char *stub_name,
967
int is_fancy_jump,
968
bool pass_tls,
969
bool save_arg_registers,
970
bool return_pc )
971
: Phase(Compiler),
972
_env(ci_env),
973
_log(ci_env->log()),
974
_compile_id(0),
975
_save_argument_registers(save_arg_registers),
976
_method(NULL),
977
_stub_name(stub_name),
978
_stub_function(stub_function),
979
_stub_entry_point(NULL),
980
_entry_bci(InvocationEntryBci),
981
_initial_gvn(NULL),
982
_for_igvn(NULL),
983
_warm_calls(NULL),
984
_orig_pc_slot(0),
985
_orig_pc_slot_offset_in_bytes(0),
986
_subsume_loads(true),
987
_do_escape_analysis(false),
988
_eliminate_boxing(false),
989
_failure_reason(NULL),
990
_code_buffer("Compile::Fill_buffer"),
991
_has_method_handle_invokes(false),
992
_mach_constant_base_node(NULL),
993
_node_bundling_limit(0),
994
_node_bundling_base(NULL),
995
_java_calls(0),
996
_inner_loops(0),
997
#ifndef PRODUCT
998
_trace_opto_output(TraceOptoOutput),
999
_in_dump_cnt(0),
1000
_printer(NULL),
1001
#endif
1002
_comp_arena(mtCompiler),
1003
_node_arena(mtCompiler),
1004
_old_arena(mtCompiler),
1005
_Compile_types(mtCompiler),
1006
_dead_node_list(comp_arena()),
1007
_dead_node_count(0),
1008
_congraph(NULL),
1009
_replay_inline_data(NULL),
1010
_number_of_mh_late_inlines(0),
1011
_inlining_progress(false),
1012
_inlining_incrementally(false),
1013
_print_inlining_list(NULL),
1014
_print_inlining_idx(0),
1015
_allowed_reasons(0),
1016
_interpreter_frame_size(0),
1017
_max_node_limit(MaxNodeLimit) {
1018
C = this;
1019
1020
#ifndef PRODUCT
1021
TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
1022
TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
1023
set_print_assembly(PrintFrameConverterAssembly);
1024
set_parsed_irreducible_loop(false);
1025
#endif
1026
set_has_irreducible_loop(false); // no loops
1027
1028
CompileWrapper cw(this);
1029
Init(/*AliasLevel=*/ 0);
1030
init_tf((*generator)());
1031
1032
{
1033
// The following is a dummy for the sake of GraphKit::gen_stub
1034
Unique_Node_List for_igvn(comp_arena());
1035
set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
1036
PhaseGVN gvn(Thread::current()->resource_area(),255);
1037
set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
1038
gvn.transform_no_reclaim(top());
1039
1040
GraphKit kit;
1041
kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1042
}
1043
1044
NOT_PRODUCT( verify_graph_edges(); )
1045
Code_Gen();
1046
if (failing()) return;
1047
1048
1049
// Entry point will be accessed using compile->stub_entry_point();
1050
if (code_buffer() == NULL) {
1051
Matcher::soft_match_failure();
1052
} else {
1053
if (PrintAssembly && (WizardMode || Verbose))
1054
tty->print_cr("### Stub::%s", stub_name);
1055
1056
if (!failing()) {
1057
assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1058
1059
// Make the NMethod
1060
// For now we mark the frame as never safe for profile stackwalking
1061
RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1062
code_buffer(),
1063
CodeOffsets::frame_never_safe,
1064
// _code_offsets.value(CodeOffsets::Frame_Complete),
1065
frame_size_in_words(),
1066
_oop_map_set,
1067
save_arg_registers);
1068
assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1069
1070
_stub_entry_point = rs->entry_point();
1071
}
1072
}
1073
}
1074
1075
//------------------------------Init-------------------------------------------
1076
// Prepare for a single compilation
1077
void Compile::Init(int aliaslevel) {
1078
_unique = 0;
1079
_regalloc = NULL;
1080
1081
_tf = NULL; // filled in later
1082
_top = NULL; // cached later
1083
_matcher = NULL; // filled in later
1084
_cfg = NULL; // filled in later
1085
1086
set_24_bit_selection_and_mode(Use24BitFP, false);
1087
1088
_node_note_array = NULL;
1089
_default_node_notes = NULL;
1090
1091
_immutable_memory = NULL; // filled in at first inquiry
1092
1093
// Globally visible Nodes
1094
// First set TOP to NULL to give safe behavior during creation of RootNode
1095
set_cached_top_node(NULL);
1096
set_root(new (this) RootNode());
1097
// Now that you have a Root to point to, create the real TOP
1098
set_cached_top_node( new (this) ConNode(Type::TOP) );
1099
set_recent_alloc(NULL, NULL);
1100
1101
// Create Debug Information Recorder to record scopes, oopmaps, etc.
1102
env()->set_oop_recorder(new OopRecorder(env()->arena()));
1103
env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1104
env()->set_dependencies(new Dependencies(env()));
1105
1106
_fixed_slots = 0;
1107
set_has_split_ifs(false);
1108
set_has_loops(has_method() && method()->has_loops()); // first approximation
1109
set_has_stringbuilder(false);
1110
set_has_boxed_value(false);
1111
_trap_can_recompile = false; // no traps emitted yet
1112
_major_progress = true; // start out assuming good things will happen
1113
set_has_unsafe_access(false);
1114
set_max_vector_size(0);
1115
Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1116
set_decompile_count(0);
1117
1118
set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1119
set_num_loop_opts(LoopOptsCount);
1120
set_do_inlining(Inline);
1121
set_max_inline_size(MaxInlineSize);
1122
set_freq_inline_size(FreqInlineSize);
1123
set_do_scheduling(OptoScheduling);
1124
set_do_count_invocations(false);
1125
set_do_method_data_update(false);
1126
set_rtm_state(NoRTM); // No RTM lock eliding by default
1127
method_has_option_value("MaxNodeLimit", _max_node_limit);
1128
#if INCLUDE_RTM_OPT
1129
if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1130
int rtm_state = method()->method_data()->rtm_state();
1131
if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1132
// Don't generate RTM lock eliding code.
1133
set_rtm_state(NoRTM);
1134
} else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1135
// Generate RTM lock eliding code without abort ratio calculation code.
1136
set_rtm_state(UseRTM);
1137
} else if (UseRTMDeopt) {
1138
// Generate RTM lock eliding code and include abort ratio calculation
1139
// code if UseRTMDeopt is on.
1140
set_rtm_state(ProfileRTM);
1141
}
1142
}
1143
#endif
1144
if (debug_info()->recording_non_safepoints()) {
1145
set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1146
(comp_arena(), 8, 0, NULL));
1147
set_default_node_notes(Node_Notes::make(this));
1148
}
1149
1150
// // -- Initialize types before each compile --
1151
// // Update cached type information
1152
// if( _method && _method->constants() )
1153
// Type::update_loaded_types(_method, _method->constants());
1154
1155
// Init alias_type map.
1156
if (!_do_escape_analysis && aliaslevel == 3)
1157
aliaslevel = 2; // No unique types without escape analysis
1158
_AliasLevel = aliaslevel;
1159
const int grow_ats = 16;
1160
_max_alias_types = grow_ats;
1161
_alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1162
AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
1163
Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1164
{
1165
for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
1166
}
1167
// Initialize the first few types.
1168
_alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1169
_alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1170
_alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1171
_num_alias_types = AliasIdxRaw+1;
1172
// Zero out the alias type cache.
1173
Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1174
// A NULL adr_type hits in the cache right away. Preload the right answer.
1175
probe_alias_cache(NULL)->_index = AliasIdxTop;
1176
1177
_intrinsics = NULL;
1178
_macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1179
_predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1180
_expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1181
_range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1182
_shenandoah_barriers = new(comp_arena()) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena(), 8, 0, NULL);
1183
register_library_intrinsics();
1184
#ifdef ASSERT
1185
_type_verify_symmetry = true;
1186
#endif
1187
}
1188
1189
//---------------------------init_start----------------------------------------
1190
// Install the StartNode on this compile object.
1191
void Compile::init_start(StartNode* s) {
1192
if (failing())
1193
return; // already failing
1194
assert(s == start(), "");
1195
}
1196
1197
StartNode* Compile::start() const {
1198
assert(!failing(), "");
1199
for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1200
Node* start = root()->fast_out(i);
1201
if( start->is_Start() )
1202
return start->as_Start();
1203
}
1204
fatal("Did not find Start node!");
1205
return NULL;
1206
}
1207
1208
//-------------------------------immutable_memory-------------------------------------
1209
// Access immutable memory
1210
Node* Compile::immutable_memory() {
1211
if (_immutable_memory != NULL) {
1212
return _immutable_memory;
1213
}
1214
StartNode* s = start();
1215
for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1216
Node *p = s->fast_out(i);
1217
if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1218
_immutable_memory = p;
1219
return _immutable_memory;
1220
}
1221
}
1222
ShouldNotReachHere();
1223
return NULL;
1224
}
1225
1226
//----------------------set_cached_top_node------------------------------------
1227
// Install the cached top node, and make sure Node::is_top works correctly.
1228
void Compile::set_cached_top_node(Node* tn) {
1229
if (tn != NULL) verify_top(tn);
1230
Node* old_top = _top;
1231
_top = tn;
1232
// Calling Node::setup_is_top allows the nodes the chance to adjust
1233
// their _out arrays.
1234
if (_top != NULL) _top->setup_is_top();
1235
if (old_top != NULL) old_top->setup_is_top();
1236
assert(_top == NULL || top()->is_top(), "");
1237
}
1238
1239
#ifdef ASSERT
1240
uint Compile::count_live_nodes_by_graph_walk() {
1241
Unique_Node_List useful(comp_arena());
1242
// Get useful node list by walking the graph.
1243
identify_useful_nodes(useful);
1244
return useful.size();
1245
}
1246
1247
void Compile::print_missing_nodes() {
1248
1249
// Return if CompileLog is NULL and PrintIdealNodeCount is false.
1250
if ((_log == NULL) && (! PrintIdealNodeCount)) {
1251
return;
1252
}
1253
1254
// This is an expensive function. It is executed only when the user
1255
// specifies VerifyIdealNodeCount option or otherwise knows the
1256
// additional work that needs to be done to identify reachable nodes
1257
// by walking the flow graph and find the missing ones using
1258
// _dead_node_list.
1259
1260
Unique_Node_List useful(comp_arena());
1261
// Get useful node list by walking the graph.
1262
identify_useful_nodes(useful);
1263
1264
uint l_nodes = C->live_nodes();
1265
uint l_nodes_by_walk = useful.size();
1266
1267
if (l_nodes != l_nodes_by_walk) {
1268
if (_log != NULL) {
1269
_log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1270
_log->stamp();
1271
_log->end_head();
1272
}
1273
VectorSet& useful_member_set = useful.member_set();
1274
int last_idx = l_nodes_by_walk;
1275
for (int i = 0; i < last_idx; i++) {
1276
if (useful_member_set.test(i)) {
1277
if (_dead_node_list.test(i)) {
1278
if (_log != NULL) {
1279
_log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1280
}
1281
if (PrintIdealNodeCount) {
1282
// Print the log message to tty
1283
tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1284
useful.at(i)->dump();
1285
}
1286
}
1287
}
1288
else if (! _dead_node_list.test(i)) {
1289
if (_log != NULL) {
1290
_log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1291
}
1292
if (PrintIdealNodeCount) {
1293
// Print the log message to tty
1294
tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1295
}
1296
}
1297
}
1298
if (_log != NULL) {
1299
_log->tail("mismatched_nodes");
1300
}
1301
}
1302
}
1303
#endif
1304
1305
#ifndef PRODUCT
1306
void Compile::verify_top(Node* tn) const {
1307
if (tn != NULL) {
1308
assert(tn->is_Con(), "top node must be a constant");
1309
assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1310
assert(tn->in(0) != NULL, "must have live top node");
1311
}
1312
}
1313
#endif
1314
1315
1316
///-------------------Managing Per-Node Debug & Profile Info-------------------
1317
1318
void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1319
guarantee(arr != NULL, "");
1320
int num_blocks = arr->length();
1321
if (grow_by < num_blocks) grow_by = num_blocks;
1322
int num_notes = grow_by * _node_notes_block_size;
1323
Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1324
Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1325
while (num_notes > 0) {
1326
arr->append(notes);
1327
notes += _node_notes_block_size;
1328
num_notes -= _node_notes_block_size;
1329
}
1330
assert(num_notes == 0, "exact multiple, please");
1331
}
1332
1333
bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1334
if (source == NULL || dest == NULL) return false;
1335
1336
if (dest->is_Con())
1337
return false; // Do not push debug info onto constants.
1338
1339
#ifdef ASSERT
1340
// Leave a bread crumb trail pointing to the original node:
1341
if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1342
dest->set_debug_orig(source);
1343
}
1344
#endif
1345
1346
if (node_note_array() == NULL)
1347
return false; // Not collecting any notes now.
1348
1349
// This is a copy onto a pre-existing node, which may already have notes.
1350
// If both nodes have notes, do not overwrite any pre-existing notes.
1351
Node_Notes* source_notes = node_notes_at(source->_idx);
1352
if (source_notes == NULL || source_notes->is_clear()) return false;
1353
Node_Notes* dest_notes = node_notes_at(dest->_idx);
1354
if (dest_notes == NULL || dest_notes->is_clear()) {
1355
return set_node_notes_at(dest->_idx, source_notes);
1356
}
1357
1358
Node_Notes merged_notes = (*source_notes);
1359
// The order of operations here ensures that dest notes will win...
1360
merged_notes.update_from(dest_notes);
1361
return set_node_notes_at(dest->_idx, &merged_notes);
1362
}
1363
1364
1365
//--------------------------allow_range_check_smearing-------------------------
1366
// Gating condition for coalescing similar range checks.
1367
// Sometimes we try 'speculatively' replacing a series of a range checks by a
1368
// single covering check that is at least as strong as any of them.
1369
// If the optimization succeeds, the simplified (strengthened) range check
1370
// will always succeed. If it fails, we will deopt, and then give up
1371
// on the optimization.
1372
bool Compile::allow_range_check_smearing() const {
1373
// If this method has already thrown a range-check,
1374
// assume it was because we already tried range smearing
1375
// and it failed.
1376
uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1377
return !already_trapped;
1378
}
1379
1380
1381
//------------------------------flatten_alias_type-----------------------------
1382
const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1383
int offset = tj->offset();
1384
TypePtr::PTR ptr = tj->ptr();
1385
1386
// Known instance (scalarizable allocation) alias only with itself.
1387
bool is_known_inst = tj->isa_oopptr() != NULL &&
1388
tj->is_oopptr()->is_known_instance();
1389
1390
// Process weird unsafe references.
1391
if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1392
assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1393
assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1394
tj = TypeOopPtr::BOTTOM;
1395
ptr = tj->ptr();
1396
offset = tj->offset();
1397
}
1398
1399
// Array pointers need some flattening
1400
const TypeAryPtr *ta = tj->isa_aryptr();
1401
if (ta && ta->is_stable()) {
1402
// Erase stability property for alias analysis.
1403
tj = ta = ta->cast_to_stable(false);
1404
}
1405
if( ta && is_known_inst ) {
1406
if ( offset != Type::OffsetBot &&
1407
offset > arrayOopDesc::length_offset_in_bytes() ) {
1408
offset = Type::OffsetBot; // Flatten constant access into array body only
1409
tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1410
}
1411
} else if( ta && _AliasLevel >= 2 ) {
1412
// For arrays indexed by constant indices, we flatten the alias
1413
// space to include all of the array body. Only the header, klass
1414
// and array length can be accessed un-aliased.
1415
if( offset != Type::OffsetBot ) {
1416
if( ta->const_oop() ) { // MethodData* or Method*
1417
offset = Type::OffsetBot; // Flatten constant access into array body
1418
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1419
} else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1420
// range is OK as-is.
1421
tj = ta = TypeAryPtr::RANGE;
1422
} else if( offset == oopDesc::klass_offset_in_bytes() ) {
1423
tj = TypeInstPtr::KLASS; // all klass loads look alike
1424
ta = TypeAryPtr::RANGE; // generic ignored junk
1425
ptr = TypePtr::BotPTR;
1426
} else if( offset == oopDesc::mark_offset_in_bytes() ) {
1427
tj = TypeInstPtr::MARK;
1428
ta = TypeAryPtr::RANGE; // generic ignored junk
1429
ptr = TypePtr::BotPTR;
1430
} else { // Random constant offset into array body
1431
offset = Type::OffsetBot; // Flatten constant access into array body
1432
tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1433
}
1434
}
1435
// Arrays of fixed size alias with arrays of unknown size.
1436
if (ta->size() != TypeInt::POS) {
1437
const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1438
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1439
}
1440
// Arrays of known objects become arrays of unknown objects.
1441
if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1442
const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1443
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1444
}
1445
if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1446
const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1447
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1448
}
1449
// Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1450
// cannot be distinguished by bytecode alone.
1451
if (ta->elem() == TypeInt::BOOL) {
1452
const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1453
ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1454
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1455
}
1456
// During the 2nd round of IterGVN, NotNull castings are removed.
1457
// Make sure the Bottom and NotNull variants alias the same.
1458
// Also, make sure exact and non-exact variants alias the same.
1459
if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1460
tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1461
}
1462
}
1463
1464
// Oop pointers need some flattening
1465
const TypeInstPtr *to = tj->isa_instptr();
1466
if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1467
ciInstanceKlass *k = to->klass()->as_instance_klass();
1468
if( ptr == TypePtr::Constant ) {
1469
if (to->klass() != ciEnv::current()->Class_klass() ||
1470
offset < k->size_helper() * wordSize) {
1471
// No constant oop pointers (such as Strings); they alias with
1472
// unknown strings.
1473
assert(!is_known_inst, "not scalarizable allocation");
1474
tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1475
}
1476
} else if( is_known_inst ) {
1477
tj = to; // Keep NotNull and klass_is_exact for instance type
1478
} else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1479
// During the 2nd round of IterGVN, NotNull castings are removed.
1480
// Make sure the Bottom and NotNull variants alias the same.
1481
// Also, make sure exact and non-exact variants alias the same.
1482
tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1483
}
1484
if (to->speculative() != NULL) {
1485
tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1486
}
1487
// Canonicalize the holder of this field
1488
if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1489
// First handle header references such as a LoadKlassNode, even if the
1490
// object's klass is unloaded at compile time (4965979).
1491
if (!is_known_inst) { // Do it only for non-instance types
1492
tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1493
}
1494
} else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1495
// Static fields are in the space above the normal instance
1496
// fields in the java.lang.Class instance.
1497
if (to->klass() != ciEnv::current()->Class_klass()) {
1498
to = NULL;
1499
tj = TypeOopPtr::BOTTOM;
1500
offset = tj->offset();
1501
}
1502
} else {
1503
ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1504
if (!k->equals(canonical_holder) || tj->offset() != offset) {
1505
if( is_known_inst ) {
1506
tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1507
} else {
1508
tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1509
}
1510
}
1511
}
1512
}
1513
1514
// Klass pointers to object array klasses need some flattening
1515
const TypeKlassPtr *tk = tj->isa_klassptr();
1516
if( tk ) {
1517
// If we are referencing a field within a Klass, we need
1518
// to assume the worst case of an Object. Both exact and
1519
// inexact types must flatten to the same alias class so
1520
// use NotNull as the PTR.
1521
if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1522
1523
tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1524
TypeKlassPtr::OBJECT->klass(),
1525
offset);
1526
}
1527
1528
ciKlass* klass = tk->klass();
1529
if( klass->is_obj_array_klass() ) {
1530
ciKlass* k = TypeAryPtr::OOPS->klass();
1531
if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
1532
k = TypeInstPtr::BOTTOM->klass();
1533
tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1534
}
1535
1536
// Check for precise loads from the primary supertype array and force them
1537
// to the supertype cache alias index. Check for generic array loads from
1538
// the primary supertype array and also force them to the supertype cache
1539
// alias index. Since the same load can reach both, we need to merge
1540
// these 2 disparate memories into the same alias class. Since the
1541
// primary supertype array is read-only, there's no chance of confusion
1542
// where we bypass an array load and an array store.
1543
int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1544
if (offset == Type::OffsetBot ||
1545
(offset >= primary_supers_offset &&
1546
offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1547
offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1548
offset = in_bytes(Klass::secondary_super_cache_offset());
1549
tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1550
}
1551
}
1552
1553
// Flatten all Raw pointers together.
1554
if (tj->base() == Type::RawPtr)
1555
tj = TypeRawPtr::BOTTOM;
1556
1557
if (tj->base() == Type::AnyPtr)
1558
tj = TypePtr::BOTTOM; // An error, which the caller must check for.
1559
1560
// Flatten all to bottom for now
1561
switch( _AliasLevel ) {
1562
case 0:
1563
tj = TypePtr::BOTTOM;
1564
break;
1565
case 1: // Flatten to: oop, static, field or array
1566
switch (tj->base()) {
1567
//case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
1568
case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
1569
case Type::AryPtr: // do not distinguish arrays at all
1570
case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
1571
case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1572
case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
1573
default: ShouldNotReachHere();
1574
}
1575
break;
1576
case 2: // No collapsing at level 2; keep all splits
1577
case 3: // No collapsing at level 3; keep all splits
1578
break;
1579
default:
1580
Unimplemented();
1581
}
1582
1583
offset = tj->offset();
1584
assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1585
1586
assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1587
(offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1588
(offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1589
(offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1590
(offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1591
(offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1592
(offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
1593
"For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1594
assert( tj->ptr() != TypePtr::TopPTR &&
1595
tj->ptr() != TypePtr::AnyNull &&
1596
tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1597
// assert( tj->ptr() != TypePtr::Constant ||
1598
// tj->base() == Type::RawPtr ||
1599
// tj->base() == Type::KlassPtr, "No constant oop addresses" );
1600
1601
return tj;
1602
}
1603
1604
void Compile::AliasType::Init(int i, const TypePtr* at) {
1605
_index = i;
1606
_adr_type = at;
1607
_field = NULL;
1608
_element = NULL;
1609
_is_rewritable = true; // default
1610
const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1611
if (atoop != NULL && atoop->is_known_instance()) {
1612
const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1613
_general_index = Compile::current()->get_alias_index(gt);
1614
} else {
1615
_general_index = 0;
1616
}
1617
}
1618
1619
BasicType Compile::AliasType::basic_type() const {
1620
if (element() != NULL) {
1621
const Type* element = adr_type()->is_aryptr()->elem();
1622
return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1623
} if (field() != NULL) {
1624
return field()->layout_type();
1625
} else {
1626
return T_ILLEGAL; // unknown
1627
}
1628
}
1629
1630
//---------------------------------print_on------------------------------------
1631
#ifndef PRODUCT
1632
void Compile::AliasType::print_on(outputStream* st) {
1633
if (index() < 10)
1634
st->print("@ <%d> ", index());
1635
else st->print("@ <%d>", index());
1636
st->print(is_rewritable() ? " " : " RO");
1637
int offset = adr_type()->offset();
1638
if (offset == Type::OffsetBot)
1639
st->print(" +any");
1640
else st->print(" +%-3d", offset);
1641
st->print(" in ");
1642
adr_type()->dump_on(st);
1643
const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1644
if (field() != NULL && tjp) {
1645
if (tjp->klass() != field()->holder() ||
1646
tjp->offset() != field()->offset_in_bytes()) {
1647
st->print(" != ");
1648
field()->print();
1649
st->print(" ***");
1650
}
1651
}
1652
}
1653
1654
void print_alias_types() {
1655
Compile* C = Compile::current();
1656
tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1657
for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1658
C->alias_type(idx)->print_on(tty);
1659
tty->cr();
1660
}
1661
}
1662
#endif
1663
1664
1665
//----------------------------probe_alias_cache--------------------------------
1666
Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1667
intptr_t key = (intptr_t) adr_type;
1668
key ^= key >> logAliasCacheSize;
1669
return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1670
}
1671
1672
1673
//-----------------------------grow_alias_types--------------------------------
1674
void Compile::grow_alias_types() {
1675
const int old_ats = _max_alias_types; // how many before?
1676
const int new_ats = old_ats; // how many more?
1677
const int grow_ats = old_ats+new_ats; // how many now?
1678
_max_alias_types = grow_ats;
1679
_alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1680
AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1681
Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1682
for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
1683
}
1684
1685
1686
//--------------------------------find_alias_type------------------------------
1687
Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1688
if (_AliasLevel == 0)
1689
return alias_type(AliasIdxBot);
1690
1691
AliasCacheEntry* ace = probe_alias_cache(adr_type);
1692
if (ace->_adr_type == adr_type) {
1693
return alias_type(ace->_index);
1694
}
1695
1696
// Handle special cases.
1697
if (adr_type == NULL) return alias_type(AliasIdxTop);
1698
if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
1699
1700
// Do it the slow way.
1701
const TypePtr* flat = flatten_alias_type(adr_type);
1702
1703
#ifdef ASSERT
1704
{
1705
ResourceMark rm;
1706
assert(flat == flatten_alias_type(flat),
1707
err_msg("not idempotent: adr_type = %s; flat = %s => %s", Type::str(adr_type),
1708
Type::str(flat), Type::str(flatten_alias_type(flat))));
1709
assert(flat != TypePtr::BOTTOM,
1710
err_msg("cannot alias-analyze an untyped ptr: adr_type = %s", Type::str(adr_type)));
1711
if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1712
const TypeOopPtr* foop = flat->is_oopptr();
1713
// Scalarizable allocations have exact klass always.
1714
bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1715
const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1716
assert(foop == flatten_alias_type(xoop),
1717
err_msg("exactness must not affect alias type: foop = %s; xoop = %s",
1718
Type::str(foop), Type::str(xoop)));
1719
}
1720
}
1721
#endif
1722
1723
int idx = AliasIdxTop;
1724
for (int i = 0; i < num_alias_types(); i++) {
1725
if (alias_type(i)->adr_type() == flat) {
1726
idx = i;
1727
break;
1728
}
1729
}
1730
1731
if (idx == AliasIdxTop) {
1732
if (no_create) return NULL;
1733
// Grow the array if necessary.
1734
if (_num_alias_types == _max_alias_types) grow_alias_types();
1735
// Add a new alias type.
1736
idx = _num_alias_types++;
1737
_alias_types[idx]->Init(idx, flat);
1738
if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
1739
if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
1740
if (flat->isa_instptr()) {
1741
if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1742
&& flat->is_instptr()->klass() == env()->Class_klass())
1743
alias_type(idx)->set_rewritable(false);
1744
}
1745
if (flat->isa_aryptr()) {
1746
#ifdef ASSERT
1747
const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1748
// (T_BYTE has the weakest alignment and size restrictions...)
1749
assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1750
#endif
1751
if (flat->offset() == TypePtr::OffsetBot) {
1752
alias_type(idx)->set_element(flat->is_aryptr()->elem());
1753
}
1754
}
1755
if (flat->isa_klassptr()) {
1756
if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1757
alias_type(idx)->set_rewritable(false);
1758
if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1759
alias_type(idx)->set_rewritable(false);
1760
if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1761
alias_type(idx)->set_rewritable(false);
1762
if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1763
alias_type(idx)->set_rewritable(false);
1764
}
1765
// %%% (We would like to finalize JavaThread::threadObj_offset(),
1766
// but the base pointer type is not distinctive enough to identify
1767
// references into JavaThread.)
1768
1769
// Check for final fields.
1770
const TypeInstPtr* tinst = flat->isa_instptr();
1771
if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1772
ciField* field;
1773
if (tinst->const_oop() != NULL &&
1774
tinst->klass() == ciEnv::current()->Class_klass() &&
1775
tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1776
// static field
1777
ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1778
field = k->get_field_by_offset(tinst->offset(), true);
1779
} else {
1780
ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1781
field = k->get_field_by_offset(tinst->offset(), false);
1782
}
1783
assert(field == NULL ||
1784
original_field == NULL ||
1785
(field->holder() == original_field->holder() &&
1786
field->offset() == original_field->offset() &&
1787
field->is_static() == original_field->is_static()), "wrong field?");
1788
// Set field() and is_rewritable() attributes.
1789
if (field != NULL) alias_type(idx)->set_field(field);
1790
}
1791
}
1792
1793
// Fill the cache for next time.
1794
ace->_adr_type = adr_type;
1795
ace->_index = idx;
1796
assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
1797
1798
// Might as well try to fill the cache for the flattened version, too.
1799
AliasCacheEntry* face = probe_alias_cache(flat);
1800
if (face->_adr_type == NULL) {
1801
face->_adr_type = flat;
1802
face->_index = idx;
1803
assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1804
}
1805
1806
return alias_type(idx);
1807
}
1808
1809
1810
Compile::AliasType* Compile::alias_type(ciField* field) {
1811
const TypeOopPtr* t;
1812
if (field->is_static())
1813
t = TypeInstPtr::make(field->holder()->java_mirror());
1814
else
1815
t = TypeOopPtr::make_from_klass_raw(field->holder());
1816
AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1817
assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1818
return atp;
1819
}
1820
1821
1822
//------------------------------have_alias_type--------------------------------
1823
bool Compile::have_alias_type(const TypePtr* adr_type) {
1824
AliasCacheEntry* ace = probe_alias_cache(adr_type);
1825
if (ace->_adr_type == adr_type) {
1826
return true;
1827
}
1828
1829
// Handle special cases.
1830
if (adr_type == NULL) return true;
1831
if (adr_type == TypePtr::BOTTOM) return true;
1832
1833
return find_alias_type(adr_type, true, NULL) != NULL;
1834
}
1835
1836
//-----------------------------must_alias--------------------------------------
1837
// True if all values of the given address type are in the given alias category.
1838
bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1839
if (alias_idx == AliasIdxBot) return true; // the universal category
1840
if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
1841
if (alias_idx == AliasIdxTop) return false; // the empty category
1842
if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1843
1844
// the only remaining possible overlap is identity
1845
int adr_idx = get_alias_index(adr_type);
1846
assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1847
assert(adr_idx == alias_idx ||
1848
(alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1849
&& adr_type != TypeOopPtr::BOTTOM),
1850
"should not be testing for overlap with an unsafe pointer");
1851
return adr_idx == alias_idx;
1852
}
1853
1854
//------------------------------can_alias--------------------------------------
1855
// True if any values of the given address type are in the given alias category.
1856
bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1857
if (alias_idx == AliasIdxTop) return false; // the empty category
1858
if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
1859
if (alias_idx == AliasIdxBot) return true; // the universal category
1860
if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
1861
1862
// the only remaining possible overlap is identity
1863
int adr_idx = get_alias_index(adr_type);
1864
assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1865
return adr_idx == alias_idx;
1866
}
1867
1868
1869
1870
//---------------------------pop_warm_call-------------------------------------
1871
WarmCallInfo* Compile::pop_warm_call() {
1872
WarmCallInfo* wci = _warm_calls;
1873
if (wci != NULL) _warm_calls = wci->remove_from(wci);
1874
return wci;
1875
}
1876
1877
//----------------------------Inline_Warm--------------------------------------
1878
int Compile::Inline_Warm() {
1879
// If there is room, try to inline some more warm call sites.
1880
// %%% Do a graph index compaction pass when we think we're out of space?
1881
if (!InlineWarmCalls) return 0;
1882
1883
int calls_made_hot = 0;
1884
int room_to_grow = NodeCountInliningCutoff - unique();
1885
int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1886
int amount_grown = 0;
1887
WarmCallInfo* call;
1888
while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1889
int est_size = (int)call->size();
1890
if (est_size > (room_to_grow - amount_grown)) {
1891
// This one won't fit anyway. Get rid of it.
1892
call->make_cold();
1893
continue;
1894
}
1895
call->make_hot();
1896
calls_made_hot++;
1897
amount_grown += est_size;
1898
amount_to_grow -= est_size;
1899
}
1900
1901
if (calls_made_hot > 0) set_major_progress();
1902
return calls_made_hot;
1903
}
1904
1905
1906
//----------------------------Finish_Warm--------------------------------------
1907
void Compile::Finish_Warm() {
1908
if (!InlineWarmCalls) return;
1909
if (failing()) return;
1910
if (warm_calls() == NULL) return;
1911
1912
// Clean up loose ends, if we are out of space for inlining.
1913
WarmCallInfo* call;
1914
while ((call = pop_warm_call()) != NULL) {
1915
call->make_cold();
1916
}
1917
}
1918
1919
//---------------------cleanup_loop_predicates-----------------------
1920
// Remove the opaque nodes that protect the predicates so that all unused
1921
// checks and uncommon_traps will be eliminated from the ideal graph
1922
void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1923
if (predicate_count()==0) return;
1924
for (int i = predicate_count(); i > 0; i--) {
1925
Node * n = predicate_opaque1_node(i-1);
1926
assert(n->Opcode() == Op_Opaque1, "must be");
1927
igvn.replace_node(n, n->in(1));
1928
}
1929
assert(predicate_count()==0, "should be clean!");
1930
}
1931
1932
void Compile::add_range_check_cast(Node* n) {
1933
assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1934
assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1935
_range_check_casts->append(n);
1936
}
1937
1938
// Remove all range check dependent CastIINodes.
1939
void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1940
for (int i = range_check_cast_count(); i > 0; i--) {
1941
Node* cast = range_check_cast_node(i-1);
1942
assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1943
igvn.replace_node(cast, cast->in(1));
1944
}
1945
assert(range_check_cast_count() == 0, "should be empty");
1946
}
1947
1948
// StringOpts and late inlining of string methods
1949
void Compile::inline_string_calls(bool parse_time) {
1950
{
1951
// remove useless nodes to make the usage analysis simpler
1952
ResourceMark rm;
1953
PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1954
}
1955
1956
{
1957
ResourceMark rm;
1958
print_method(PHASE_BEFORE_STRINGOPTS, 3);
1959
PhaseStringOpts pso(initial_gvn(), for_igvn());
1960
print_method(PHASE_AFTER_STRINGOPTS, 3);
1961
}
1962
1963
// now inline anything that we skipped the first time around
1964
if (!parse_time) {
1965
_late_inlines_pos = _late_inlines.length();
1966
}
1967
1968
while (_string_late_inlines.length() > 0) {
1969
CallGenerator* cg = _string_late_inlines.pop();
1970
cg->do_late_inline();
1971
if (failing()) return;
1972
}
1973
_string_late_inlines.trunc_to(0);
1974
}
1975
1976
// Late inlining of boxing methods
1977
void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1978
if (_boxing_late_inlines.length() > 0) {
1979
assert(has_boxed_value(), "inconsistent");
1980
1981
PhaseGVN* gvn = initial_gvn();
1982
set_inlining_incrementally(true);
1983
1984
assert( igvn._worklist.size() == 0, "should be done with igvn" );
1985
for_igvn()->clear();
1986
gvn->replace_with(&igvn);
1987
1988
_late_inlines_pos = _late_inlines.length();
1989
1990
while (_boxing_late_inlines.length() > 0) {
1991
CallGenerator* cg = _boxing_late_inlines.pop();
1992
cg->do_late_inline();
1993
if (failing()) return;
1994
}
1995
_boxing_late_inlines.trunc_to(0);
1996
1997
{
1998
ResourceMark rm;
1999
PhaseRemoveUseless pru(gvn, for_igvn());
2000
}
2001
2002
igvn = PhaseIterGVN(gvn);
2003
igvn.optimize();
2004
2005
set_inlining_progress(false);
2006
set_inlining_incrementally(false);
2007
}
2008
}
2009
2010
void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2011
assert(IncrementalInline, "incremental inlining should be on");
2012
PhaseGVN* gvn = initial_gvn();
2013
2014
set_inlining_progress(false);
2015
for_igvn()->clear();
2016
gvn->replace_with(&igvn);
2017
2018
int i = 0;
2019
2020
for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2021
CallGenerator* cg = _late_inlines.at(i);
2022
_late_inlines_pos = i+1;
2023
cg->do_late_inline();
2024
if (failing()) return;
2025
}
2026
int j = 0;
2027
for (; i < _late_inlines.length(); i++, j++) {
2028
_late_inlines.at_put(j, _late_inlines.at(i));
2029
}
2030
_late_inlines.trunc_to(j);
2031
2032
{
2033
ResourceMark rm;
2034
PhaseRemoveUseless pru(gvn, for_igvn());
2035
}
2036
2037
igvn = PhaseIterGVN(gvn);
2038
}
2039
2040
// Perform incremental inlining until bound on number of live nodes is reached
2041
void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2042
PhaseGVN* gvn = initial_gvn();
2043
2044
set_inlining_incrementally(true);
2045
set_inlining_progress(true);
2046
uint low_live_nodes = 0;
2047
2048
while(inlining_progress() && _late_inlines.length() > 0) {
2049
2050
if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2051
if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2052
// PhaseIdealLoop is expensive so we only try it once we are
2053
// out of live nodes and we only try it again if the previous
2054
// helped got the number of nodes down significantly
2055
PhaseIdealLoop ideal_loop( igvn, false, true );
2056
if (failing()) return;
2057
low_live_nodes = live_nodes();
2058
_major_progress = true;
2059
}
2060
2061
if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2062
break;
2063
}
2064
}
2065
2066
inline_incrementally_one(igvn);
2067
2068
if (failing()) return;
2069
2070
igvn.optimize();
2071
2072
if (failing()) return;
2073
}
2074
2075
assert( igvn._worklist.size() == 0, "should be done with igvn" );
2076
2077
if (_string_late_inlines.length() > 0) {
2078
assert(has_stringbuilder(), "inconsistent");
2079
for_igvn()->clear();
2080
initial_gvn()->replace_with(&igvn);
2081
2082
inline_string_calls(false);
2083
2084
if (failing()) return;
2085
2086
{
2087
ResourceMark rm;
2088
PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2089
}
2090
2091
igvn = PhaseIterGVN(gvn);
2092
2093
igvn.optimize();
2094
}
2095
2096
set_inlining_incrementally(false);
2097
}
2098
2099
2100
// Remove edges from "root" to each SafePoint at a backward branch.
2101
// They were inserted during parsing (see add_safepoint()) to make
2102
// infinite loops without calls or exceptions visible to root, i.e.,
2103
// useful.
2104
void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2105
Node *r = root();
2106
if (r != NULL) {
2107
for (uint i = r->req(); i < r->len(); ++i) {
2108
Node *n = r->in(i);
2109
if (n != NULL && n->is_SafePoint()) {
2110
r->rm_prec(i);
2111
if (n->outcnt() == 0) {
2112
igvn.remove_dead_node(n);
2113
}
2114
--i;
2115
}
2116
}
2117
}
2118
}
2119
2120
//------------------------------Optimize---------------------------------------
2121
// Given a graph, optimize it.
2122
void Compile::Optimize() {
2123
TracePhase t1("optimizer", &_t_optimizer, true);
2124
2125
#ifndef PRODUCT
2126
if (env()->break_at_compile()) {
2127
BREAKPOINT;
2128
}
2129
2130
#endif
2131
2132
ResourceMark rm;
2133
int loop_opts_cnt;
2134
2135
NOT_PRODUCT( verify_graph_edges(); )
2136
2137
print_method(PHASE_AFTER_PARSING);
2138
2139
{
2140
// Iterative Global Value Numbering, including ideal transforms
2141
// Initialize IterGVN with types and values from parse-time GVN
2142
PhaseIterGVN igvn(initial_gvn());
2143
{
2144
NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2145
igvn.optimize();
2146
}
2147
2148
print_method(PHASE_ITER_GVN1, 2);
2149
2150
if (failing()) return;
2151
2152
{
2153
NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2154
inline_incrementally(igvn);
2155
}
2156
2157
print_method(PHASE_INCREMENTAL_INLINE, 2);
2158
2159
if (failing()) return;
2160
2161
if (eliminate_boxing()) {
2162
NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2163
// Inline valueOf() methods now.
2164
inline_boxing_calls(igvn);
2165
2166
if (AlwaysIncrementalInline) {
2167
inline_incrementally(igvn);
2168
}
2169
2170
print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2171
2172
if (failing()) return;
2173
}
2174
2175
// Now that all inlining is over, cut edge from root to loop
2176
// safepoints
2177
remove_root_to_sfpts_edges(igvn);
2178
2179
// Remove the speculative part of types and clean up the graph from
2180
// the extra CastPP nodes whose only purpose is to carry them. Do
2181
// that early so that optimizations are not disrupted by the extra
2182
// CastPP nodes.
2183
remove_speculative_types(igvn);
2184
2185
// No more new expensive nodes will be added to the list from here
2186
// so keep only the actual candidates for optimizations.
2187
cleanup_expensive_nodes(igvn);
2188
2189
if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2190
NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
2191
initial_gvn()->replace_with(&igvn);
2192
for_igvn()->clear();
2193
Unique_Node_List new_worklist(C->comp_arena());
2194
{
2195
ResourceMark rm;
2196
PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2197
}
2198
set_for_igvn(&new_worklist);
2199
igvn = PhaseIterGVN(initial_gvn());
2200
igvn.optimize();
2201
}
2202
2203
// Perform escape analysis
2204
if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2205
if (has_loops()) {
2206
// Cleanup graph (remove dead nodes).
2207
TracePhase t2("idealLoop", &_t_idealLoop, true);
2208
PhaseIdealLoop ideal_loop( igvn, false, true );
2209
if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2210
if (failing()) return;
2211
}
2212
ConnectionGraph::do_analysis(this, &igvn);
2213
2214
if (failing()) return;
2215
2216
// Optimize out fields loads from scalar replaceable allocations.
2217
igvn.optimize();
2218
print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2219
2220
if (failing()) return;
2221
2222
if (congraph() != NULL && macro_count() > 0) {
2223
NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2224
PhaseMacroExpand mexp(igvn);
2225
mexp.eliminate_macro_nodes();
2226
igvn.set_delay_transform(false);
2227
2228
igvn.optimize();
2229
print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2230
2231
if (failing()) return;
2232
}
2233
}
2234
2235
// Loop transforms on the ideal graph. Range Check Elimination,
2236
// peeling, unrolling, etc.
2237
2238
// Set loop opts counter
2239
loop_opts_cnt = num_loop_opts();
2240
if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2241
{
2242
TracePhase t2("idealLoop", &_t_idealLoop, true);
2243
PhaseIdealLoop ideal_loop( igvn, true );
2244
loop_opts_cnt--;
2245
if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2246
if (failing()) return;
2247
}
2248
// Loop opts pass if partial peeling occurred in previous pass
2249
if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2250
TracePhase t3("idealLoop", &_t_idealLoop, true);
2251
PhaseIdealLoop ideal_loop( igvn, false );
2252
loop_opts_cnt--;
2253
if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2254
if (failing()) return;
2255
}
2256
// Loop opts pass for loop-unrolling before CCP
2257
if(major_progress() && (loop_opts_cnt > 0)) {
2258
TracePhase t4("idealLoop", &_t_idealLoop, true);
2259
PhaseIdealLoop ideal_loop( igvn, false );
2260
loop_opts_cnt--;
2261
if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2262
}
2263
if (!failing()) {
2264
// Verify that last round of loop opts produced a valid graph
2265
NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2266
PhaseIdealLoop::verify(igvn);
2267
}
2268
}
2269
if (failing()) return;
2270
2271
// Conditional Constant Propagation;
2272
PhaseCCP ccp( &igvn );
2273
assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2274
{
2275
TracePhase t2("ccp", &_t_ccp, true);
2276
ccp.do_transform();
2277
}
2278
print_method(PHASE_CPP1, 2);
2279
2280
assert( true, "Break here to ccp.dump_old2new_map()");
2281
2282
// Iterative Global Value Numbering, including ideal transforms
2283
{
2284
NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2285
igvn = ccp;
2286
igvn.optimize();
2287
}
2288
2289
print_method(PHASE_ITER_GVN2, 2);
2290
2291
if (failing()) return;
2292
2293
// Loop transforms on the ideal graph. Range Check Elimination,
2294
// peeling, unrolling, etc.
2295
if(loop_opts_cnt > 0) {
2296
debug_only( int cnt = 0; );
2297
while(major_progress() && (loop_opts_cnt > 0)) {
2298
TracePhase t2("idealLoop", &_t_idealLoop, true);
2299
assert( cnt++ < 40, "infinite cycle in loop optimization" );
2300
PhaseIdealLoop ideal_loop( igvn, true);
2301
loop_opts_cnt--;
2302
if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2303
if (failing()) return;
2304
}
2305
}
2306
2307
{
2308
// Verify that all previous optimizations produced a valid graph
2309
// at least to this point, even if no loop optimizations were done.
2310
NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2311
PhaseIdealLoop::verify(igvn);
2312
}
2313
2314
if (range_check_cast_count() > 0) {
2315
// No more loop optimizations. Remove all range check dependent CastIINodes.
2316
C->remove_range_check_casts(igvn);
2317
igvn.optimize();
2318
}
2319
2320
#ifdef ASSERT
2321
if (UseShenandoahGC && ShenandoahVerifyOptoBarriers) {
2322
ShenandoahBarrierC2Support::verify(C->root());
2323
}
2324
#endif
2325
2326
{
2327
NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2328
PhaseMacroExpand mex(igvn);
2329
if (mex.expand_macro_nodes()) {
2330
assert(failing(), "must bail out w/ explicit message");
2331
return;
2332
}
2333
}
2334
2335
#if INCLUDE_ALL_GCS
2336
if (UseShenandoahGC) {
2337
ShenandoahBarrierC2Support::expand(this, igvn);
2338
}
2339
#endif
2340
2341
} // (End scope of igvn; run destructor if necessary for asserts.)
2342
2343
dump_inlining();
2344
// A method with only infinite loops has no edges entering loops from root
2345
{
2346
NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2347
if (final_graph_reshaping()) {
2348
assert(failing(), "must bail out w/ explicit message");
2349
return;
2350
}
2351
}
2352
2353
print_method(PHASE_OPTIMIZE_FINISHED, 2);
2354
}
2355
2356
2357
//------------------------------Code_Gen---------------------------------------
2358
// Given a graph, generate code for it
2359
void Compile::Code_Gen() {
2360
if (failing()) {
2361
return;
2362
}
2363
2364
// Perform instruction selection. You might think we could reclaim Matcher
2365
// memory PDQ, but actually the Matcher is used in generating spill code.
2366
// Internals of the Matcher (including some VectorSets) must remain live
2367
// for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2368
// set a bit in reclaimed memory.
2369
2370
// In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2371
// nodes. Mapping is only valid at the root of each matched subtree.
2372
NOT_PRODUCT( verify_graph_edges(); )
2373
2374
Matcher matcher;
2375
_matcher = &matcher;
2376
{
2377
TracePhase t2("matcher", &_t_matcher, true);
2378
matcher.match();
2379
}
2380
// In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2381
// nodes. Mapping is only valid at the root of each matched subtree.
2382
NOT_PRODUCT( verify_graph_edges(); )
2383
2384
// If you have too many nodes, or if matching has failed, bail out
2385
check_node_count(0, "out of nodes matching instructions");
2386
if (failing()) {
2387
return;
2388
}
2389
2390
// Build a proper-looking CFG
2391
PhaseCFG cfg(node_arena(), root(), matcher);
2392
_cfg = &cfg;
2393
{
2394
NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2395
bool success = cfg.do_global_code_motion();
2396
if (!success) {
2397
return;
2398
}
2399
2400
print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2401
NOT_PRODUCT( verify_graph_edges(); )
2402
debug_only( cfg.verify(); )
2403
}
2404
2405
PhaseChaitin regalloc(unique(), cfg, matcher);
2406
_regalloc = &regalloc;
2407
{
2408
TracePhase t2("regalloc", &_t_registerAllocation, true);
2409
// Perform register allocation. After Chaitin, use-def chains are
2410
// no longer accurate (at spill code) and so must be ignored.
2411
// Node->LRG->reg mappings are still accurate.
2412
_regalloc->Register_Allocate();
2413
2414
// Bail out if the allocator builds too many nodes
2415
if (failing()) {
2416
return;
2417
}
2418
}
2419
2420
// Prior to register allocation we kept empty basic blocks in case the
2421
// the allocator needed a place to spill. After register allocation we
2422
// are not adding any new instructions. If any basic block is empty, we
2423
// can now safely remove it.
2424
{
2425
NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2426
cfg.remove_empty_blocks();
2427
if (do_freq_based_layout()) {
2428
PhaseBlockLayout layout(cfg);
2429
} else {
2430
cfg.set_loop_alignment();
2431
}
2432
cfg.fixup_flow();
2433
}
2434
2435
// Apply peephole optimizations
2436
if( OptoPeephole ) {
2437
NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2438
PhasePeephole peep( _regalloc, cfg);
2439
peep.do_transform();
2440
}
2441
2442
// Do late expand if CPU requires this.
2443
if (Matcher::require_postalloc_expand) {
2444
NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2445
cfg.postalloc_expand(_regalloc);
2446
}
2447
2448
// Convert Nodes to instruction bits in a buffer
2449
{
2450
// %%%% workspace merge brought two timers together for one job
2451
TracePhase t2a("output", &_t_output, true);
2452
NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2453
Output();
2454
}
2455
2456
print_method(PHASE_FINAL_CODE);
2457
2458
// He's dead, Jim.
2459
_cfg = (PhaseCFG*)((intptr_t)0xdeadbeef);
2460
_regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2461
}
2462
2463
2464
//------------------------------dump_asm---------------------------------------
2465
// Dump formatted assembly
2466
#ifndef PRODUCT
2467
void Compile::dump_asm(int *pcs, uint pc_limit) {
2468
bool cut_short = false;
2469
tty->print_cr("#");
2470
tty->print("# "); _tf->dump(); tty->cr();
2471
tty->print_cr("#");
2472
2473
// For all blocks
2474
int pc = 0x0; // Program counter
2475
char starts_bundle = ' ';
2476
_regalloc->dump_frame();
2477
2478
Node *n = NULL;
2479
for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2480
if (VMThread::should_terminate()) {
2481
cut_short = true;
2482
break;
2483
}
2484
Block* block = _cfg->get_block(i);
2485
if (block->is_connector() && !Verbose) {
2486
continue;
2487
}
2488
n = block->head();
2489
if (pcs && n->_idx < pc_limit) {
2490
tty->print("%3.3x ", pcs[n->_idx]);
2491
} else {
2492
tty->print(" ");
2493
}
2494
block->dump_head(_cfg);
2495
if (block->is_connector()) {
2496
tty->print_cr(" # Empty connector block");
2497
} else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2498
tty->print_cr(" # Block is sole successor of call");
2499
}
2500
2501
// For all instructions
2502
Node *delay = NULL;
2503
for (uint j = 0; j < block->number_of_nodes(); j++) {
2504
if (VMThread::should_terminate()) {
2505
cut_short = true;
2506
break;
2507
}
2508
n = block->get_node(j);
2509
if (valid_bundle_info(n)) {
2510
Bundle* bundle = node_bundling(n);
2511
if (bundle->used_in_unconditional_delay()) {
2512
delay = n;
2513
continue;
2514
}
2515
if (bundle->starts_bundle()) {
2516
starts_bundle = '+';
2517
}
2518
}
2519
2520
if (WizardMode) {
2521
n->dump();
2522
}
2523
2524
if( !n->is_Region() && // Dont print in the Assembly
2525
!n->is_Phi() && // a few noisely useless nodes
2526
!n->is_Proj() &&
2527
!n->is_MachTemp() &&
2528
!n->is_SafePointScalarObject() &&
2529
!n->is_Catch() && // Would be nice to print exception table targets
2530
!n->is_MergeMem() && // Not very interesting
2531
!n->is_top() && // Debug info table constants
2532
!(n->is_Con() && !n->is_Mach())// Debug info table constants
2533
) {
2534
if (pcs && n->_idx < pc_limit)
2535
tty->print("%3.3x", pcs[n->_idx]);
2536
else
2537
tty->print(" ");
2538
tty->print(" %c ", starts_bundle);
2539
starts_bundle = ' ';
2540
tty->print("\t");
2541
n->format(_regalloc, tty);
2542
tty->cr();
2543
}
2544
2545
// If we have an instruction with a delay slot, and have seen a delay,
2546
// then back up and print it
2547
if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2548
assert(delay != NULL, "no unconditional delay instruction");
2549
if (WizardMode) delay->dump();
2550
2551
if (node_bundling(delay)->starts_bundle())
2552
starts_bundle = '+';
2553
if (pcs && n->_idx < pc_limit)
2554
tty->print("%3.3x", pcs[n->_idx]);
2555
else
2556
tty->print(" ");
2557
tty->print(" %c ", starts_bundle);
2558
starts_bundle = ' ';
2559
tty->print("\t");
2560
delay->format(_regalloc, tty);
2561
tty->cr();
2562
delay = NULL;
2563
}
2564
2565
// Dump the exception table as well
2566
if( n->is_Catch() && (Verbose || WizardMode) ) {
2567
// Print the exception table for this offset
2568
_handler_table.print_subtable_for(pc);
2569
}
2570
}
2571
2572
if (pcs && n->_idx < pc_limit)
2573
tty->print_cr("%3.3x", pcs[n->_idx]);
2574
else
2575
tty->cr();
2576
2577
assert(cut_short || delay == NULL, "no unconditional delay branch");
2578
2579
} // End of per-block dump
2580
tty->cr();
2581
2582
if (cut_short) tty->print_cr("*** disassembly is cut short ***");
2583
}
2584
#endif
2585
2586
//------------------------------Final_Reshape_Counts---------------------------
2587
// This class defines counters to help identify when a method
2588
// may/must be executed using hardware with only 24-bit precision.
2589
struct Final_Reshape_Counts : public StackObj {
2590
int _call_count; // count non-inlined 'common' calls
2591
int _float_count; // count float ops requiring 24-bit precision
2592
int _double_count; // count double ops requiring more precision
2593
int _java_call_count; // count non-inlined 'java' calls
2594
int _inner_loop_count; // count loops which need alignment
2595
VectorSet _visited; // Visitation flags
2596
Node_List _tests; // Set of IfNodes & PCTableNodes
2597
2598
Final_Reshape_Counts() :
2599
_call_count(0), _float_count(0), _double_count(0),
2600
_java_call_count(0), _inner_loop_count(0),
2601
_visited( Thread::current()->resource_area() ) { }
2602
2603
void inc_call_count () { _call_count ++; }
2604
void inc_float_count () { _float_count ++; }
2605
void inc_double_count() { _double_count++; }
2606
void inc_java_call_count() { _java_call_count++; }
2607
void inc_inner_loop_count() { _inner_loop_count++; }
2608
2609
int get_call_count () const { return _call_count ; }
2610
int get_float_count () const { return _float_count ; }
2611
int get_double_count() const { return _double_count; }
2612
int get_java_call_count() const { return _java_call_count; }
2613
int get_inner_loop_count() const { return _inner_loop_count; }
2614
};
2615
2616
#ifdef ASSERT
2617
static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2618
ciInstanceKlass *k = tp->klass()->as_instance_klass();
2619
// Make sure the offset goes inside the instance layout.
2620
return k->contains_field_offset(tp->offset());
2621
// Note that OffsetBot and OffsetTop are very negative.
2622
}
2623
#endif
2624
2625
// Eliminate trivially redundant StoreCMs and accumulate their
2626
// precedence edges.
2627
void Compile::eliminate_redundant_card_marks(Node* n) {
2628
assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2629
if (n->in(MemNode::Address)->outcnt() > 1) {
2630
// There are multiple users of the same address so it might be
2631
// possible to eliminate some of the StoreCMs
2632
Node* mem = n->in(MemNode::Memory);
2633
Node* adr = n->in(MemNode::Address);
2634
Node* val = n->in(MemNode::ValueIn);
2635
Node* prev = n;
2636
bool done = false;
2637
// Walk the chain of StoreCMs eliminating ones that match. As
2638
// long as it's a chain of single users then the optimization is
2639
// safe. Eliminating partially redundant StoreCMs would require
2640
// cloning copies down the other paths.
2641
while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2642
if (adr == mem->in(MemNode::Address) &&
2643
val == mem->in(MemNode::ValueIn)) {
2644
// redundant StoreCM
2645
if (mem->req() > MemNode::OopStore) {
2646
// Hasn't been processed by this code yet.
2647
n->add_prec(mem->in(MemNode::OopStore));
2648
} else {
2649
// Already converted to precedence edge
2650
for (uint i = mem->req(); i < mem->len(); i++) {
2651
// Accumulate any precedence edges
2652
if (mem->in(i) != NULL) {
2653
n->add_prec(mem->in(i));
2654
}
2655
}
2656
// Everything above this point has been processed.
2657
done = true;
2658
}
2659
// Eliminate the previous StoreCM
2660
prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2661
assert(mem->outcnt() == 0, "should be dead");
2662
mem->disconnect_inputs(NULL, this);
2663
} else {
2664
prev = mem;
2665
}
2666
mem = prev->in(MemNode::Memory);
2667
}
2668
}
2669
}
2670
2671
//------------------------------final_graph_reshaping_impl----------------------
2672
// Implement items 1-5 from final_graph_reshaping below.
2673
void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2674
2675
if ( n->outcnt() == 0 ) return; // dead node
2676
uint nop = n->Opcode();
2677
2678
// Check for 2-input instruction with "last use" on right input.
2679
// Swap to left input. Implements item (2).
2680
if( n->req() == 3 && // two-input instruction
2681
n->in(1)->outcnt() > 1 && // left use is NOT a last use
2682
(!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2683
n->in(2)->outcnt() == 1 &&// right use IS a last use
2684
!n->in(2)->is_Con() ) { // right use is not a constant
2685
// Check for commutative opcode
2686
switch( nop ) {
2687
case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
2688
case Op_MaxI: case Op_MinI:
2689
case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
2690
case Op_AndL: case Op_XorL: case Op_OrL:
2691
case Op_AndI: case Op_XorI: case Op_OrI: {
2692
// Move "last use" input to left by swapping inputs
2693
n->swap_edges(1, 2);
2694
break;
2695
}
2696
default:
2697
break;
2698
}
2699
}
2700
2701
#ifdef ASSERT
2702
if( n->is_Mem() ) {
2703
int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2704
assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2705
// oop will be recorded in oop map if load crosses safepoint
2706
n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2707
LoadNode::is_immutable_value(n->in(MemNode::Address))),
2708
"raw memory operations should have control edge");
2709
}
2710
if (n->is_MemBar()) {
2711
MemBarNode* mb = n->as_MemBar();
2712
if (mb->trailing_store() || mb->trailing_load_store()) {
2713
assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2714
Node* mem = mb->in(MemBarNode::Precedent);
2715
assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2716
(mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2717
} else if (mb->leading()) {
2718
assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2719
}
2720
}
2721
#endif
2722
// Count FPU ops and common calls, implements item (3)
2723
switch( nop ) {
2724
// Count all float operations that may use FPU
2725
case Op_AddF:
2726
case Op_SubF:
2727
case Op_MulF:
2728
case Op_DivF:
2729
case Op_NegF:
2730
case Op_ModF:
2731
case Op_ConvI2F:
2732
case Op_ConF:
2733
case Op_CmpF:
2734
case Op_CmpF3:
2735
// case Op_ConvL2F: // longs are split into 32-bit halves
2736
frc.inc_float_count();
2737
break;
2738
2739
case Op_ConvF2D:
2740
case Op_ConvD2F:
2741
frc.inc_float_count();
2742
frc.inc_double_count();
2743
break;
2744
2745
// Count all double operations that may use FPU
2746
case Op_AddD:
2747
case Op_SubD:
2748
case Op_MulD:
2749
case Op_DivD:
2750
case Op_NegD:
2751
case Op_ModD:
2752
case Op_ConvI2D:
2753
case Op_ConvD2I:
2754
// case Op_ConvL2D: // handled by leaf call
2755
// case Op_ConvD2L: // handled by leaf call
2756
case Op_ConD:
2757
case Op_CmpD:
2758
case Op_CmpD3:
2759
frc.inc_double_count();
2760
break;
2761
case Op_Opaque1: // Remove Opaque Nodes before matching
2762
case Op_Opaque2: // Remove Opaque Nodes before matching
2763
case Op_Opaque3:
2764
n->subsume_by(n->in(1), this);
2765
break;
2766
case Op_CallStaticJava:
2767
case Op_CallJava:
2768
case Op_CallDynamicJava:
2769
frc.inc_java_call_count(); // Count java call site;
2770
case Op_CallRuntime:
2771
case Op_CallLeaf:
2772
case Op_CallLeafNoFP: {
2773
assert( n->is_Call(), "" );
2774
CallNode *call = n->as_Call();
2775
if (UseShenandoahGC && call->is_g1_wb_pre_call()) {
2776
uint cnt = OptoRuntime::g1_wb_pre_Type()->domain()->cnt();
2777
if (call->req() > cnt) {
2778
assert(call->req() == cnt+1, "only one extra input");
2779
Node* addp = call->in(cnt);
2780
assert(!CallLeafNode::has_only_g1_wb_pre_uses(addp), "useless address computation?");
2781
call->del_req(cnt);
2782
}
2783
}
2784
// Count call sites where the FP mode bit would have to be flipped.
2785
// Do not count uncommon runtime calls:
2786
// uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2787
// _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2788
if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2789
frc.inc_call_count(); // Count the call site
2790
} else { // See if uncommon argument is shared
2791
Node *n = call->in(TypeFunc::Parms);
2792
int nop = n->Opcode();
2793
// Clone shared simple arguments to uncommon calls, item (1).
2794
if( n->outcnt() > 1 &&
2795
!n->is_Proj() &&
2796
nop != Op_CreateEx &&
2797
nop != Op_CheckCastPP &&
2798
nop != Op_DecodeN &&
2799
nop != Op_DecodeNKlass &&
2800
!n->is_Mem() ) {
2801
Node *x = n->clone();
2802
call->set_req( TypeFunc::Parms, x );
2803
}
2804
}
2805
break;
2806
}
2807
2808
case Op_StoreD:
2809
case Op_LoadD:
2810
case Op_LoadD_unaligned:
2811
frc.inc_double_count();
2812
goto handle_mem;
2813
case Op_StoreF:
2814
case Op_LoadF:
2815
frc.inc_float_count();
2816
goto handle_mem;
2817
2818
case Op_StoreCM:
2819
{
2820
// Convert OopStore dependence into precedence edge
2821
Node* prec = n->in(MemNode::OopStore);
2822
n->del_req(MemNode::OopStore);
2823
n->add_prec(prec);
2824
eliminate_redundant_card_marks(n);
2825
}
2826
2827
// fall through
2828
2829
case Op_StoreB:
2830
case Op_StoreC:
2831
case Op_StorePConditional:
2832
case Op_StoreI:
2833
case Op_StoreL:
2834
case Op_StoreIConditional:
2835
case Op_StoreLConditional:
2836
case Op_CompareAndSwapI:
2837
case Op_CompareAndSwapL:
2838
case Op_CompareAndSwapP:
2839
case Op_CompareAndSwapN:
2840
case Op_GetAndAddI:
2841
case Op_GetAndAddL:
2842
case Op_GetAndSetI:
2843
case Op_GetAndSetL:
2844
case Op_GetAndSetP:
2845
case Op_GetAndSetN:
2846
case Op_StoreP:
2847
case Op_StoreN:
2848
case Op_StoreNKlass:
2849
case Op_LoadB:
2850
case Op_LoadUB:
2851
case Op_LoadUS:
2852
case Op_LoadI:
2853
case Op_LoadKlass:
2854
case Op_LoadNKlass:
2855
case Op_LoadL:
2856
case Op_LoadL_unaligned:
2857
case Op_LoadPLocked:
2858
case Op_LoadP:
2859
case Op_LoadN:
2860
case Op_LoadRange:
2861
case Op_LoadS: {
2862
handle_mem:
2863
#ifdef ASSERT
2864
if( VerifyOptoOopOffsets ) {
2865
assert( n->is_Mem(), "" );
2866
MemNode *mem = (MemNode*)n;
2867
// Check to see if address types have grounded out somehow.
2868
const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2869
assert( !tp || oop_offset_is_sane(tp), "" );
2870
}
2871
#endif
2872
break;
2873
}
2874
2875
case Op_AddP: { // Assert sane base pointers
2876
Node *addp = n->in(AddPNode::Address);
2877
assert( !addp->is_AddP() ||
2878
addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2879
addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2880
"Base pointers must match" );
2881
#ifdef _LP64
2882
if ((UseCompressedOops || UseCompressedClassPointers) &&
2883
addp->Opcode() == Op_ConP &&
2884
addp == n->in(AddPNode::Base) &&
2885
n->in(AddPNode::Offset)->is_Con()) {
2886
// Use addressing with narrow klass to load with offset on x86.
2887
// On sparc loading 32-bits constant and decoding it have less
2888
// instructions (4) then load 64-bits constant (7).
2889
// Do this transformation here since IGVN will convert ConN back to ConP.
2890
const Type* t = addp->bottom_type();
2891
if (t->isa_oopptr() || t->isa_klassptr()) {
2892
Node* nn = NULL;
2893
2894
int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2895
2896
// Look for existing ConN node of the same exact type.
2897
Node* r = root();
2898
uint cnt = r->outcnt();
2899
for (uint i = 0; i < cnt; i++) {
2900
Node* m = r->raw_out(i);
2901
if (m!= NULL && m->Opcode() == op &&
2902
m->bottom_type()->make_ptr() == t) {
2903
nn = m;
2904
break;
2905
}
2906
}
2907
if (nn != NULL) {
2908
// Decode a narrow oop to match address
2909
// [R12 + narrow_oop_reg<<3 + offset]
2910
if (t->isa_oopptr()) {
2911
nn = new (this) DecodeNNode(nn, t);
2912
} else {
2913
nn = new (this) DecodeNKlassNode(nn, t);
2914
}
2915
n->set_req(AddPNode::Base, nn);
2916
n->set_req(AddPNode::Address, nn);
2917
if (addp->outcnt() == 0) {
2918
addp->disconnect_inputs(NULL, this);
2919
}
2920
}
2921
}
2922
}
2923
#endif
2924
break;
2925
}
2926
2927
case Op_CastPP: {
2928
// Remove CastPP nodes to gain more freedom during scheduling but
2929
// keep the dependency they encode as control or precedence edges
2930
// (if control is set already) on memory operations. Some CastPP
2931
// nodes don't have a control (don't carry a dependency): skip
2932
// those.
2933
if (n->in(0) != NULL) {
2934
ResourceMark rm;
2935
Unique_Node_List wq;
2936
wq.push(n);
2937
for (uint next = 0; next < wq.size(); ++next) {
2938
Node *m = wq.at(next);
2939
for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2940
Node* use = m->fast_out(i);
2941
if (use->is_Mem() || use->is_EncodeNarrowPtr() || use->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
2942
use->ensure_control_or_add_prec(n->in(0));
2943
} else if (use->in(0) == NULL) {
2944
switch(use->Opcode()) {
2945
case Op_AddP:
2946
case Op_DecodeN:
2947
case Op_DecodeNKlass:
2948
case Op_CheckCastPP:
2949
case Op_CastPP:
2950
wq.push(use);
2951
break;
2952
}
2953
}
2954
}
2955
}
2956
}
2957
const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2958
if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2959
Node* in1 = n->in(1);
2960
const Type* t = n->bottom_type();
2961
Node* new_in1 = in1->clone();
2962
new_in1->as_DecodeN()->set_type(t);
2963
2964
if (!Matcher::narrow_oop_use_complex_address()) {
2965
//
2966
// x86, ARM and friends can handle 2 adds in addressing mode
2967
// and Matcher can fold a DecodeN node into address by using
2968
// a narrow oop directly and do implicit NULL check in address:
2969
//
2970
// [R12 + narrow_oop_reg<<3 + offset]
2971
// NullCheck narrow_oop_reg
2972
//
2973
// On other platforms (Sparc) we have to keep new DecodeN node and
2974
// use it to do implicit NULL check in address:
2975
//
2976
// decode_not_null narrow_oop_reg, base_reg
2977
// [base_reg + offset]
2978
// NullCheck base_reg
2979
//
2980
// Pin the new DecodeN node to non-null path on these platform (Sparc)
2981
// to keep the information to which NULL check the new DecodeN node
2982
// corresponds to use it as value in implicit_null_check().
2983
//
2984
new_in1->set_req(0, n->in(0));
2985
}
2986
2987
n->subsume_by(new_in1, this);
2988
if (in1->outcnt() == 0) {
2989
in1->disconnect_inputs(NULL, this);
2990
}
2991
} else {
2992
n->subsume_by(n->in(1), this);
2993
if (n->outcnt() == 0) {
2994
n->disconnect_inputs(NULL, this);
2995
}
2996
}
2997
break;
2998
}
2999
#ifdef _LP64
3000
case Op_CmpP:
3001
// Do this transformation here to preserve CmpPNode::sub() and
3002
// other TypePtr related Ideal optimizations (for example, ptr nullness).
3003
if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3004
Node* in1 = n->in(1);
3005
Node* in2 = n->in(2);
3006
if (!in1->is_DecodeNarrowPtr()) {
3007
in2 = in1;
3008
in1 = n->in(2);
3009
}
3010
assert(in1->is_DecodeNarrowPtr(), "sanity");
3011
3012
Node* new_in2 = NULL;
3013
if (in2->is_DecodeNarrowPtr()) {
3014
assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3015
new_in2 = in2->in(1);
3016
} else if (in2->Opcode() == Op_ConP) {
3017
const Type* t = in2->bottom_type();
3018
if (t == TypePtr::NULL_PTR) {
3019
assert(in1->is_DecodeN(), "compare klass to null?");
3020
// Don't convert CmpP null check into CmpN if compressed
3021
// oops implicit null check is not generated.
3022
// This will allow to generate normal oop implicit null check.
3023
if (Matcher::gen_narrow_oop_implicit_null_checks())
3024
new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
3025
//
3026
// This transformation together with CastPP transformation above
3027
// will generated code for implicit NULL checks for compressed oops.
3028
//
3029
// The original code after Optimize()
3030
//
3031
// LoadN memory, narrow_oop_reg
3032
// decode narrow_oop_reg, base_reg
3033
// CmpP base_reg, NULL
3034
// CastPP base_reg // NotNull
3035
// Load [base_reg + offset], val_reg
3036
//
3037
// after these transformations will be
3038
//
3039
// LoadN memory, narrow_oop_reg
3040
// CmpN narrow_oop_reg, NULL
3041
// decode_not_null narrow_oop_reg, base_reg
3042
// Load [base_reg + offset], val_reg
3043
//
3044
// and the uncommon path (== NULL) will use narrow_oop_reg directly
3045
// since narrow oops can be used in debug info now (see the code in
3046
// final_graph_reshaping_walk()).
3047
//
3048
// At the end the code will be matched to
3049
// on x86:
3050
//
3051
// Load_narrow_oop memory, narrow_oop_reg
3052
// Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3053
// NullCheck narrow_oop_reg
3054
//
3055
// and on sparc:
3056
//
3057
// Load_narrow_oop memory, narrow_oop_reg
3058
// decode_not_null narrow_oop_reg, base_reg
3059
// Load [base_reg + offset], val_reg
3060
// NullCheck base_reg
3061
//
3062
} else if (t->isa_oopptr()) {
3063
new_in2 = ConNode::make(this, t->make_narrowoop());
3064
} else if (t->isa_klassptr()) {
3065
new_in2 = ConNode::make(this, t->make_narrowklass());
3066
}
3067
}
3068
if (new_in2 != NULL) {
3069
Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
3070
n->subsume_by(cmpN, this);
3071
if (in1->outcnt() == 0) {
3072
in1->disconnect_inputs(NULL, this);
3073
}
3074
if (in2->outcnt() == 0) {
3075
in2->disconnect_inputs(NULL, this);
3076
}
3077
}
3078
}
3079
break;
3080
3081
case Op_DecodeN:
3082
case Op_DecodeNKlass:
3083
assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3084
// DecodeN could be pinned when it can't be fold into
3085
// an address expression, see the code for Op_CastPP above.
3086
assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3087
break;
3088
3089
case Op_EncodeP:
3090
case Op_EncodePKlass: {
3091
Node* in1 = n->in(1);
3092
if (in1->is_DecodeNarrowPtr()) {
3093
n->subsume_by(in1->in(1), this);
3094
} else if (in1->Opcode() == Op_ConP) {
3095
const Type* t = in1->bottom_type();
3096
if (t == TypePtr::NULL_PTR) {
3097
assert(t->isa_oopptr(), "null klass?");
3098
n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
3099
} else if (t->isa_oopptr()) {
3100
n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
3101
} else if (t->isa_klassptr()) {
3102
n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
3103
}
3104
}
3105
if (in1->outcnt() == 0) {
3106
in1->disconnect_inputs(NULL, this);
3107
}
3108
break;
3109
}
3110
3111
case Op_Proj: {
3112
if (OptimizeStringConcat) {
3113
ProjNode* p = n->as_Proj();
3114
if (p->_is_io_use) {
3115
// Separate projections were used for the exception path which
3116
// are normally removed by a late inline. If it wasn't inlined
3117
// then they will hang around and should just be replaced with
3118
// the original one.
3119
Node* proj = NULL;
3120
// Replace with just one
3121
for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3122
Node *use = i.get();
3123
if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3124
proj = use;
3125
break;
3126
}
3127
}
3128
assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3129
if (proj != NULL) {
3130
p->subsume_by(proj, this);
3131
}
3132
}
3133
}
3134
break;
3135
}
3136
3137
case Op_Phi:
3138
if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3139
// The EncodeP optimization may create Phi with the same edges
3140
// for all paths. It is not handled well by Register Allocator.
3141
Node* unique_in = n->in(1);
3142
assert(unique_in != NULL, "");
3143
uint cnt = n->req();
3144
for (uint i = 2; i < cnt; i++) {
3145
Node* m = n->in(i);
3146
assert(m != NULL, "");
3147
if (unique_in != m)
3148
unique_in = NULL;
3149
}
3150
if (unique_in != NULL) {
3151
n->subsume_by(unique_in, this);
3152
}
3153
}
3154
break;
3155
3156
#endif
3157
3158
#ifdef ASSERT
3159
case Op_CastII:
3160
// Verify that all range check dependent CastII nodes were removed.
3161
if (n->isa_CastII()->has_range_check()) {
3162
n->dump(3);
3163
assert(false, "Range check dependent CastII node was not removed");
3164
}
3165
break;
3166
#endif
3167
3168
case Op_ModI:
3169
if (UseDivMod) {
3170
// Check if a%b and a/b both exist
3171
Node* d = n->find_similar(Op_DivI);
3172
if (d) {
3173
// Replace them with a fused divmod if supported
3174
if (Matcher::has_match_rule(Op_DivModI)) {
3175
DivModINode* divmod = DivModINode::make(this, n);
3176
d->subsume_by(divmod->div_proj(), this);
3177
n->subsume_by(divmod->mod_proj(), this);
3178
} else {
3179
// replace a%b with a-((a/b)*b)
3180
Node* mult = new (this) MulINode(d, d->in(2));
3181
Node* sub = new (this) SubINode(d->in(1), mult);
3182
n->subsume_by(sub, this);
3183
}
3184
}
3185
}
3186
break;
3187
3188
case Op_ModL:
3189
if (UseDivMod) {
3190
// Check if a%b and a/b both exist
3191
Node* d = n->find_similar(Op_DivL);
3192
if (d) {
3193
// Replace them with a fused divmod if supported
3194
if (Matcher::has_match_rule(Op_DivModL)) {
3195
DivModLNode* divmod = DivModLNode::make(this, n);
3196
d->subsume_by(divmod->div_proj(), this);
3197
n->subsume_by(divmod->mod_proj(), this);
3198
} else {
3199
// replace a%b with a-((a/b)*b)
3200
Node* mult = new (this) MulLNode(d, d->in(2));
3201
Node* sub = new (this) SubLNode(d->in(1), mult);
3202
n->subsume_by(sub, this);
3203
}
3204
}
3205
}
3206
break;
3207
3208
case Op_LoadVector:
3209
case Op_StoreVector:
3210
break;
3211
3212
case Op_PackB:
3213
case Op_PackS:
3214
case Op_PackI:
3215
case Op_PackF:
3216
case Op_PackL:
3217
case Op_PackD:
3218
if (n->req()-1 > 2) {
3219
// Replace many operand PackNodes with a binary tree for matching
3220
PackNode* p = (PackNode*) n;
3221
Node* btp = p->binary_tree_pack(this, 1, n->req());
3222
n->subsume_by(btp, this);
3223
}
3224
break;
3225
case Op_Loop:
3226
case Op_CountedLoop:
3227
if (n->as_Loop()->is_inner_loop()) {
3228
frc.inc_inner_loop_count();
3229
}
3230
break;
3231
case Op_LShiftI:
3232
case Op_RShiftI:
3233
case Op_URShiftI:
3234
case Op_LShiftL:
3235
case Op_RShiftL:
3236
case Op_URShiftL:
3237
if (Matcher::need_masked_shift_count) {
3238
// The cpu's shift instructions don't restrict the count to the
3239
// lower 5/6 bits. We need to do the masking ourselves.
3240
Node* in2 = n->in(2);
3241
juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3242
const TypeInt* t = in2->find_int_type();
3243
if (t != NULL && t->is_con()) {
3244
juint shift = t->get_con();
3245
if (shift > mask) { // Unsigned cmp
3246
n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3247
}
3248
} else {
3249
if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3250
Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3251
n->set_req(2, shift);
3252
}
3253
}
3254
if (in2->outcnt() == 0) { // Remove dead node
3255
in2->disconnect_inputs(NULL, this);
3256
}
3257
}
3258
break;
3259
case Op_MemBarStoreStore:
3260
case Op_MemBarRelease:
3261
// Break the link with AllocateNode: it is no longer useful and
3262
// confuses register allocation.
3263
if (n->req() > MemBarNode::Precedent) {
3264
n->set_req(MemBarNode::Precedent, top());
3265
}
3266
break;
3267
case Op_ShenandoahLoadReferenceBarrier:
3268
assert(false, "should have been expanded already");
3269
break;
3270
default:
3271
assert( !n->is_Call(), "" );
3272
assert( !n->is_Mem(), "" );
3273
assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3274
break;
3275
}
3276
3277
// Collect CFG split points
3278
if (n->is_MultiBranch())
3279
frc._tests.push(n);
3280
}
3281
3282
//------------------------------final_graph_reshaping_walk---------------------
3283
// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3284
// requires that the walk visits a node's inputs before visiting the node.
3285
void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3286
ResourceArea *area = Thread::current()->resource_area();
3287
Unique_Node_List sfpt(area);
3288
3289
frc._visited.set(root->_idx); // first, mark node as visited
3290
uint cnt = root->req();
3291
Node *n = root;
3292
uint i = 0;
3293
while (true) {
3294
if (i < cnt) {
3295
// Place all non-visited non-null inputs onto stack
3296
Node* m = n->in(i);
3297
++i;
3298
if (m != NULL && !frc._visited.test_set(m->_idx)) {
3299
if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3300
// compute worst case interpreter size in case of a deoptimization
3301
update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3302
3303
sfpt.push(m);
3304
}
3305
cnt = m->req();
3306
nstack.push(n, i); // put on stack parent and next input's index
3307
n = m;
3308
i = 0;
3309
}
3310
} else {
3311
// Now do post-visit work
3312
final_graph_reshaping_impl( n, frc );
3313
if (nstack.is_empty())
3314
break; // finished
3315
n = nstack.node(); // Get node from stack
3316
cnt = n->req();
3317
i = nstack.index();
3318
nstack.pop(); // Shift to the next node on stack
3319
}
3320
}
3321
3322
// Skip next transformation if compressed oops are not used.
3323
if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3324
(!UseCompressedOops && !UseCompressedClassPointers))
3325
return;
3326
3327
// Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3328
// It could be done for an uncommon traps or any safepoints/calls
3329
// if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3330
while (sfpt.size() > 0) {
3331
n = sfpt.pop();
3332
JVMState *jvms = n->as_SafePoint()->jvms();
3333
assert(jvms != NULL, "sanity");
3334
int start = jvms->debug_start();
3335
int end = n->req();
3336
bool is_uncommon = (n->is_CallStaticJava() &&
3337
n->as_CallStaticJava()->uncommon_trap_request() != 0);
3338
for (int j = start; j < end; j++) {
3339
Node* in = n->in(j);
3340
if (in->is_DecodeNarrowPtr()) {
3341
bool safe_to_skip = true;
3342
if (!is_uncommon ) {
3343
// Is it safe to skip?
3344
for (uint i = 0; i < in->outcnt(); i++) {
3345
Node* u = in->raw_out(i);
3346
if (!u->is_SafePoint() ||
3347
u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3348
safe_to_skip = false;
3349
}
3350
}
3351
}
3352
if (safe_to_skip) {
3353
n->set_req(j, in->in(1));
3354
}
3355
if (in->outcnt() == 0) {
3356
in->disconnect_inputs(NULL, this);
3357
}
3358
}
3359
}
3360
}
3361
}
3362
3363
//------------------------------final_graph_reshaping--------------------------
3364
// Final Graph Reshaping.
3365
//
3366
// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3367
// and not commoned up and forced early. Must come after regular
3368
// optimizations to avoid GVN undoing the cloning. Clone constant
3369
// inputs to Loop Phis; these will be split by the allocator anyways.
3370
// Remove Opaque nodes.
3371
// (2) Move last-uses by commutative operations to the left input to encourage
3372
// Intel update-in-place two-address operations and better register usage
3373
// on RISCs. Must come after regular optimizations to avoid GVN Ideal
3374
// calls canonicalizing them back.
3375
// (3) Count the number of double-precision FP ops, single-precision FP ops
3376
// and call sites. On Intel, we can get correct rounding either by
3377
// forcing singles to memory (requires extra stores and loads after each
3378
// FP bytecode) or we can set a rounding mode bit (requires setting and
3379
// clearing the mode bit around call sites). The mode bit is only used
3380
// if the relative frequency of single FP ops to calls is low enough.
3381
// This is a key transform for SPEC mpeg_audio.
3382
// (4) Detect infinite loops; blobs of code reachable from above but not
3383
// below. Several of the Code_Gen algorithms fail on such code shapes,
3384
// so we simply bail out. Happens a lot in ZKM.jar, but also happens
3385
// from time to time in other codes (such as -Xcomp finalizer loops, etc).
3386
// Detection is by looking for IfNodes where only 1 projection is
3387
// reachable from below or CatchNodes missing some targets.
3388
// (5) Assert for insane oop offsets in debug mode.
3389
3390
bool Compile::final_graph_reshaping() {
3391
// an infinite loop may have been eliminated by the optimizer,
3392
// in which case the graph will be empty.
3393
if (root()->req() == 1) {
3394
record_method_not_compilable("trivial infinite loop");
3395
return true;
3396
}
3397
3398
// Expensive nodes have their control input set to prevent the GVN
3399
// from freely commoning them. There's no GVN beyond this point so
3400
// no need to keep the control input. We want the expensive nodes to
3401
// be freely moved to the least frequent code path by gcm.
3402
assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3403
for (int i = 0; i < expensive_count(); i++) {
3404
_expensive_nodes->at(i)->set_req(0, NULL);
3405
}
3406
3407
Final_Reshape_Counts frc;
3408
3409
// Visit everybody reachable!
3410
// Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3411
Node_Stack nstack(live_nodes() >> 1);
3412
final_graph_reshaping_walk(nstack, root(), frc);
3413
3414
// Check for unreachable (from below) code (i.e., infinite loops).
3415
for( uint i = 0; i < frc._tests.size(); i++ ) {
3416
MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3417
// Get number of CFG targets.
3418
// Note that PCTables include exception targets after calls.
3419
uint required_outcnt = n->required_outcnt();
3420
if (n->outcnt() != required_outcnt) {
3421
// Check for a few special cases. Rethrow Nodes never take the
3422
// 'fall-thru' path, so expected kids is 1 less.
3423
if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3424
if (n->in(0)->in(0)->is_Call()) {
3425
CallNode *call = n->in(0)->in(0)->as_Call();
3426
if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3427
required_outcnt--; // Rethrow always has 1 less kid
3428
} else if (call->req() > TypeFunc::Parms &&
3429
call->is_CallDynamicJava()) {
3430
// Check for null receiver. In such case, the optimizer has
3431
// detected that the virtual call will always result in a null
3432
// pointer exception. The fall-through projection of this CatchNode
3433
// will not be populated.
3434
Node *arg0 = call->in(TypeFunc::Parms);
3435
if (arg0->is_Type() &&
3436
arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3437
required_outcnt--;
3438
}
3439
} else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3440
call->req() > TypeFunc::Parms+1 &&
3441
call->is_CallStaticJava()) {
3442
// Check for negative array length. In such case, the optimizer has
3443
// detected that the allocation attempt will always result in an
3444
// exception. There is no fall-through projection of this CatchNode .
3445
Node *arg1 = call->in(TypeFunc::Parms+1);
3446
if (arg1->is_Type() &&
3447
arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3448
required_outcnt--;
3449
}
3450
}
3451
}
3452
}
3453
// Recheck with a better notion of 'required_outcnt'
3454
if (n->outcnt() != required_outcnt) {
3455
record_method_not_compilable("malformed control flow");
3456
return true; // Not all targets reachable!
3457
}
3458
}
3459
// Check that I actually visited all kids. Unreached kids
3460
// must be infinite loops.
3461
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3462
if (!frc._visited.test(n->fast_out(j)->_idx)) {
3463
record_method_not_compilable("infinite loop");
3464
return true; // Found unvisited kid; must be unreach
3465
}
3466
}
3467
3468
// If original bytecodes contained a mixture of floats and doubles
3469
// check if the optimizer has made it homogenous, item (3).
3470
if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3471
frc.get_float_count() > 32 &&
3472
frc.get_double_count() == 0 &&
3473
(10 * frc.get_call_count() < frc.get_float_count()) ) {
3474
set_24_bit_selection_and_mode( false, true );
3475
}
3476
3477
set_java_calls(frc.get_java_call_count());
3478
set_inner_loops(frc.get_inner_loop_count());
3479
3480
// No infinite loops, no reason to bail out.
3481
return false;
3482
}
3483
3484
//-----------------------------too_many_traps----------------------------------
3485
// Report if there are too many traps at the current method and bci.
3486
// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3487
bool Compile::too_many_traps(ciMethod* method,
3488
int bci,
3489
Deoptimization::DeoptReason reason) {
3490
ciMethodData* md = method->method_data();
3491
if (md->is_empty()) {
3492
// Assume the trap has not occurred, or that it occurred only
3493
// because of a transient condition during start-up in the interpreter.
3494
return false;
3495
}
3496
ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3497
if (md->has_trap_at(bci, m, reason) != 0) {
3498
// Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3499
// Also, if there are multiple reasons, or if there is no per-BCI record,
3500
// assume the worst.
3501
if (log())
3502
log()->elem("observe trap='%s' count='%d'",
3503
Deoptimization::trap_reason_name(reason),
3504
md->trap_count(reason));
3505
return true;
3506
} else {
3507
// Ignore method/bci and see if there have been too many globally.
3508
return too_many_traps(reason, md);
3509
}
3510
}
3511
3512
// Less-accurate variant which does not require a method and bci.
3513
bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3514
ciMethodData* logmd) {
3515
if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3516
// Too many traps globally.
3517
// Note that we use cumulative trap_count, not just md->trap_count.
3518
if (log()) {
3519
int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3520
log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3521
Deoptimization::trap_reason_name(reason),
3522
mcount, trap_count(reason));
3523
}
3524
return true;
3525
} else {
3526
// The coast is clear.
3527
return false;
3528
}
3529
}
3530
3531
//--------------------------too_many_recompiles--------------------------------
3532
// Report if there are too many recompiles at the current method and bci.
3533
// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3534
// Is not eager to return true, since this will cause the compiler to use
3535
// Action_none for a trap point, to avoid too many recompilations.
3536
bool Compile::too_many_recompiles(ciMethod* method,
3537
int bci,
3538
Deoptimization::DeoptReason reason) {
3539
ciMethodData* md = method->method_data();
3540
if (md->is_empty()) {
3541
// Assume the trap has not occurred, or that it occurred only
3542
// because of a transient condition during start-up in the interpreter.
3543
return false;
3544
}
3545
// Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3546
uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3547
uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
3548
Deoptimization::DeoptReason per_bc_reason
3549
= Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3550
ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3551
if ((per_bc_reason == Deoptimization::Reason_none
3552
|| md->has_trap_at(bci, m, reason) != 0)
3553
// The trap frequency measure we care about is the recompile count:
3554
&& md->trap_recompiled_at(bci, m)
3555
&& md->overflow_recompile_count() >= bc_cutoff) {
3556
// Do not emit a trap here if it has already caused recompilations.
3557
// Also, if there are multiple reasons, or if there is no per-BCI record,
3558
// assume the worst.
3559
if (log())
3560
log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3561
Deoptimization::trap_reason_name(reason),
3562
md->trap_count(reason),
3563
md->overflow_recompile_count());
3564
return true;
3565
} else if (trap_count(reason) != 0
3566
&& decompile_count() >= m_cutoff) {
3567
// Too many recompiles globally, and we have seen this sort of trap.
3568
// Use cumulative decompile_count, not just md->decompile_count.
3569
if (log())
3570
log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3571
Deoptimization::trap_reason_name(reason),
3572
md->trap_count(reason), trap_count(reason),
3573
md->decompile_count(), decompile_count());
3574
return true;
3575
} else {
3576
// The coast is clear.
3577
return false;
3578
}
3579
}
3580
3581
// Compute when not to trap. Used by matching trap based nodes and
3582
// NullCheck optimization.
3583
void Compile::set_allowed_deopt_reasons() {
3584
_allowed_reasons = 0;
3585
if (is_method_compilation()) {
3586
for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3587
assert(rs < BitsPerInt, "recode bit map");
3588
if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3589
_allowed_reasons |= nth_bit(rs);
3590
}
3591
}
3592
}
3593
}
3594
3595
#ifndef PRODUCT
3596
//------------------------------verify_graph_edges---------------------------
3597
// Walk the Graph and verify that there is a one-to-one correspondence
3598
// between Use-Def edges and Def-Use edges in the graph.
3599
void Compile::verify_graph_edges(bool no_dead_code) {
3600
if (VerifyGraphEdges) {
3601
ResourceArea *area = Thread::current()->resource_area();
3602
Unique_Node_List visited(area);
3603
// Call recursive graph walk to check edges
3604
_root->verify_edges(visited);
3605
if (no_dead_code) {
3606
// Now make sure that no visited node is used by an unvisited node.
3607
bool dead_nodes = false;
3608
Unique_Node_List checked(area);
3609
while (visited.size() > 0) {
3610
Node* n = visited.pop();
3611
checked.push(n);
3612
for (uint i = 0; i < n->outcnt(); i++) {
3613
Node* use = n->raw_out(i);
3614
if (checked.member(use)) continue; // already checked
3615
if (visited.member(use)) continue; // already in the graph
3616
if (use->is_Con()) continue; // a dead ConNode is OK
3617
// At this point, we have found a dead node which is DU-reachable.
3618
if (!dead_nodes) {
3619
tty->print_cr("*** Dead nodes reachable via DU edges:");
3620
dead_nodes = true;
3621
}
3622
use->dump(2);
3623
tty->print_cr("---");
3624
checked.push(use); // No repeats; pretend it is now checked.
3625
}
3626
}
3627
assert(!dead_nodes, "using nodes must be reachable from root");
3628
}
3629
}
3630
}
3631
3632
// Verify GC barriers consistency
3633
// Currently supported:
3634
// - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3635
void Compile::verify_barriers() {
3636
if (UseG1GC || UseShenandoahGC) {
3637
// Verify G1 pre-barriers
3638
const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3639
3640
ResourceArea *area = Thread::current()->resource_area();
3641
Unique_Node_List visited(area);
3642
Node_List worklist(area);
3643
// We're going to walk control flow backwards starting from the Root
3644
worklist.push(_root);
3645
while (worklist.size() > 0) {
3646
Node* x = worklist.pop();
3647
if (x == NULL || x == top()) continue;
3648
if (visited.member(x)) {
3649
continue;
3650
} else {
3651
visited.push(x);
3652
}
3653
3654
if (x->is_Region()) {
3655
for (uint i = 1; i < x->req(); i++) {
3656
worklist.push(x->in(i));
3657
}
3658
} else {
3659
worklist.push(x->in(0));
3660
// We are looking for the pattern:
3661
// /->ThreadLocal
3662
// If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3663
// \->ConI(0)
3664
// We want to verify that the If and the LoadB have the same control
3665
// See GraphKit::g1_write_barrier_pre()
3666
if (x->is_If()) {
3667
IfNode *iff = x->as_If();
3668
if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3669
CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3670
if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3671
&& cmp->in(1)->is_Load()) {
3672
LoadNode* load = cmp->in(1)->as_Load();
3673
if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3674
&& load->in(2)->in(3)->is_Con()
3675
&& load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3676
3677
Node* if_ctrl = iff->in(0);
3678
Node* load_ctrl = load->in(0);
3679
3680
if (if_ctrl != load_ctrl) {
3681
// Skip possible CProj->NeverBranch in infinite loops
3682
if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3683
&& (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3684
if_ctrl = if_ctrl->in(0)->in(0);
3685
}
3686
}
3687
assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3688
}
3689
}
3690
}
3691
}
3692
}
3693
}
3694
}
3695
}
3696
3697
#endif
3698
3699
// The Compile object keeps track of failure reasons separately from the ciEnv.
3700
// This is required because there is not quite a 1-1 relation between the
3701
// ciEnv and its compilation task and the Compile object. Note that one
3702
// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3703
// to backtrack and retry without subsuming loads. Other than this backtracking
3704
// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3705
// by the logic in C2Compiler.
3706
void Compile::record_failure(const char* reason) {
3707
if (log() != NULL) {
3708
log()->elem("failure reason='%s' phase='compile'", reason);
3709
}
3710
if (_failure_reason == NULL) {
3711
// Record the first failure reason.
3712
_failure_reason = reason;
3713
}
3714
3715
if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3716
C->print_method(PHASE_FAILURE);
3717
}
3718
_root = NULL; // flush the graph, too
3719
}
3720
3721
Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3722
: TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3723
_phase_name(name), _dolog(dolog)
3724
{
3725
if (dolog) {
3726
C = Compile::current();
3727
_log = C->log();
3728
} else {
3729
C = NULL;
3730
_log = NULL;
3731
}
3732
if (_log != NULL) {
3733
_log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3734
_log->stamp();
3735
_log->end_head();
3736
}
3737
}
3738
3739
Compile::TracePhase::~TracePhase() {
3740
3741
C = Compile::current();
3742
if (_dolog) {
3743
_log = C->log();
3744
} else {
3745
_log = NULL;
3746
}
3747
3748
#ifdef ASSERT
3749
if (PrintIdealNodeCount) {
3750
tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3751
_phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3752
}
3753
3754
if (VerifyIdealNodeCount) {
3755
Compile::current()->print_missing_nodes();
3756
}
3757
#endif
3758
3759
if (_log != NULL) {
3760
_log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3761
}
3762
}
3763
3764
//=============================================================================
3765
// Two Constant's are equal when the type and the value are equal.
3766
bool Compile::Constant::operator==(const Constant& other) {
3767
if (type() != other.type() ) return false;
3768
if (can_be_reused() != other.can_be_reused()) return false;
3769
// For floating point values we compare the bit pattern.
3770
switch (type()) {
3771
case T_FLOAT: return (_v._value.i == other._v._value.i);
3772
case T_LONG:
3773
case T_DOUBLE: return (_v._value.j == other._v._value.j);
3774
case T_OBJECT:
3775
case T_ADDRESS: return (_v._value.l == other._v._value.l);
3776
case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
3777
case T_METADATA: return (_v._metadata == other._v._metadata);
3778
default: ShouldNotReachHere();
3779
}
3780
return false;
3781
}
3782
3783
static int type_to_size_in_bytes(BasicType t) {
3784
switch (t) {
3785
case T_LONG: return sizeof(jlong );
3786
case T_FLOAT: return sizeof(jfloat );
3787
case T_DOUBLE: return sizeof(jdouble);
3788
case T_METADATA: return sizeof(Metadata*);
3789
// We use T_VOID as marker for jump-table entries (labels) which
3790
// need an internal word relocation.
3791
case T_VOID:
3792
case T_ADDRESS:
3793
case T_OBJECT: return sizeof(jobject);
3794
}
3795
3796
ShouldNotReachHere();
3797
return -1;
3798
}
3799
3800
int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3801
// sort descending
3802
if (a->freq() > b->freq()) return -1;
3803
if (a->freq() < b->freq()) return 1;
3804
return 0;
3805
}
3806
3807
void Compile::ConstantTable::calculate_offsets_and_size() {
3808
// First, sort the array by frequencies.
3809
_constants.sort(qsort_comparator);
3810
3811
#ifdef ASSERT
3812
// Make sure all jump-table entries were sorted to the end of the
3813
// array (they have a negative frequency).
3814
bool found_void = false;
3815
for (int i = 0; i < _constants.length(); i++) {
3816
Constant con = _constants.at(i);
3817
if (con.type() == T_VOID)
3818
found_void = true; // jump-tables
3819
else
3820
assert(!found_void, "wrong sorting");
3821
}
3822
#endif
3823
3824
int offset = 0;
3825
for (int i = 0; i < _constants.length(); i++) {
3826
Constant* con = _constants.adr_at(i);
3827
3828
// Align offset for type.
3829
int typesize = type_to_size_in_bytes(con->type());
3830
offset = align_size_up(offset, typesize);
3831
con->set_offset(offset); // set constant's offset
3832
3833
if (con->type() == T_VOID) {
3834
MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3835
offset = offset + typesize * n->outcnt(); // expand jump-table
3836
} else {
3837
offset = offset + typesize;
3838
}
3839
}
3840
3841
// Align size up to the next section start (which is insts; see
3842
// CodeBuffer::align_at_start).
3843
assert(_size == -1, "already set?");
3844
_size = align_size_up(offset, CodeEntryAlignment);
3845
}
3846
3847
void Compile::ConstantTable::emit(CodeBuffer& cb) {
3848
MacroAssembler _masm(&cb);
3849
for (int i = 0; i < _constants.length(); i++) {
3850
Constant con = _constants.at(i);
3851
address constant_addr = NULL;
3852
switch (con.type()) {
3853
case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
3854
case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3855
case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3856
case T_OBJECT: {
3857
jobject obj = con.get_jobject();
3858
int oop_index = _masm.oop_recorder()->find_index(obj);
3859
constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3860
break;
3861
}
3862
case T_ADDRESS: {
3863
address addr = (address) con.get_jobject();
3864
constant_addr = _masm.address_constant(addr);
3865
break;
3866
}
3867
// We use T_VOID as marker for jump-table entries (labels) which
3868
// need an internal word relocation.
3869
case T_VOID: {
3870
MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3871
// Fill the jump-table with a dummy word. The real value is
3872
// filled in later in fill_jump_table.
3873
address dummy = (address) n;
3874
constant_addr = _masm.address_constant(dummy);
3875
// Expand jump-table
3876
for (uint i = 1; i < n->outcnt(); i++) {
3877
address temp_addr = _masm.address_constant(dummy + i);
3878
assert(temp_addr, "consts section too small");
3879
}
3880
break;
3881
}
3882
case T_METADATA: {
3883
Metadata* obj = con.get_metadata();
3884
int metadata_index = _masm.oop_recorder()->find_index(obj);
3885
constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3886
break;
3887
}
3888
default: ShouldNotReachHere();
3889
}
3890
assert(constant_addr, "consts section too small");
3891
assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3892
err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3893
}
3894
}
3895
3896
int Compile::ConstantTable::find_offset(Constant& con) const {
3897
int idx = _constants.find(con);
3898
assert(idx != -1, "constant must be in constant table");
3899
int offset = _constants.at(idx).offset();
3900
assert(offset != -1, "constant table not emitted yet?");
3901
return offset;
3902
}
3903
3904
void Compile::ConstantTable::add(Constant& con) {
3905
if (con.can_be_reused()) {
3906
int idx = _constants.find(con);
3907
if (idx != -1 && _constants.at(idx).can_be_reused()) {
3908
_constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
3909
return;
3910
}
3911
}
3912
(void) _constants.append(con);
3913
}
3914
3915
Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3916
Block* b = Compile::current()->cfg()->get_block_for_node(n);
3917
Constant con(type, value, b->_freq);
3918
add(con);
3919
return con;
3920
}
3921
3922
Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3923
Constant con(metadata);
3924
add(con);
3925
return con;
3926
}
3927
3928
Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3929
jvalue value;
3930
BasicType type = oper->type()->basic_type();
3931
switch (type) {
3932
case T_LONG: value.j = oper->constantL(); break;
3933
case T_FLOAT: value.f = oper->constantF(); break;
3934
case T_DOUBLE: value.d = oper->constantD(); break;
3935
case T_OBJECT:
3936
case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3937
case T_METADATA: return add((Metadata*)oper->constant()); break;
3938
default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3939
}
3940
return add(n, type, value);
3941
}
3942
3943
Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3944
jvalue value;
3945
// We can use the node pointer here to identify the right jump-table
3946
// as this method is called from Compile::Fill_buffer right before
3947
// the MachNodes are emitted and the jump-table is filled (means the
3948
// MachNode pointers do not change anymore).
3949
value.l = (jobject) n;
3950
Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
3951
add(con);
3952
return con;
3953
}
3954
3955
void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3956
// If called from Compile::scratch_emit_size do nothing.
3957
if (Compile::current()->in_scratch_emit_size()) return;
3958
3959
assert(labels.is_nonempty(), "must be");
3960
assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3961
3962
// Since MachConstantNode::constant_offset() also contains
3963
// table_base_offset() we need to subtract the table_base_offset()
3964
// to get the plain offset into the constant table.
3965
int offset = n->constant_offset() - table_base_offset();
3966
3967
MacroAssembler _masm(&cb);
3968
address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3969
3970
for (uint i = 0; i < n->outcnt(); i++) {
3971
address* constant_addr = &jump_table_base[i];
3972
assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3973
*constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3974
cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3975
}
3976
}
3977
3978
void Compile::dump_inlining() {
3979
if (print_inlining() || print_intrinsics()) {
3980
// Print inlining message for candidates that we couldn't inline
3981
// for lack of space or non constant receiver
3982
for (int i = 0; i < _late_inlines.length(); i++) {
3983
CallGenerator* cg = _late_inlines.at(i);
3984
cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3985
}
3986
Unique_Node_List useful;
3987
useful.push(root());
3988
for (uint next = 0; next < useful.size(); ++next) {
3989
Node* n = useful.at(next);
3990
if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3991
CallNode* call = n->as_Call();
3992
CallGenerator* cg = call->generator();
3993
cg->print_inlining_late("receiver not constant");
3994
}
3995
uint max = n->len();
3996
for ( uint i = 0; i < max; ++i ) {
3997
Node *m = n->in(i);
3998
if ( m == NULL ) continue;
3999
useful.push(m);
4000
}
4001
}
4002
for (int i = 0; i < _print_inlining_list->length(); i++) {
4003
tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4004
}
4005
}
4006
}
4007
4008
// Dump inlining replay data to the stream.
4009
// Don't change thread state and acquire any locks.
4010
void Compile::dump_inline_data(outputStream* out) {
4011
InlineTree* inl_tree = ilt();
4012
if (inl_tree != NULL) {
4013
out->print(" inline %d", inl_tree->count());
4014
inl_tree->dump_replay_data(out);
4015
}
4016
}
4017
4018
int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4019
if (n1->Opcode() < n2->Opcode()) return -1;
4020
else if (n1->Opcode() > n2->Opcode()) return 1;
4021
4022
assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
4023
for (uint i = 1; i < n1->req(); i++) {
4024
if (n1->in(i) < n2->in(i)) return -1;
4025
else if (n1->in(i) > n2->in(i)) return 1;
4026
}
4027
4028
return 0;
4029
}
4030
4031
int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4032
Node* n1 = *n1p;
4033
Node* n2 = *n2p;
4034
4035
return cmp_expensive_nodes(n1, n2);
4036
}
4037
4038
void Compile::sort_expensive_nodes() {
4039
if (!expensive_nodes_sorted()) {
4040
_expensive_nodes->sort(cmp_expensive_nodes);
4041
}
4042
}
4043
4044
bool Compile::expensive_nodes_sorted() const {
4045
for (int i = 1; i < _expensive_nodes->length(); i++) {
4046
if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4047
return false;
4048
}
4049
}
4050
return true;
4051
}
4052
4053
bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4054
if (_expensive_nodes->length() == 0) {
4055
return false;
4056
}
4057
4058
assert(OptimizeExpensiveOps, "optimization off?");
4059
4060
// Take this opportunity to remove dead nodes from the list
4061
int j = 0;
4062
for (int i = 0; i < _expensive_nodes->length(); i++) {
4063
Node* n = _expensive_nodes->at(i);
4064
if (!n->is_unreachable(igvn)) {
4065
assert(n->is_expensive(), "should be expensive");
4066
_expensive_nodes->at_put(j, n);
4067
j++;
4068
}
4069
}
4070
_expensive_nodes->trunc_to(j);
4071
4072
// Then sort the list so that similar nodes are next to each other
4073
// and check for at least two nodes of identical kind with same data
4074
// inputs.
4075
sort_expensive_nodes();
4076
4077
for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4078
if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4079
return true;
4080
}
4081
}
4082
4083
return false;
4084
}
4085
4086
void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4087
if (_expensive_nodes->length() == 0) {
4088
return;
4089
}
4090
4091
assert(OptimizeExpensiveOps, "optimization off?");
4092
4093
// Sort to bring similar nodes next to each other and clear the
4094
// control input of nodes for which there's only a single copy.
4095
sort_expensive_nodes();
4096
4097
int j = 0;
4098
int identical = 0;
4099
int i = 0;
4100
for (; i < _expensive_nodes->length()-1; i++) {
4101
assert(j <= i, "can't write beyond current index");
4102
if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4103
identical++;
4104
_expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4105
continue;
4106
}
4107
if (identical > 0) {
4108
_expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4109
identical = 0;
4110
} else {
4111
Node* n = _expensive_nodes->at(i);
4112
igvn.hash_delete(n);
4113
n->set_req(0, NULL);
4114
igvn.hash_insert(n);
4115
}
4116
}
4117
if (identical > 0) {
4118
_expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4119
} else if (_expensive_nodes->length() >= 1) {
4120
Node* n = _expensive_nodes->at(i);
4121
igvn.hash_delete(n);
4122
n->set_req(0, NULL);
4123
igvn.hash_insert(n);
4124
}
4125
_expensive_nodes->trunc_to(j);
4126
}
4127
4128
void Compile::add_expensive_node(Node * n) {
4129
assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4130
assert(n->is_expensive(), "expensive nodes with non-null control here only");
4131
assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4132
if (OptimizeExpensiveOps) {
4133
_expensive_nodes->append(n);
4134
} else {
4135
// Clear control input and let IGVN optimize expensive nodes if
4136
// OptimizeExpensiveOps is off.
4137
n->set_req(0, NULL);
4138
}
4139
}
4140
4141
/**
4142
* Remove the speculative part of types and clean up the graph
4143
*/
4144
void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4145
if (UseTypeSpeculation) {
4146
Unique_Node_List worklist;
4147
worklist.push(root());
4148
int modified = 0;
4149
// Go over all type nodes that carry a speculative type, drop the
4150
// speculative part of the type and enqueue the node for an igvn
4151
// which may optimize it out.
4152
for (uint next = 0; next < worklist.size(); ++next) {
4153
Node *n = worklist.at(next);
4154
if (n->is_Type()) {
4155
TypeNode* tn = n->as_Type();
4156
const Type* t = tn->type();
4157
const Type* t_no_spec = t->remove_speculative();
4158
if (t_no_spec != t) {
4159
bool in_hash = igvn.hash_delete(n);
4160
assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4161
tn->set_type(t_no_spec);
4162
igvn.hash_insert(n);
4163
igvn._worklist.push(n); // give it a chance to go away
4164
modified++;
4165
}
4166
}
4167
uint max = n->len();
4168
for( uint i = 0; i < max; ++i ) {
4169
Node *m = n->in(i);
4170
if (not_a_node(m)) continue;
4171
worklist.push(m);
4172
}
4173
}
4174
// Drop the speculative part of all types in the igvn's type table
4175
igvn.remove_speculative_types();
4176
if (modified > 0) {
4177
igvn.optimize();
4178
}
4179
#ifdef ASSERT
4180
// Verify that after the IGVN is over no speculative type has resurfaced
4181
worklist.clear();
4182
worklist.push(root());
4183
for (uint next = 0; next < worklist.size(); ++next) {
4184
Node *n = worklist.at(next);
4185
const Type* t = igvn.type_or_null(n);
4186
assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4187
if (n->is_Type()) {
4188
t = n->as_Type()->type();
4189
assert(t == t->remove_speculative(), "no more speculative types");
4190
}
4191
uint max = n->len();
4192
for( uint i = 0; i < max; ++i ) {
4193
Node *m = n->in(i);
4194
if (not_a_node(m)) continue;
4195
worklist.push(m);
4196
}
4197
}
4198
igvn.check_no_speculative_types();
4199
#endif
4200
}
4201
}
4202
4203
// Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4204
Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4205
if (ctrl != NULL) {
4206
// Express control dependency by a CastII node with a narrow type.
4207
value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
4208
// Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4209
// node from floating above the range check during loop optimizations. Otherwise, the
4210
// ConvI2L node may be eliminated independently of the range check, causing the data path
4211
// to become TOP while the control path is still there (although it's unreachable).
4212
value->set_req(0, ctrl);
4213
// Save CastII node to remove it after loop optimizations.
4214
phase->C->add_range_check_cast(value);
4215
value = phase->transform(value);
4216
}
4217
const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4218
return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
4219
}
4220
4221
// Auxiliary method to support randomized stressing/fuzzing.
4222
//
4223
// This method can be called the arbitrary number of times, with current count
4224
// as the argument. The logic allows selecting a single candidate from the
4225
// running list of candidates as follows:
4226
// int count = 0;
4227
// Cand* selected = null;
4228
// while(cand = cand->next()) {
4229
// if (randomized_select(++count)) {
4230
// selected = cand;
4231
// }
4232
// }
4233
//
4234
// Including count equalizes the chances any candidate is "selected".
4235
// This is useful when we don't have the complete list of candidates to choose
4236
// from uniformly. In this case, we need to adjust the randomicity of the
4237
// selection, or else we will end up biasing the selection towards the latter
4238
// candidates.
4239
//
4240
// Quick back-envelope calculation shows that for the list of n candidates
4241
// the equal probability for the candidate to persist as "best" can be
4242
// achieved by replacing it with "next" k-th candidate with the probability
4243
// of 1/k. It can be easily shown that by the end of the run, the
4244
// probability for any candidate is converged to 1/n, thus giving the
4245
// uniform distribution among all the candidates.
4246
//
4247
// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4248
#define RANDOMIZED_DOMAIN_POW 29
4249
#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4250
#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4251
bool Compile::randomized_select(int count) {
4252
assert(count > 0, "only positive");
4253
return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4254
}
4255
4256
void Compile::shenandoah_eliminate_g1_wb_pre(Node* call, PhaseIterGVN* igvn) {
4257
assert(UseShenandoahGC && call->is_g1_wb_pre_call(), "");
4258
Node* c = call->as_Call()->proj_out(TypeFunc::Control);
4259
c = c->unique_ctrl_out();
4260
assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
4261
c = c->unique_ctrl_out();
4262
assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
4263
Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
4264
assert(iff->is_If(), "expect test");
4265
if (!iff->is_shenandoah_marking_if(igvn)) {
4266
c = c->unique_ctrl_out();
4267
assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
4268
iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
4269
assert(iff->is_shenandoah_marking_if(igvn), "expect marking test");
4270
}
4271
Node* cmpx = iff->in(1)->in(1);
4272
igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
4273
igvn->rehash_node_delayed(call);
4274
call->del_req(call->req()-1);
4275
}
4276
4277