Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/compile.hpp
32285 views
1
/*
2
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_OPTO_COMPILE_HPP
26
#define SHARE_VM_OPTO_COMPILE_HPP
27
28
#include "asm/codeBuffer.hpp"
29
#include "ci/compilerInterface.hpp"
30
#include "code/debugInfoRec.hpp"
31
#include "code/exceptionHandlerTable.hpp"
32
#include "compiler/compilerOracle.hpp"
33
#include "compiler/compileBroker.hpp"
34
#include "jfr/jfrEvents.hpp"
35
#include "libadt/dict.hpp"
36
#include "libadt/port.hpp"
37
#include "libadt/vectset.hpp"
38
#include "memory/resourceArea.hpp"
39
#include "opto/idealGraphPrinter.hpp"
40
#include "opto/phasetype.hpp"
41
#include "opto/phase.hpp"
42
#include "opto/regmask.hpp"
43
#include "runtime/deoptimization.hpp"
44
#include "runtime/vmThread.hpp"
45
#include "utilities/ticks.hpp"
46
47
class Block;
48
class Bundle;
49
class C2Compiler;
50
class CallGenerator;
51
class ConnectionGraph;
52
class InlineTree;
53
class Int_Array;
54
class Matcher;
55
class MachConstantNode;
56
class MachConstantBaseNode;
57
class MachNode;
58
class MachOper;
59
class MachSafePointNode;
60
class Node;
61
class Node_Array;
62
class Node_Notes;
63
class OptoReg;
64
class PhaseCFG;
65
class PhaseGVN;
66
class PhaseIterGVN;
67
class PhaseRegAlloc;
68
class PhaseCCP;
69
class PhaseCCP_DCE;
70
class RootNode;
71
class relocInfo;
72
class ShenandoahLoadReferenceBarrierNode;
73
class Scope;
74
class StartNode;
75
class SafePointNode;
76
class JVMState;
77
class Type;
78
class TypeData;
79
class TypeInt;
80
class TypePtr;
81
class TypeOopPtr;
82
class TypeFunc;
83
class Unique_Node_List;
84
class nmethod;
85
class WarmCallInfo;
86
class Node_Stack;
87
struct Final_Reshape_Counts;
88
89
//------------------------------Compile----------------------------------------
90
// This class defines a top-level Compiler invocation.
91
92
class Compile : public Phase {
93
friend class VMStructs;
94
95
public:
96
// Fixed alias indexes. (See also MergeMemNode.)
97
enum {
98
AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value)
99
AliasIdxBot = 2, // pseudo-index, aliases to everything
100
AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM
101
};
102
103
// Variant of TraceTime(NULL, &_t_accumulator, TimeCompiler);
104
// Integrated with logging. If logging is turned on, and dolog is true,
105
// then brackets are put into the log, with time stamps and node counts.
106
// (The time collection itself is always conditionalized on TimeCompiler.)
107
class TracePhase : public TraceTime {
108
private:
109
Compile* C;
110
CompileLog* _log;
111
const char* _phase_name;
112
bool _dolog;
113
public:
114
TracePhase(const char* name, elapsedTimer* accumulator, bool dolog);
115
~TracePhase();
116
};
117
118
// Information per category of alias (memory slice)
119
class AliasType {
120
private:
121
friend class Compile;
122
123
int _index; // unique index, used with MergeMemNode
124
const TypePtr* _adr_type; // normalized address type
125
ciField* _field; // relevant instance field, or null if none
126
const Type* _element; // relevant array element type, or null if none
127
bool _is_rewritable; // false if the memory is write-once only
128
int _general_index; // if this is type is an instance, the general
129
// type that this is an instance of
130
131
void Init(int i, const TypePtr* at);
132
133
public:
134
int index() const { return _index; }
135
const TypePtr* adr_type() const { return _adr_type; }
136
ciField* field() const { return _field; }
137
const Type* element() const { return _element; }
138
bool is_rewritable() const { return _is_rewritable; }
139
bool is_volatile() const { return (_field ? _field->is_volatile() : false); }
140
int general_index() const { return (_general_index != 0) ? _general_index : _index; }
141
142
void set_rewritable(bool z) { _is_rewritable = z; }
143
void set_field(ciField* f) {
144
assert(!_field,"");
145
_field = f;
146
if (f->is_final() || f->is_stable()) {
147
// In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
148
_is_rewritable = false;
149
}
150
}
151
void set_element(const Type* e) {
152
assert(_element == NULL, "");
153
_element = e;
154
}
155
156
BasicType basic_type() const;
157
158
void print_on(outputStream* st) PRODUCT_RETURN;
159
};
160
161
enum {
162
logAliasCacheSize = 6,
163
AliasCacheSize = (1<<logAliasCacheSize)
164
};
165
struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type
166
enum {
167
trapHistLength = MethodData::_trap_hist_limit
168
};
169
170
// Constant entry of the constant table.
171
class Constant {
172
private:
173
BasicType _type;
174
union {
175
jvalue _value;
176
Metadata* _metadata;
177
} _v;
178
int _offset; // offset of this constant (in bytes) relative to the constant table base.
179
float _freq;
180
bool _can_be_reused; // true (default) if the value can be shared with other users.
181
182
public:
183
Constant() : _type(T_ILLEGAL), _offset(-1), _freq(0.0f), _can_be_reused(true) { _v._value.l = 0; }
184
Constant(BasicType type, jvalue value, float freq = 0.0f, bool can_be_reused = true) :
185
_type(type),
186
_offset(-1),
187
_freq(freq),
188
_can_be_reused(can_be_reused)
189
{
190
assert(type != T_METADATA, "wrong constructor");
191
_v._value = value;
192
}
193
Constant(Metadata* metadata, bool can_be_reused = true) :
194
_type(T_METADATA),
195
_offset(-1),
196
_freq(0.0f),
197
_can_be_reused(can_be_reused)
198
{
199
_v._metadata = metadata;
200
}
201
202
bool operator==(const Constant& other);
203
204
BasicType type() const { return _type; }
205
206
jlong get_jlong() const { return _v._value.j; }
207
jfloat get_jfloat() const { return _v._value.f; }
208
jdouble get_jdouble() const { return _v._value.d; }
209
jobject get_jobject() const { return _v._value.l; }
210
211
Metadata* get_metadata() const { return _v._metadata; }
212
213
int offset() const { return _offset; }
214
void set_offset(int offset) { _offset = offset; }
215
216
float freq() const { return _freq; }
217
void inc_freq(float freq) { _freq += freq; }
218
219
bool can_be_reused() const { return _can_be_reused; }
220
};
221
222
// Constant table.
223
class ConstantTable {
224
private:
225
GrowableArray<Constant> _constants; // Constants of this table.
226
int _size; // Size in bytes the emitted constant table takes (including padding).
227
int _table_base_offset; // Offset of the table base that gets added to the constant offsets.
228
int _nof_jump_tables; // Number of jump-tables in this constant table.
229
230
static int qsort_comparator(Constant* a, Constant* b);
231
232
// We use negative frequencies to keep the order of the
233
// jump-tables in which they were added. Otherwise we get into
234
// trouble with relocation.
235
float next_jump_table_freq() { return -1.0f * (++_nof_jump_tables); }
236
237
public:
238
ConstantTable() :
239
_size(-1),
240
_table_base_offset(-1), // We can use -1 here since the constant table is always bigger than 2 bytes (-(size / 2), see MachConstantBaseNode::emit).
241
_nof_jump_tables(0)
242
{}
243
244
int size() const { assert(_size != -1, "not calculated yet"); return _size; }
245
246
int calculate_table_base_offset() const; // AD specific
247
void set_table_base_offset(int x) { assert(_table_base_offset == -1 || x == _table_base_offset, "can't change"); _table_base_offset = x; }
248
int table_base_offset() const { assert(_table_base_offset != -1, "not set yet"); return _table_base_offset; }
249
250
void emit(CodeBuffer& cb);
251
252
// Returns the offset of the last entry (the top) of the constant table.
253
int top_offset() const { assert(_constants.top().offset() != -1, "not bound yet"); return _constants.top().offset(); }
254
255
void calculate_offsets_and_size();
256
int find_offset(Constant& con) const;
257
258
void add(Constant& con);
259
Constant add(MachConstantNode* n, BasicType type, jvalue value);
260
Constant add(Metadata* metadata);
261
Constant add(MachConstantNode* n, MachOper* oper);
262
Constant add(MachConstantNode* n, jfloat f) {
263
jvalue value; value.f = f;
264
return add(n, T_FLOAT, value);
265
}
266
Constant add(MachConstantNode* n, jdouble d) {
267
jvalue value; value.d = d;
268
return add(n, T_DOUBLE, value);
269
}
270
271
// Jump-table
272
Constant add_jump_table(MachConstantNode* n);
273
void fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const;
274
};
275
276
private:
277
// Fixed parameters to this compilation.
278
const int _compile_id;
279
const bool _save_argument_registers; // save/restore arg regs for trampolines
280
const bool _subsume_loads; // Load can be matched as part of a larger op.
281
const bool _do_escape_analysis; // Do escape analysis.
282
const bool _eliminate_boxing; // Do boxing elimination.
283
ciMethod* _method; // The method being compiled.
284
int _entry_bci; // entry bci for osr methods.
285
const TypeFunc* _tf; // My kind of signature
286
InlineTree* _ilt; // Ditto (temporary).
287
address _stub_function; // VM entry for stub being compiled, or NULL
288
const char* _stub_name; // Name of stub or adapter being compiled, or NULL
289
address _stub_entry_point; // Compile code entry for generated stub, or NULL
290
291
// Control of this compilation.
292
int _num_loop_opts; // Number of iterations for doing loop optimiztions
293
int _max_inline_size; // Max inline size for this compilation
294
int _freq_inline_size; // Max hot method inline size for this compilation
295
int _fixed_slots; // count of frame slots not allocated by the register
296
// allocator i.e. locks, original deopt pc, etc.
297
uintx _max_node_limit; // Max unique node count during a single compilation.
298
// For deopt
299
int _orig_pc_slot;
300
int _orig_pc_slot_offset_in_bytes;
301
302
int _major_progress; // Count of something big happening
303
bool _inlining_progress; // progress doing incremental inlining?
304
bool _inlining_incrementally;// Are we doing incremental inlining (post parse)
305
bool _has_loops; // True if the method _may_ have some loops
306
bool _has_split_ifs; // True if the method _may_ have some split-if
307
bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores.
308
bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated
309
bool _has_boxed_value; // True if a boxed object is allocated
310
int _max_vector_size; // Maximum size of generated vectors
311
uint _trap_hist[trapHistLength]; // Cumulative traps
312
bool _trap_can_recompile; // Have we emitted a recompiling trap?
313
uint _decompile_count; // Cumulative decompilation counts.
314
bool _do_inlining; // True if we intend to do inlining
315
bool _do_scheduling; // True if we intend to do scheduling
316
bool _do_freq_based_layout; // True if we intend to do frequency based block layout
317
bool _do_count_invocations; // True if we generate code to count invocations
318
bool _do_method_data_update; // True if we generate code to update MethodData*s
319
int _AliasLevel; // Locally-adjusted version of AliasLevel flag.
320
bool _print_assembly; // True if we should dump assembly code for this compilation
321
bool _print_inlining; // True if we should print inlining for this compilation
322
bool _print_intrinsics; // True if we should print intrinsics for this compilation
323
#ifndef PRODUCT
324
bool _trace_opto_output;
325
bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing
326
#endif
327
bool _has_irreducible_loop; // Found irreducible loops
328
// JSR 292
329
bool _has_method_handle_invokes; // True if this method has MethodHandle invokes.
330
RTMState _rtm_state; // State of Restricted Transactional Memory usage
331
332
// Compilation environment.
333
Arena _comp_arena; // Arena with lifetime equivalent to Compile
334
ciEnv* _env; // CI interface
335
CompileLog* _log; // from CompilerThread
336
const char* _failure_reason; // for record_failure/failing pattern
337
GrowableArray<CallGenerator*>* _intrinsics; // List of intrinsics.
338
GrowableArray<Node*>* _macro_nodes; // List of nodes which need to be expanded before matching.
339
GrowableArray<Node*>* _predicate_opaqs; // List of Opaque1 nodes for the loop predicates.
340
GrowableArray<Node*>* _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common
341
GrowableArray<Node*>* _range_check_casts; // List of CastII nodes with a range check dependency
342
GrowableArray<ShenandoahLoadReferenceBarrierNode*>* _shenandoah_barriers;
343
ConnectionGraph* _congraph;
344
#ifndef PRODUCT
345
IdealGraphPrinter* _printer;
346
#endif
347
348
349
350
// Node management
351
uint _unique; // Counter for unique Node indices
352
VectorSet _dead_node_list; // Set of dead nodes
353
uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N).
354
// So use this to keep count and make the call O(1).
355
debug_only(static int _debug_idx;) // Monotonic counter (not reset), use -XX:BreakAtNode=<idx>
356
Arena _node_arena; // Arena for new-space Nodes
357
Arena _old_arena; // Arena for old-space Nodes, lifetime during xform
358
RootNode* _root; // Unique root of compilation, or NULL after bail-out.
359
Node* _top; // Unique top node. (Reset by various phases.)
360
361
Node* _immutable_memory; // Initial memory state
362
363
Node* _recent_alloc_obj;
364
Node* _recent_alloc_ctl;
365
366
// Constant table
367
ConstantTable _constant_table; // The constant table for this compile.
368
MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton.
369
370
371
// Blocked array of debugging and profiling information,
372
// tracked per node.
373
enum { _log2_node_notes_block_size = 8,
374
_node_notes_block_size = (1<<_log2_node_notes_block_size)
375
};
376
GrowableArray<Node_Notes*>* _node_note_array;
377
Node_Notes* _default_node_notes; // default notes for new nodes
378
379
// After parsing and every bulk phase we hang onto the Root instruction.
380
// The RootNode instruction is where the whole program begins. It produces
381
// the initial Control and BOTTOM for everybody else.
382
383
// Type management
384
Arena _Compile_types; // Arena for all types
385
Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared()
386
Dict* _type_dict; // Intern table
387
void* _type_hwm; // Last allocation (see Type::operator new/delete)
388
size_t _type_last_size; // Last allocation size (see Type::operator new/delete)
389
ciMethod* _last_tf_m; // Cache for
390
const TypeFunc* _last_tf; // TypeFunc::make
391
AliasType** _alias_types; // List of alias types seen so far.
392
int _num_alias_types; // Logical length of _alias_types
393
int _max_alias_types; // Physical length of _alias_types
394
AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking
395
396
// Parsing, optimization
397
PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN
398
Unique_Node_List* _for_igvn; // Initial work-list for next round of Iterative GVN
399
WarmCallInfo* _warm_calls; // Sorted work-list for heat-based inlining.
400
401
GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after
402
// main parsing has finished.
403
GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations
404
405
GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations
406
407
int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining)
408
uint _number_of_mh_late_inlines; // number of method handle late inlining still pending
409
410
411
// Inlining may not happen in parse order which would make
412
// PrintInlining output confusing. Keep track of PrintInlining
413
// pieces in order.
414
class PrintInliningBuffer : public ResourceObj {
415
private:
416
CallGenerator* _cg;
417
stringStream* _ss;
418
419
public:
420
PrintInliningBuffer()
421
: _cg(NULL) { _ss = new stringStream(); }
422
423
stringStream* ss() const { return _ss; }
424
CallGenerator* cg() const { return _cg; }
425
void set_cg(CallGenerator* cg) { _cg = cg; }
426
};
427
428
GrowableArray<PrintInliningBuffer>* _print_inlining_list;
429
int _print_inlining_idx;
430
431
// Only keep nodes in the expensive node list that need to be optimized
432
void cleanup_expensive_nodes(PhaseIterGVN &igvn);
433
// Use for sorting expensive nodes to bring similar nodes together
434
static int cmp_expensive_nodes(Node** n1, Node** n2);
435
// Expensive nodes list already sorted?
436
bool expensive_nodes_sorted() const;
437
// Remove the speculative part of types and clean up the graph
438
void remove_speculative_types(PhaseIterGVN &igvn);
439
440
void* _replay_inline_data; // Pointer to data loaded from file
441
442
public:
443
444
outputStream* print_inlining_stream() const {
445
return _print_inlining_list->adr_at(_print_inlining_idx)->ss();
446
}
447
448
void print_inlining_skip(CallGenerator* cg) {
449
if (_print_inlining) {
450
_print_inlining_list->adr_at(_print_inlining_idx)->set_cg(cg);
451
_print_inlining_idx++;
452
_print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
453
}
454
}
455
456
void print_inlining_insert(CallGenerator* cg) {
457
if (_print_inlining) {
458
for (int i = 0; i < _print_inlining_list->length(); i++) {
459
if (_print_inlining_list->adr_at(i)->cg() == cg) {
460
_print_inlining_list->insert_before(i+1, PrintInliningBuffer());
461
_print_inlining_idx = i+1;
462
_print_inlining_list->adr_at(i)->set_cg(NULL);
463
return;
464
}
465
}
466
ShouldNotReachHere();
467
}
468
}
469
470
void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) {
471
stringStream ss;
472
CompileTask::print_inlining(&ss, method, inline_level, bci, msg);
473
print_inlining_stream()->print("%s", ss.as_string());
474
}
475
476
void* replay_inline_data() const { return _replay_inline_data; }
477
478
// Dump inlining replay data to the stream.
479
void dump_inline_data(outputStream* out);
480
481
private:
482
// Matching, CFG layout, allocation, code generation
483
PhaseCFG* _cfg; // Results of CFG finding
484
bool _select_24_bit_instr; // We selected an instruction with a 24-bit result
485
bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results
486
int _java_calls; // Number of java calls in the method
487
int _inner_loops; // Number of inner loops in the method
488
Matcher* _matcher; // Engine to map ideal to machine instructions
489
PhaseRegAlloc* _regalloc; // Results of register allocation.
490
int _frame_slots; // Size of total frame in stack slots
491
CodeOffsets _code_offsets; // Offsets into the code for various interesting entries
492
RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout)
493
Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin
494
void* _indexSet_free_block_list; // free list of IndexSet bit blocks
495
int _interpreter_frame_size;
496
497
uint _node_bundling_limit;
498
Bundle* _node_bundling_base; // Information for instruction bundling
499
500
// Instruction bits passed off to the VM
501
int _method_size; // Size of nmethod code segment in bytes
502
CodeBuffer _code_buffer; // Where the code is assembled
503
int _first_block_size; // Size of unvalidated entry point code / OSR poison code
504
ExceptionHandlerTable _handler_table; // Table of native-code exception handlers
505
ImplicitExceptionTable _inc_table; // Table of implicit null checks in native code
506
OopMapSet* _oop_map_set; // Table of oop maps (one for each safepoint location)
507
static int _CompiledZap_count; // counter compared against CompileZap[First/Last]
508
BufferBlob* _scratch_buffer_blob; // For temporary code buffers.
509
relocInfo* _scratch_locs_memory; // For temporary code buffers.
510
int _scratch_const_size; // For temporary code buffers.
511
bool _in_scratch_emit_size; // true when in scratch_emit_size.
512
513
public:
514
// Accessors
515
516
// The Compile instance currently active in this (compiler) thread.
517
static Compile* current() {
518
return (Compile*) ciEnv::current()->compiler_data();
519
}
520
521
// ID for this compilation. Useful for setting breakpoints in the debugger.
522
int compile_id() const { return _compile_id; }
523
524
// Does this compilation allow instructions to subsume loads? User
525
// instructions that subsume a load may result in an unschedulable
526
// instruction sequence.
527
bool subsume_loads() const { return _subsume_loads; }
528
/** Do escape analysis. */
529
bool do_escape_analysis() const { return _do_escape_analysis; }
530
/** Do boxing elimination. */
531
bool eliminate_boxing() const { return _eliminate_boxing; }
532
/** Do aggressive boxing elimination. */
533
bool aggressive_unboxing() const { return _eliminate_boxing && AggressiveUnboxing; }
534
bool save_argument_registers() const { return _save_argument_registers; }
535
536
537
// Other fixed compilation parameters.
538
ciMethod* method() const { return _method; }
539
int entry_bci() const { return _entry_bci; }
540
bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; }
541
bool is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); }
542
const TypeFunc* tf() const { assert(_tf!=NULL, ""); return _tf; }
543
void init_tf(const TypeFunc* tf) { assert(_tf==NULL, ""); _tf = tf; }
544
InlineTree* ilt() const { return _ilt; }
545
address stub_function() const { return _stub_function; }
546
const char* stub_name() const { return _stub_name; }
547
address stub_entry_point() const { return _stub_entry_point; }
548
549
// Control of this compilation.
550
int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; }
551
void set_fixed_slots(int n) { _fixed_slots = n; }
552
int major_progress() const { return _major_progress; }
553
void set_inlining_progress(bool z) { _inlining_progress = z; }
554
int inlining_progress() const { return _inlining_progress; }
555
void set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
556
int inlining_incrementally() const { return _inlining_incrementally; }
557
void set_major_progress() { _major_progress++; }
558
void clear_major_progress() { _major_progress = 0; }
559
int num_loop_opts() const { return _num_loop_opts; }
560
void set_num_loop_opts(int n) { _num_loop_opts = n; }
561
int max_inline_size() const { return _max_inline_size; }
562
void set_freq_inline_size(int n) { _freq_inline_size = n; }
563
int freq_inline_size() const { return _freq_inline_size; }
564
void set_max_inline_size(int n) { _max_inline_size = n; }
565
bool has_loops() const { return _has_loops; }
566
void set_has_loops(bool z) { _has_loops = z; }
567
bool has_split_ifs() const { return _has_split_ifs; }
568
void set_has_split_ifs(bool z) { _has_split_ifs = z; }
569
bool has_unsafe_access() const { return _has_unsafe_access; }
570
void set_has_unsafe_access(bool z) { _has_unsafe_access = z; }
571
bool has_stringbuilder() const { return _has_stringbuilder; }
572
void set_has_stringbuilder(bool z) { _has_stringbuilder = z; }
573
bool has_boxed_value() const { return _has_boxed_value; }
574
void set_has_boxed_value(bool z) { _has_boxed_value = z; }
575
int max_vector_size() const { return _max_vector_size; }
576
void set_max_vector_size(int s) { _max_vector_size = s; }
577
void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; }
578
uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
579
bool trap_can_recompile() const { return _trap_can_recompile; }
580
void set_trap_can_recompile(bool z) { _trap_can_recompile = z; }
581
uint decompile_count() const { return _decompile_count; }
582
void set_decompile_count(uint c) { _decompile_count = c; }
583
bool allow_range_check_smearing() const;
584
bool do_inlining() const { return _do_inlining; }
585
void set_do_inlining(bool z) { _do_inlining = z; }
586
bool do_scheduling() const { return _do_scheduling; }
587
void set_do_scheduling(bool z) { _do_scheduling = z; }
588
bool do_freq_based_layout() const{ return _do_freq_based_layout; }
589
void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
590
bool do_count_invocations() const{ return _do_count_invocations; }
591
void set_do_count_invocations(bool z){ _do_count_invocations = z; }
592
bool do_method_data_update() const { return _do_method_data_update; }
593
void set_do_method_data_update(bool z) { _do_method_data_update = z; }
594
int AliasLevel() const { return _AliasLevel; }
595
bool print_assembly() const { return _print_assembly; }
596
void set_print_assembly(bool z) { _print_assembly = z; }
597
bool print_inlining() const { return _print_inlining; }
598
void set_print_inlining(bool z) { _print_inlining = z; }
599
bool print_intrinsics() const { return _print_intrinsics; }
600
void set_print_intrinsics(bool z) { _print_intrinsics = z; }
601
RTMState rtm_state() const { return _rtm_state; }
602
void set_rtm_state(RTMState s) { _rtm_state = s; }
603
bool use_rtm() const { return (_rtm_state & NoRTM) == 0; }
604
bool profile_rtm() const { return _rtm_state == ProfileRTM; }
605
uint max_node_limit() const { return (uint)_max_node_limit; }
606
void set_max_node_limit(uint n) { _max_node_limit = n; }
607
608
// check the CompilerOracle for special behaviours for this compile
609
bool method_has_option(const char * option) {
610
return method() != NULL && method()->has_option(option);
611
}
612
template<typename T>
613
bool method_has_option_value(const char * option, T& value) {
614
return method() != NULL && method()->has_option_value(option, value);
615
}
616
#ifndef PRODUCT
617
bool trace_opto_output() const { return _trace_opto_output; }
618
bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
619
void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
620
int _in_dump_cnt; // Required for dumping ir nodes.
621
#endif
622
bool has_irreducible_loop() const { return _has_irreducible_loop; }
623
void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; }
624
625
// JSR 292
626
bool has_method_handle_invokes() const { return _has_method_handle_invokes; }
627
void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; }
628
629
Ticks _latest_stage_start_counter;
630
631
void begin_method() {
632
#ifndef PRODUCT
633
if (_printer) _printer->begin_method(this);
634
#endif
635
C->_latest_stage_start_counter.stamp();
636
}
637
638
void print_method(CompilerPhaseType cpt, int level = 1) {
639
EventCompilerPhase event;
640
if (event.should_commit()) {
641
event.set_starttime(C->_latest_stage_start_counter);
642
event.set_phase((u1) cpt);
643
event.set_compileId(C->_compile_id);
644
event.set_phaseLevel(level);
645
event.commit();
646
}
647
648
649
#ifndef PRODUCT
650
if (_printer) _printer->print_method(this, CompilerPhaseTypeHelper::to_string(cpt), level);
651
#endif
652
C->_latest_stage_start_counter.stamp();
653
}
654
655
void end_method(int level = 1) {
656
EventCompilerPhase event;
657
if (event.should_commit()) {
658
event.set_starttime(C->_latest_stage_start_counter);
659
event.set_phase((u1) PHASE_END);
660
event.set_compileId(C->_compile_id);
661
event.set_phaseLevel(level);
662
event.commit();
663
}
664
#ifndef PRODUCT
665
if (_printer) _printer->end_method();
666
#endif
667
}
668
669
int macro_count() const { return _macro_nodes->length(); }
670
int predicate_count() const { return _predicate_opaqs->length();}
671
int expensive_count() const { return _expensive_nodes->length(); }
672
int shenandoah_barriers_count() const { return _shenandoah_barriers->length(); }
673
Node* macro_node(int idx) const { return _macro_nodes->at(idx); }
674
Node* predicate_opaque1_node(int idx) const { return _predicate_opaqs->at(idx);}
675
Node* expensive_node(int idx) const { return _expensive_nodes->at(idx); }
676
ShenandoahLoadReferenceBarrierNode* shenandoah_barrier(int idx) const { return _shenandoah_barriers->at(idx); }
677
ConnectionGraph* congraph() { return _congraph;}
678
void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;}
679
void add_macro_node(Node * n) {
680
//assert(n->is_macro(), "must be a macro node");
681
assert(!_macro_nodes->contains(n), "duplicate entry in expand list");
682
_macro_nodes->append(n);
683
}
684
void remove_macro_node(Node * n) {
685
// this function may be called twice for a node so check
686
// that the node is in the array before attempting to remove it
687
if (_macro_nodes->contains(n))
688
_macro_nodes->remove(n);
689
// remove from _predicate_opaqs list also if it is there
690
if (predicate_count() > 0 && _predicate_opaqs->contains(n)){
691
_predicate_opaqs->remove(n);
692
}
693
}
694
void add_expensive_node(Node * n);
695
void remove_expensive_node(Node * n) {
696
if (_expensive_nodes->contains(n)) {
697
_expensive_nodes->remove(n);
698
}
699
}
700
void add_shenandoah_barrier(ShenandoahLoadReferenceBarrierNode * n) {
701
assert(!_shenandoah_barriers->contains(n), "duplicate entry in barrier list");
702
_shenandoah_barriers->append(n);
703
}
704
void remove_shenandoah_barrier(ShenandoahLoadReferenceBarrierNode * n) {
705
if (_shenandoah_barriers->contains(n)) {
706
_shenandoah_barriers->remove(n);
707
}
708
}
709
void add_predicate_opaq(Node * n) {
710
assert(!_predicate_opaqs->contains(n), "duplicate entry in predicate opaque1");
711
assert(_macro_nodes->contains(n), "should have already been in macro list");
712
_predicate_opaqs->append(n);
713
}
714
715
// Range check dependent CastII nodes that can be removed after loop optimizations
716
void add_range_check_cast(Node* n);
717
void remove_range_check_cast(Node* n) {
718
if (_range_check_casts->contains(n)) {
719
_range_check_casts->remove(n);
720
}
721
}
722
Node* range_check_cast_node(int idx) const { return _range_check_casts->at(idx); }
723
int range_check_cast_count() const { return _range_check_casts->length(); }
724
// Remove all range check dependent CastIINodes.
725
void remove_range_check_casts(PhaseIterGVN &igvn);
726
727
// remove the opaque nodes that protect the predicates so that the unused checks and
728
// uncommon traps will be eliminated from the graph.
729
void cleanup_loop_predicates(PhaseIterGVN &igvn);
730
bool is_predicate_opaq(Node * n) {
731
return _predicate_opaqs->contains(n);
732
}
733
734
// Are there candidate expensive nodes for optimization?
735
bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
736
// Check whether n1 and n2 are similar
737
static int cmp_expensive_nodes(Node* n1, Node* n2);
738
// Sort expensive nodes to locate similar expensive nodes
739
void sort_expensive_nodes();
740
741
GrowableArray<ShenandoahLoadReferenceBarrierNode*>* shenandoah_barriers() { return _shenandoah_barriers; }
742
743
// Compilation environment.
744
Arena* comp_arena() { return &_comp_arena; }
745
ciEnv* env() const { return _env; }
746
CompileLog* log() const { return _log; }
747
bool failing() const { return _env->failing() || _failure_reason != NULL; }
748
const char* failure_reason() { return _failure_reason; }
749
bool failure_reason_is(const char* r) { return (r==_failure_reason) || (r!=NULL && _failure_reason!=NULL && strcmp(r, _failure_reason)==0); }
750
751
void record_failure(const char* reason);
752
void record_method_not_compilable(const char* reason, bool all_tiers = false) {
753
// All bailouts cover "all_tiers" when TieredCompilation is off.
754
if (!TieredCompilation) all_tiers = true;
755
env()->record_method_not_compilable(reason, all_tiers);
756
// Record failure reason.
757
record_failure(reason);
758
}
759
void record_method_not_compilable_all_tiers(const char* reason) {
760
record_method_not_compilable(reason, true);
761
}
762
bool check_node_count(uint margin, const char* reason) {
763
if (live_nodes() + margin > max_node_limit()) {
764
record_method_not_compilable(reason);
765
return true;
766
} else {
767
return false;
768
}
769
}
770
771
// Node management
772
uint unique() const { return _unique; }
773
uint next_unique() { return _unique++; }
774
void set_unique(uint i) { _unique = i; }
775
static int debug_idx() { return debug_only(_debug_idx)+0; }
776
static void set_debug_idx(int i) { debug_only(_debug_idx = i); }
777
Arena* node_arena() { return &_node_arena; }
778
Arena* old_arena() { return &_old_arena; }
779
RootNode* root() const { return _root; }
780
void set_root(RootNode* r) { _root = r; }
781
StartNode* start() const; // (Derived from root.)
782
void init_start(StartNode* s);
783
Node* immutable_memory();
784
785
Node* recent_alloc_ctl() const { return _recent_alloc_ctl; }
786
Node* recent_alloc_obj() const { return _recent_alloc_obj; }
787
void set_recent_alloc(Node* ctl, Node* obj) {
788
_recent_alloc_ctl = ctl;
789
_recent_alloc_obj = obj;
790
}
791
void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return;
792
_dead_node_count++;
793
}
794
bool is_dead_node(uint idx) { return _dead_node_list.test(idx) != 0; }
795
uint dead_node_count() { return _dead_node_count; }
796
void reset_dead_node_list() { _dead_node_list.Reset();
797
_dead_node_count = 0;
798
}
799
uint live_nodes() const {
800
int val = _unique - _dead_node_count;
801
assert (val >= 0, err_msg_res("number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count));
802
return (uint) val;
803
}
804
#ifdef ASSERT
805
uint count_live_nodes_by_graph_walk();
806
void print_missing_nodes();
807
#endif
808
809
// Constant table
810
ConstantTable& constant_table() { return _constant_table; }
811
812
MachConstantBaseNode* mach_constant_base_node();
813
bool has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; }
814
// Generated by adlc, true if CallNode requires MachConstantBase.
815
bool needs_clone_jvms();
816
817
// Handy undefined Node
818
Node* top() const { return _top; }
819
820
// these are used by guys who need to know about creation and transformation of top:
821
Node* cached_top_node() { return _top; }
822
void set_cached_top_node(Node* tn);
823
824
GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
825
void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
826
Node_Notes* default_node_notes() const { return _default_node_notes; }
827
void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }
828
829
Node_Notes* node_notes_at(int idx) {
830
return locate_node_notes(_node_note_array, idx, false);
831
}
832
inline bool set_node_notes_at(int idx, Node_Notes* value);
833
834
// Copy notes from source to dest, if they exist.
835
// Overwrite dest only if source provides something.
836
// Return true if information was moved.
837
bool copy_node_notes_to(Node* dest, Node* source);
838
839
// Workhorse function to sort out the blocked Node_Notes array:
840
inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
841
int idx, bool can_grow = false);
842
843
void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);
844
845
// Type management
846
Arena* type_arena() { return _type_arena; }
847
Dict* type_dict() { return _type_dict; }
848
void* type_hwm() { return _type_hwm; }
849
size_t type_last_size() { return _type_last_size; }
850
int num_alias_types() { return _num_alias_types; }
851
852
void init_type_arena() { _type_arena = &_Compile_types; }
853
void set_type_arena(Arena* a) { _type_arena = a; }
854
void set_type_dict(Dict* d) { _type_dict = d; }
855
void set_type_hwm(void* p) { _type_hwm = p; }
856
void set_type_last_size(size_t sz) { _type_last_size = sz; }
857
858
const TypeFunc* last_tf(ciMethod* m) {
859
return (m == _last_tf_m) ? _last_tf : NULL;
860
}
861
void set_last_tf(ciMethod* m, const TypeFunc* tf) {
862
assert(m != NULL || tf == NULL, "");
863
_last_tf_m = m;
864
_last_tf = tf;
865
}
866
867
AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
868
AliasType* alias_type(const TypePtr* adr_type, ciField* field = NULL) { return find_alias_type(adr_type, false, field); }
869
bool have_alias_type(const TypePtr* adr_type);
870
AliasType* alias_type(ciField* field);
871
872
int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); }
873
const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); }
874
int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); }
875
876
// Building nodes
877
void rethrow_exceptions(JVMState* jvms);
878
void return_values(JVMState* jvms);
879
JVMState* build_start_state(StartNode* start, const TypeFunc* tf);
880
881
// Decide how to build a call.
882
// The profile factor is a discount to apply to this site's interp. profile.
883
CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
884
JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL,
885
bool allow_intrinsics = true, bool delayed_forbidden = false);
886
bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
887
return should_delay_string_inlining(call_method, jvms) ||
888
should_delay_boxing_inlining(call_method, jvms);
889
}
890
bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
891
bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
892
893
// Helper functions to identify inlining potential at call-site
894
ciMethod* optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass,
895
ciKlass* holder, ciMethod* callee,
896
const TypeOopPtr* receiver_type, bool is_virtual,
897
bool &call_does_dispatch, int &vtable_index,
898
bool check_access = true);
899
ciMethod* optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass,
900
ciMethod* callee, const TypeOopPtr* receiver_type,
901
bool check_access = true);
902
903
// Report if there were too many traps at a current method and bci.
904
// Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
905
// If there is no MDO at all, report no trap unless told to assume it.
906
bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
907
// This version, unspecific to a particular bci, asks if
908
// PerMethodTrapLimit was exceeded for all inlined methods seen so far.
909
bool too_many_traps(Deoptimization::DeoptReason reason,
910
// Privately used parameter for logging:
911
ciMethodData* logmd = NULL);
912
// Report if there were too many recompiles at a method and bci.
913
bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
914
// Return a bitset with the reasons where deoptimization is allowed,
915
// i.e., where there were not too many uncommon traps.
916
int _allowed_reasons;
917
int allowed_deopt_reasons() { return _allowed_reasons; }
918
void set_allowed_deopt_reasons();
919
920
// Parsing, optimization
921
PhaseGVN* initial_gvn() { return _initial_gvn; }
922
Unique_Node_List* for_igvn() { return _for_igvn; }
923
inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List.
924
void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; }
925
void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; }
926
927
// Replace n by nn using initial_gvn, calling hash_delete and
928
// record_for_igvn as needed.
929
void gvn_replace_by(Node* n, Node* nn);
930
931
932
void identify_useful_nodes(Unique_Node_List &useful);
933
void update_dead_node_list(Unique_Node_List &useful);
934
void remove_useless_nodes (Unique_Node_List &useful);
935
936
WarmCallInfo* warm_calls() const { return _warm_calls; }
937
void set_warm_calls(WarmCallInfo* l) { _warm_calls = l; }
938
WarmCallInfo* pop_warm_call();
939
940
// Record this CallGenerator for inlining at the end of parsing.
941
void add_late_inline(CallGenerator* cg) {
942
_late_inlines.insert_before(_late_inlines_pos, cg);
943
_late_inlines_pos++;
944
}
945
946
void prepend_late_inline(CallGenerator* cg) {
947
_late_inlines.insert_before(0, cg);
948
}
949
950
void add_string_late_inline(CallGenerator* cg) {
951
_string_late_inlines.push(cg);
952
}
953
954
void add_boxing_late_inline(CallGenerator* cg) {
955
_boxing_late_inlines.push(cg);
956
}
957
958
void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
959
960
void dump_inlining();
961
962
bool over_inlining_cutoff() const {
963
if (!inlining_incrementally()) {
964
return unique() > (uint)NodeCountInliningCutoff;
965
} else {
966
return live_nodes() > (uint)LiveNodeCountInliningCutoff;
967
}
968
}
969
970
void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; }
971
void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; }
972
bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; }
973
974
void inline_incrementally_one(PhaseIterGVN& igvn);
975
void inline_incrementally(PhaseIterGVN& igvn);
976
void inline_string_calls(bool parse_time);
977
void inline_boxing_calls(PhaseIterGVN& igvn);
978
void remove_root_to_sfpts_edges(PhaseIterGVN& igvn);
979
980
// Matching, CFG layout, allocation, code generation
981
PhaseCFG* cfg() { return _cfg; }
982
bool select_24_bit_instr() const { return _select_24_bit_instr; }
983
bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; }
984
bool has_java_calls() const { return _java_calls > 0; }
985
int java_calls() const { return _java_calls; }
986
int inner_loops() const { return _inner_loops; }
987
Matcher* matcher() { return _matcher; }
988
PhaseRegAlloc* regalloc() { return _regalloc; }
989
int frame_slots() const { return _frame_slots; }
990
int frame_size_in_words() const; // frame_slots in units of the polymorphic 'words'
991
int frame_size_in_bytes() const { return _frame_slots << LogBytesPerInt; }
992
RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; }
993
Arena* indexSet_arena() { return _indexSet_arena; }
994
void* indexSet_free_block_list() { return _indexSet_free_block_list; }
995
uint node_bundling_limit() { return _node_bundling_limit; }
996
Bundle* node_bundling_base() { return _node_bundling_base; }
997
void set_node_bundling_limit(uint n) { _node_bundling_limit = n; }
998
void set_node_bundling_base(Bundle* b) { _node_bundling_base = b; }
999
bool starts_bundle(const Node *n) const;
1000
bool need_stack_bang(int frame_size_in_bytes) const;
1001
bool need_register_stack_bang() const;
1002
1003
void update_interpreter_frame_size(int size) {
1004
if (_interpreter_frame_size < size) {
1005
_interpreter_frame_size = size;
1006
}
1007
}
1008
int bang_size_in_bytes() const;
1009
1010
void set_matcher(Matcher* m) { _matcher = m; }
1011
//void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; }
1012
void set_indexSet_arena(Arena* a) { _indexSet_arena = a; }
1013
void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; }
1014
1015
// Remember if this compilation changes hardware mode to 24-bit precision
1016
void set_24_bit_selection_and_mode(bool selection, bool mode) {
1017
_select_24_bit_instr = selection;
1018
_in_24_bit_fp_mode = mode;
1019
}
1020
1021
void set_java_calls(int z) { _java_calls = z; }
1022
void set_inner_loops(int z) { _inner_loops = z; }
1023
1024
// Instruction bits passed off to the VM
1025
int code_size() { return _method_size; }
1026
CodeBuffer* code_buffer() { return &_code_buffer; }
1027
int first_block_size() { return _first_block_size; }
1028
void set_frame_complete(int off) { _code_offsets.set_value(CodeOffsets::Frame_Complete, off); }
1029
ExceptionHandlerTable* handler_table() { return &_handler_table; }
1030
ImplicitExceptionTable* inc_table() { return &_inc_table; }
1031
OopMapSet* oop_map_set() { return _oop_map_set; }
1032
DebugInformationRecorder* debug_info() { return env()->debug_info(); }
1033
Dependencies* dependencies() { return env()->dependencies(); }
1034
static int CompiledZap_count() { return _CompiledZap_count; }
1035
BufferBlob* scratch_buffer_blob() { return _scratch_buffer_blob; }
1036
void init_scratch_buffer_blob(int const_size);
1037
void clear_scratch_buffer_blob();
1038
void set_scratch_buffer_blob(BufferBlob* b) { _scratch_buffer_blob = b; }
1039
relocInfo* scratch_locs_memory() { return _scratch_locs_memory; }
1040
void set_scratch_locs_memory(relocInfo* b) { _scratch_locs_memory = b; }
1041
1042
// emit to scratch blob, report resulting size
1043
uint scratch_emit_size(const Node* n);
1044
void set_in_scratch_emit_size(bool x) { _in_scratch_emit_size = x; }
1045
bool in_scratch_emit_size() const { return _in_scratch_emit_size; }
1046
1047
enum ScratchBufferBlob {
1048
MAX_inst_size = 1024,
1049
MAX_locs_size = 128, // number of relocInfo elements
1050
MAX_const_size = 128,
1051
MAX_stubs_size = 128
1052
};
1053
1054
// Major entry point. Given a Scope, compile the associated method.
1055
// For normal compilations, entry_bci is InvocationEntryBci. For on stack
1056
// replacement, entry_bci indicates the bytecode for which to compile a
1057
// continuation.
1058
Compile(ciEnv* ci_env, C2Compiler* compiler, ciMethod* target,
1059
int entry_bci, bool subsume_loads, bool do_escape_analysis,
1060
bool eliminate_boxing);
1061
1062
// Second major entry point. From the TypeFunc signature, generate code
1063
// to pass arguments from the Java calling convention to the C calling
1064
// convention.
1065
Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
1066
address stub_function, const char *stub_name,
1067
int is_fancy_jump, bool pass_tls,
1068
bool save_arg_registers, bool return_pc);
1069
1070
// From the TypeFunc signature, generate code to pass arguments
1071
// from Compiled calling convention to Interpreter's calling convention
1072
void Generate_Compiled_To_Interpreter_Graph(const TypeFunc *tf, address interpreter_entry);
1073
1074
// From the TypeFunc signature, generate code to pass arguments
1075
// from Interpreter's calling convention to Compiler's calling convention
1076
void Generate_Interpreter_To_Compiled_Graph(const TypeFunc *tf);
1077
1078
// Are we compiling a method?
1079
bool has_method() { return method() != NULL; }
1080
1081
// Maybe print some information about this compile.
1082
void print_compile_messages();
1083
1084
// Final graph reshaping, a post-pass after the regular optimizer is done.
1085
bool final_graph_reshaping();
1086
1087
// returns true if adr is completely contained in the given alias category
1088
bool must_alias(const TypePtr* adr, int alias_idx);
1089
1090
// returns true if adr overlaps with the given alias category
1091
bool can_alias(const TypePtr* adr, int alias_idx);
1092
1093
// Driver for converting compiler's IR into machine code bits
1094
void Output();
1095
1096
// Accessors for node bundling info.
1097
Bundle* node_bundling(const Node *n);
1098
bool valid_bundle_info(const Node *n);
1099
1100
// Schedule and Bundle the instructions
1101
void ScheduleAndBundle();
1102
1103
// Build OopMaps for each GC point
1104
void BuildOopMaps();
1105
1106
// Append debug info for the node "local" at safepoint node "sfpt" to the
1107
// "array", May also consult and add to "objs", which describes the
1108
// scalar-replaced objects.
1109
void FillLocArray( int idx, MachSafePointNode* sfpt,
1110
Node *local, GrowableArray<ScopeValue*> *array,
1111
GrowableArray<ScopeValue*> *objs );
1112
1113
// If "objs" contains an ObjectValue whose id is "id", returns it, else NULL.
1114
static ObjectValue* sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id);
1115
// Requres that "objs" does not contains an ObjectValue whose id matches
1116
// that of "sv. Appends "sv".
1117
static void set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
1118
ObjectValue* sv );
1119
1120
// Process an OopMap Element while emitting nodes
1121
void Process_OopMap_Node(MachNode *mach, int code_offset);
1122
1123
// Initialize code buffer
1124
CodeBuffer* init_buffer(uint* blk_starts);
1125
1126
// Write out basic block data to code buffer
1127
void fill_buffer(CodeBuffer* cb, uint* blk_starts);
1128
1129
// Determine which variable sized branches can be shortened
1130
void shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size);
1131
1132
// Compute the size of first NumberOfLoopInstrToAlign instructions
1133
// at the head of a loop.
1134
void compute_loop_first_inst_sizes();
1135
1136
// Compute the information for the exception tables
1137
void FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels);
1138
1139
// Stack slots that may be unused by the calling convention but must
1140
// otherwise be preserved. On Intel this includes the return address.
1141
// On PowerPC it includes the 4 words holding the old TOC & LR glue.
1142
uint in_preserve_stack_slots();
1143
1144
// "Top of Stack" slots that may be unused by the calling convention but must
1145
// otherwise be preserved.
1146
// On Intel these are not necessary and the value can be zero.
1147
// On Sparc this describes the words reserved for storing a register window
1148
// when an interrupt occurs.
1149
static uint out_preserve_stack_slots();
1150
1151
// Number of outgoing stack slots killed above the out_preserve_stack_slots
1152
// for calls to C. Supports the var-args backing area for register parms.
1153
uint varargs_C_out_slots_killed() const;
1154
1155
// Number of Stack Slots consumed by a synchronization entry
1156
int sync_stack_slots() const;
1157
1158
// Compute the name of old_SP. See <arch>.ad for frame layout.
1159
OptoReg::Name compute_old_SP();
1160
1161
#ifdef ENABLE_ZAP_DEAD_LOCALS
1162
static bool is_node_getting_a_safepoint(Node*);
1163
void Insert_zap_nodes();
1164
Node* call_zap_node(MachSafePointNode* n, int block_no);
1165
#endif
1166
1167
private:
1168
// Phase control:
1169
void Init(int aliaslevel); // Prepare for a single compilation
1170
int Inline_Warm(); // Find more inlining work.
1171
void Finish_Warm(); // Give up on further inlines.
1172
void Optimize(); // Given a graph, optimize it
1173
void Code_Gen(); // Generate code from a graph
1174
1175
// Management of the AliasType table.
1176
void grow_alias_types();
1177
AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
1178
const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
1179
AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);
1180
1181
void verify_top(Node*) const PRODUCT_RETURN;
1182
1183
// Intrinsic setup.
1184
void register_library_intrinsics(); // initializer
1185
CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor
1186
int intrinsic_insertion_index(ciMethod* m, bool is_virtual); // helper
1187
CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn
1188
void register_intrinsic(CallGenerator* cg); // update fn
1189
1190
#ifndef PRODUCT
1191
static juint _intrinsic_hist_count[vmIntrinsics::ID_LIMIT];
1192
static jubyte _intrinsic_hist_flags[vmIntrinsics::ID_LIMIT];
1193
#endif
1194
// Function calls made by the public function final_graph_reshaping.
1195
// No need to be made public as they are not called elsewhere.
1196
void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc);
1197
void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc );
1198
void eliminate_redundant_card_marks(Node* n);
1199
1200
public:
1201
1202
// Note: Histogram array size is about 1 Kb.
1203
enum { // flag bits:
1204
_intrinsic_worked = 1, // succeeded at least once
1205
_intrinsic_failed = 2, // tried it but it failed
1206
_intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
1207
_intrinsic_virtual = 8, // was seen in the virtual form (rare)
1208
_intrinsic_both = 16 // was seen in the non-virtual form (usual)
1209
};
1210
// Update histogram. Return boolean if this is a first-time occurrence.
1211
static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
1212
bool is_virtual, int flags) PRODUCT_RETURN0;
1213
static void print_intrinsic_statistics() PRODUCT_RETURN;
1214
1215
// Graph verification code
1216
// Walk the node list, verifying that there is a one-to-one
1217
// correspondence between Use-Def edges and Def-Use edges
1218
// The option no_dead_code enables stronger checks that the
1219
// graph is strongly connected from root in both directions.
1220
void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN;
1221
1222
// Verify GC barrier patterns
1223
void verify_barriers() PRODUCT_RETURN;
1224
1225
// End-of-run dumps.
1226
static void print_statistics() PRODUCT_RETURN;
1227
1228
// Dump formatted assembly
1229
void dump_asm(int *pcs = NULL, uint pc_limit = 0) PRODUCT_RETURN;
1230
void dump_pc(int *pcs, int pc_limit, Node *n);
1231
1232
// Verify ADLC assumptions during startup
1233
static void adlc_verification() PRODUCT_RETURN;
1234
1235
// Definitions of pd methods
1236
static void pd_compiler2_init();
1237
1238
// Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
1239
static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl);
1240
1241
// Auxiliary method for randomized fuzzing/stressing
1242
static bool randomized_select(int count);
1243
#ifdef ASSERT
1244
bool _type_verify_symmetry;
1245
#endif
1246
1247
void shenandoah_eliminate_g1_wb_pre(Node* call, PhaseIterGVN* igvn);
1248
};
1249
1250
#endif // SHARE_VM_OPTO_COMPILE_HPP
1251
1252