Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/divnode.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "opto/addnode.hpp"
28
#include "opto/connode.hpp"
29
#include "opto/divnode.hpp"
30
#include "opto/machnode.hpp"
31
#include "opto/matcher.hpp"
32
#include "opto/mulnode.hpp"
33
#include "opto/phaseX.hpp"
34
#include "opto/subnode.hpp"
35
36
// Portions of code courtesy of Clifford Click
37
38
// Optimization - Graph Style
39
40
#include <math.h>
41
42
//----------------------magic_int_divide_constants-----------------------------
43
// Compute magic multiplier and shift constant for converting a 32 bit divide
44
// by constant into a multiply/shift/add series. Return false if calculations
45
// fail.
46
//
47
// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
48
// minor type name and parameter changes.
49
static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
50
int32_t p;
51
uint32_t ad, anc, delta, q1, r1, q2, r2, t;
52
const uint32_t two31 = 0x80000000L; // 2**31.
53
54
ad = ABS(d);
55
if (d == 0 || d == 1) return false;
56
t = two31 + ((uint32_t)d >> 31);
57
anc = t - 1 - t%ad; // Absolute value of nc.
58
p = 31; // Init. p.
59
q1 = two31/anc; // Init. q1 = 2**p/|nc|.
60
r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
61
q2 = two31/ad; // Init. q2 = 2**p/|d|.
62
r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
63
do {
64
p = p + 1;
65
q1 = 2*q1; // Update q1 = 2**p/|nc|.
66
r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
67
if (r1 >= anc) { // (Must be an unsigned
68
q1 = q1 + 1; // comparison here).
69
r1 = r1 - anc;
70
}
71
q2 = 2*q2; // Update q2 = 2**p/|d|.
72
r2 = 2*r2; // Update r2 = rem(2**p, |d|).
73
if (r2 >= ad) { // (Must be an unsigned
74
q2 = q2 + 1; // comparison here).
75
r2 = r2 - ad;
76
}
77
delta = ad - r2;
78
} while (q1 < delta || (q1 == delta && r1 == 0));
79
80
M = q2 + 1;
81
if (d < 0) M = -M; // Magic number and
82
s = p - 32; // shift amount to return.
83
84
return true;
85
}
86
87
//--------------------------transform_int_divide-------------------------------
88
// Convert a division by constant divisor into an alternate Ideal graph.
89
// Return NULL if no transformation occurs.
90
static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
91
92
// Check for invalid divisors
93
assert( divisor != 0 && divisor != min_jint,
94
"bad divisor for transforming to long multiply" );
95
96
bool d_pos = divisor >= 0;
97
jint d = d_pos ? divisor : -divisor;
98
const int N = 32;
99
100
// Result
101
Node *q = NULL;
102
103
if (d == 1) {
104
// division by +/- 1
105
if (!d_pos) {
106
// Just negate the value
107
q = new (phase->C) SubINode(phase->intcon(0), dividend);
108
}
109
} else if ( is_power_of_2(d) ) {
110
// division by +/- a power of 2
111
112
// See if we can simply do a shift without rounding
113
bool needs_rounding = true;
114
const Type *dt = phase->type(dividend);
115
const TypeInt *dti = dt->isa_int();
116
if (dti && dti->_lo >= 0) {
117
// we don't need to round a positive dividend
118
needs_rounding = false;
119
} else if( dividend->Opcode() == Op_AndI ) {
120
// An AND mask of sufficient size clears the low bits and
121
// I can avoid rounding.
122
const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
123
if( andconi_t && andconi_t->is_con() ) {
124
jint andconi = andconi_t->get_con();
125
if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
126
if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
127
dividend = dividend->in(1);
128
needs_rounding = false;
129
}
130
}
131
}
132
133
// Add rounding to the shift to handle the sign bit
134
int l = log2_jint(d-1)+1;
135
if (needs_rounding) {
136
// Divide-by-power-of-2 can be made into a shift, but you have to do
137
// more math for the rounding. You need to add 0 for positive
138
// numbers, and "i-1" for negative numbers. Example: i=4, so the
139
// shift is by 2. You need to add 3 to negative dividends and 0 to
140
// positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
141
// (-2+3)>>2 becomes 0, etc.
142
143
// Compute 0 or -1, based on sign bit
144
Node *sign = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N - 1)));
145
// Mask sign bit to the low sign bits
146
Node *round = phase->transform(new (phase->C) URShiftINode(sign, phase->intcon(N - l)));
147
// Round up before shifting
148
dividend = phase->transform(new (phase->C) AddINode(dividend, round));
149
}
150
151
// Shift for division
152
q = new (phase->C) RShiftINode(dividend, phase->intcon(l));
153
154
if (!d_pos) {
155
q = new (phase->C) SubINode(phase->intcon(0), phase->transform(q));
156
}
157
} else {
158
// Attempt the jint constant divide -> multiply transform found in
159
// "Division by Invariant Integers using Multiplication"
160
// by Granlund and Montgomery
161
// See also "Hacker's Delight", chapter 10 by Warren.
162
163
jint magic_const;
164
jint shift_const;
165
if (magic_int_divide_constants(d, magic_const, shift_const)) {
166
Node *magic = phase->longcon(magic_const);
167
Node *dividend_long = phase->transform(new (phase->C) ConvI2LNode(dividend));
168
169
// Compute the high half of the dividend x magic multiplication
170
Node *mul_hi = phase->transform(new (phase->C) MulLNode(dividend_long, magic));
171
172
if (magic_const < 0) {
173
mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N)));
174
mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi));
175
176
// The magic multiplier is too large for a 32 bit constant. We've adjusted
177
// it down by 2^32, but have to add 1 dividend back in after the multiplication.
178
// This handles the "overflow" case described by Granlund and Montgomery.
179
mul_hi = phase->transform(new (phase->C) AddINode(dividend, mul_hi));
180
181
// Shift over the (adjusted) mulhi
182
if (shift_const != 0) {
183
mul_hi = phase->transform(new (phase->C) RShiftINode(mul_hi, phase->intcon(shift_const)));
184
}
185
} else {
186
// No add is required, we can merge the shifts together.
187
mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
188
mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi));
189
}
190
191
// Get a 0 or -1 from the sign of the dividend.
192
Node *addend0 = mul_hi;
193
Node *addend1 = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N-1)));
194
195
// If the divisor is negative, swap the order of the input addends;
196
// this has the effect of negating the quotient.
197
if (!d_pos) {
198
Node *temp = addend0; addend0 = addend1; addend1 = temp;
199
}
200
201
// Adjust the final quotient by subtracting -1 (adding 1)
202
// from the mul_hi.
203
q = new (phase->C) SubINode(addend0, addend1);
204
}
205
}
206
207
return q;
208
}
209
210
//---------------------magic_long_divide_constants-----------------------------
211
// Compute magic multiplier and shift constant for converting a 64 bit divide
212
// by constant into a multiply/shift/add series. Return false if calculations
213
// fail.
214
//
215
// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
216
// minor type name and parameter changes. Adjusted to 64 bit word width.
217
static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
218
int64_t p;
219
uint64_t ad, anc, delta, q1, r1, q2, r2, t;
220
const uint64_t two63 = 0x8000000000000000LL; // 2**63.
221
222
ad = ABS(d);
223
if (d == 0 || d == 1) return false;
224
t = two63 + ((uint64_t)d >> 63);
225
anc = t - 1 - t%ad; // Absolute value of nc.
226
p = 63; // Init. p.
227
q1 = two63/anc; // Init. q1 = 2**p/|nc|.
228
r1 = two63 - q1*anc; // Init. r1 = rem(2**p, |nc|).
229
q2 = two63/ad; // Init. q2 = 2**p/|d|.
230
r2 = two63 - q2*ad; // Init. r2 = rem(2**p, |d|).
231
do {
232
p = p + 1;
233
q1 = 2*q1; // Update q1 = 2**p/|nc|.
234
r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
235
if (r1 >= anc) { // (Must be an unsigned
236
q1 = q1 + 1; // comparison here).
237
r1 = r1 - anc;
238
}
239
q2 = 2*q2; // Update q2 = 2**p/|d|.
240
r2 = 2*r2; // Update r2 = rem(2**p, |d|).
241
if (r2 >= ad) { // (Must be an unsigned
242
q2 = q2 + 1; // comparison here).
243
r2 = r2 - ad;
244
}
245
delta = ad - r2;
246
} while (q1 < delta || (q1 == delta && r1 == 0));
247
248
M = q2 + 1;
249
if (d < 0) M = -M; // Magic number and
250
s = p - 64; // shift amount to return.
251
252
return true;
253
}
254
255
//---------------------long_by_long_mulhi--------------------------------------
256
// Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
257
static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
258
// If the architecture supports a 64x64 mulhi, there is
259
// no need to synthesize it in ideal nodes.
260
if (Matcher::has_match_rule(Op_MulHiL)) {
261
Node* v = phase->longcon(magic_const);
262
return new (phase->C) MulHiLNode(dividend, v);
263
}
264
265
// Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
266
// (http://www.hackersdelight.org/HDcode/mulhs.c)
267
//
268
// int mulhs(int u, int v) {
269
// unsigned u0, v0, w0;
270
// int u1, v1, w1, w2, t;
271
//
272
// u0 = u & 0xFFFF; u1 = u >> 16;
273
// v0 = v & 0xFFFF; v1 = v >> 16;
274
// w0 = u0*v0;
275
// t = u1*v0 + (w0 >> 16);
276
// w1 = t & 0xFFFF;
277
// w2 = t >> 16;
278
// w1 = u0*v1 + w1;
279
// return u1*v1 + w2 + (w1 >> 16);
280
// }
281
//
282
// Note: The version above is for 32x32 multiplications, while the
283
// following inline comments are adapted to 64x64.
284
285
const int N = 64;
286
287
// Dummy node to keep intermediate nodes alive during construction
288
Node* hook = new (phase->C) Node(4);
289
290
// u0 = u & 0xFFFFFFFF; u1 = u >> 32;
291
Node* u0 = phase->transform(new (phase->C) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
292
Node* u1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N / 2)));
293
hook->init_req(0, u0);
294
hook->init_req(1, u1);
295
296
// v0 = v & 0xFFFFFFFF; v1 = v >> 32;
297
Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
298
Node* v1 = phase->longcon(magic_const >> (N / 2));
299
300
// w0 = u0*v0;
301
Node* w0 = phase->transform(new (phase->C) MulLNode(u0, v0));
302
303
// t = u1*v0 + (w0 >> 32);
304
Node* u1v0 = phase->transform(new (phase->C) MulLNode(u1, v0));
305
Node* temp = phase->transform(new (phase->C) URShiftLNode(w0, phase->intcon(N / 2)));
306
Node* t = phase->transform(new (phase->C) AddLNode(u1v0, temp));
307
hook->init_req(2, t);
308
309
// w1 = t & 0xFFFFFFFF;
310
Node* w1 = phase->transform(new (phase->C) AndLNode(t, phase->longcon(0xFFFFFFFF)));
311
hook->init_req(3, w1);
312
313
// w2 = t >> 32;
314
Node* w2 = phase->transform(new (phase->C) RShiftLNode(t, phase->intcon(N / 2)));
315
316
// w1 = u0*v1 + w1;
317
Node* u0v1 = phase->transform(new (phase->C) MulLNode(u0, v1));
318
w1 = phase->transform(new (phase->C) AddLNode(u0v1, w1));
319
320
// return u1*v1 + w2 + (w1 >> 32);
321
Node* u1v1 = phase->transform(new (phase->C) MulLNode(u1, v1));
322
Node* temp1 = phase->transform(new (phase->C) AddLNode(u1v1, w2));
323
Node* temp2 = phase->transform(new (phase->C) RShiftLNode(w1, phase->intcon(N / 2)));
324
325
// Remove the bogus extra edges used to keep things alive
326
PhaseIterGVN* igvn = phase->is_IterGVN();
327
if (igvn != NULL) {
328
igvn->remove_dead_node(hook);
329
} else {
330
for (int i = 0; i < 4; i++) {
331
hook->set_req(i, NULL);
332
}
333
}
334
335
return new (phase->C) AddLNode(temp1, temp2);
336
}
337
338
339
//--------------------------transform_long_divide------------------------------
340
// Convert a division by constant divisor into an alternate Ideal graph.
341
// Return NULL if no transformation occurs.
342
static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
343
// Check for invalid divisors
344
assert( divisor != 0L && divisor != min_jlong,
345
"bad divisor for transforming to long multiply" );
346
347
bool d_pos = divisor >= 0;
348
jlong d = d_pos ? divisor : -divisor;
349
const int N = 64;
350
351
// Result
352
Node *q = NULL;
353
354
if (d == 1) {
355
// division by +/- 1
356
if (!d_pos) {
357
// Just negate the value
358
q = new (phase->C) SubLNode(phase->longcon(0), dividend);
359
}
360
} else if ( is_power_of_2_long(d) ) {
361
362
// division by +/- a power of 2
363
364
// See if we can simply do a shift without rounding
365
bool needs_rounding = true;
366
const Type *dt = phase->type(dividend);
367
const TypeLong *dtl = dt->isa_long();
368
369
if (dtl && dtl->_lo > 0) {
370
// we don't need to round a positive dividend
371
needs_rounding = false;
372
} else if( dividend->Opcode() == Op_AndL ) {
373
// An AND mask of sufficient size clears the low bits and
374
// I can avoid rounding.
375
const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
376
if( andconl_t && andconl_t->is_con() ) {
377
jlong andconl = andconl_t->get_con();
378
if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
379
if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
380
dividend = dividend->in(1);
381
needs_rounding = false;
382
}
383
}
384
}
385
386
// Add rounding to the shift to handle the sign bit
387
int l = log2_long(d-1)+1;
388
if (needs_rounding) {
389
// Divide-by-power-of-2 can be made into a shift, but you have to do
390
// more math for the rounding. You need to add 0 for positive
391
// numbers, and "i-1" for negative numbers. Example: i=4, so the
392
// shift is by 2. You need to add 3 to negative dividends and 0 to
393
// positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
394
// (-2+3)>>2 becomes 0, etc.
395
396
// Compute 0 or -1, based on sign bit
397
Node *sign = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N - 1)));
398
// Mask sign bit to the low sign bits
399
Node *round = phase->transform(new (phase->C) URShiftLNode(sign, phase->intcon(N - l)));
400
// Round up before shifting
401
dividend = phase->transform(new (phase->C) AddLNode(dividend, round));
402
}
403
404
// Shift for division
405
q = new (phase->C) RShiftLNode(dividend, phase->intcon(l));
406
407
if (!d_pos) {
408
q = new (phase->C) SubLNode(phase->longcon(0), phase->transform(q));
409
}
410
} else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
411
// it is faster than code generated below.
412
// Attempt the jlong constant divide -> multiply transform found in
413
// "Division by Invariant Integers using Multiplication"
414
// by Granlund and Montgomery
415
// See also "Hacker's Delight", chapter 10 by Warren.
416
417
jlong magic_const;
418
jint shift_const;
419
if (magic_long_divide_constants(d, magic_const, shift_const)) {
420
// Compute the high half of the dividend x magic multiplication
421
Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
422
423
// The high half of the 128-bit multiply is computed.
424
if (magic_const < 0) {
425
// The magic multiplier is too large for a 64 bit constant. We've adjusted
426
// it down by 2^64, but have to add 1 dividend back in after the multiplication.
427
// This handles the "overflow" case described by Granlund and Montgomery.
428
mul_hi = phase->transform(new (phase->C) AddLNode(dividend, mul_hi));
429
}
430
431
// Shift over the (adjusted) mulhi
432
if (shift_const != 0) {
433
mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(shift_const)));
434
}
435
436
// Get a 0 or -1 from the sign of the dividend.
437
Node *addend0 = mul_hi;
438
Node *addend1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N-1)));
439
440
// If the divisor is negative, swap the order of the input addends;
441
// this has the effect of negating the quotient.
442
if (!d_pos) {
443
Node *temp = addend0; addend0 = addend1; addend1 = temp;
444
}
445
446
// Adjust the final quotient by subtracting -1 (adding 1)
447
// from the mul_hi.
448
q = new (phase->C) SubLNode(addend0, addend1);
449
}
450
}
451
452
return q;
453
}
454
455
//=============================================================================
456
//------------------------------Identity---------------------------------------
457
// If the divisor is 1, we are an identity on the dividend.
458
Node *DivINode::Identity( PhaseTransform *phase ) {
459
return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
460
}
461
462
//------------------------------Idealize---------------------------------------
463
// Divides can be changed to multiplies and/or shifts
464
Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
465
if (in(0) && remove_dead_region(phase, can_reshape)) return this;
466
// Don't bother trying to transform a dead node
467
if( in(0) && in(0)->is_top() ) return NULL;
468
469
const Type *t = phase->type( in(2) );
470
if( t == TypeInt::ONE ) // Identity?
471
return NULL; // Skip it
472
473
const TypeInt *ti = t->isa_int();
474
if( !ti ) return NULL;
475
if( !ti->is_con() ) return NULL;
476
jint i = ti->get_con(); // Get divisor
477
478
if (i == 0) return NULL; // Dividing by zero constant does not idealize
479
480
set_req(0,NULL); // Dividing by a not-zero constant; no faulting
481
482
// Dividing by MININT does not optimize as a power-of-2 shift.
483
if( i == min_jint ) return NULL;
484
485
return transform_int_divide( phase, in(1), i );
486
}
487
488
//------------------------------Value------------------------------------------
489
// A DivINode divides its inputs. The third input is a Control input, used to
490
// prevent hoisting the divide above an unsafe test.
491
const Type *DivINode::Value( PhaseTransform *phase ) const {
492
// Either input is TOP ==> the result is TOP
493
const Type *t1 = phase->type( in(1) );
494
const Type *t2 = phase->type( in(2) );
495
if( t1 == Type::TOP ) return Type::TOP;
496
if( t2 == Type::TOP ) return Type::TOP;
497
498
// x/x == 1 since we always generate the dynamic divisor check for 0.
499
if( phase->eqv( in(1), in(2) ) )
500
return TypeInt::ONE;
501
502
// Either input is BOTTOM ==> the result is the local BOTTOM
503
const Type *bot = bottom_type();
504
if( (t1 == bot) || (t2 == bot) ||
505
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
506
return bot;
507
508
// Divide the two numbers. We approximate.
509
// If divisor is a constant and not zero
510
const TypeInt *i1 = t1->is_int();
511
const TypeInt *i2 = t2->is_int();
512
int widen = MAX2(i1->_widen, i2->_widen);
513
514
if( i2->is_con() && i2->get_con() != 0 ) {
515
int32 d = i2->get_con(); // Divisor
516
jint lo, hi;
517
if( d >= 0 ) {
518
lo = i1->_lo/d;
519
hi = i1->_hi/d;
520
} else {
521
if( d == -1 && i1->_lo == min_jint ) {
522
// 'min_jint/-1' throws arithmetic exception during compilation
523
lo = min_jint;
524
// do not support holes, 'hi' must go to either min_jint or max_jint:
525
// [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
526
hi = i1->_hi == min_jint ? min_jint : max_jint;
527
} else {
528
lo = i1->_hi/d;
529
hi = i1->_lo/d;
530
}
531
}
532
return TypeInt::make(lo, hi, widen);
533
}
534
535
// If the dividend is a constant
536
if( i1->is_con() ) {
537
int32 d = i1->get_con();
538
if( d < 0 ) {
539
if( d == min_jint ) {
540
// (-min_jint) == min_jint == (min_jint / -1)
541
return TypeInt::make(min_jint, max_jint/2 + 1, widen);
542
} else {
543
return TypeInt::make(d, -d, widen);
544
}
545
}
546
return TypeInt::make(-d, d, widen);
547
}
548
549
// Otherwise we give up all hope
550
return TypeInt::INT;
551
}
552
553
554
//=============================================================================
555
//------------------------------Identity---------------------------------------
556
// If the divisor is 1, we are an identity on the dividend.
557
Node *DivLNode::Identity( PhaseTransform *phase ) {
558
return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
559
}
560
561
//------------------------------Idealize---------------------------------------
562
// Dividing by a power of 2 is a shift.
563
Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
564
if (in(0) && remove_dead_region(phase, can_reshape)) return this;
565
// Don't bother trying to transform a dead node
566
if( in(0) && in(0)->is_top() ) return NULL;
567
568
const Type *t = phase->type( in(2) );
569
if( t == TypeLong::ONE ) // Identity?
570
return NULL; // Skip it
571
572
const TypeLong *tl = t->isa_long();
573
if( !tl ) return NULL;
574
if( !tl->is_con() ) return NULL;
575
jlong l = tl->get_con(); // Get divisor
576
577
if (l == 0) return NULL; // Dividing by zero constant does not idealize
578
579
set_req(0,NULL); // Dividing by a not-zero constant; no faulting
580
581
// Dividing by MINLONG does not optimize as a power-of-2 shift.
582
if( l == min_jlong ) return NULL;
583
584
return transform_long_divide( phase, in(1), l );
585
}
586
587
//------------------------------Value------------------------------------------
588
// A DivLNode divides its inputs. The third input is a Control input, used to
589
// prevent hoisting the divide above an unsafe test.
590
const Type *DivLNode::Value( PhaseTransform *phase ) const {
591
// Either input is TOP ==> the result is TOP
592
const Type *t1 = phase->type( in(1) );
593
const Type *t2 = phase->type( in(2) );
594
if( t1 == Type::TOP ) return Type::TOP;
595
if( t2 == Type::TOP ) return Type::TOP;
596
597
// x/x == 1 since we always generate the dynamic divisor check for 0.
598
if( phase->eqv( in(1), in(2) ) )
599
return TypeLong::ONE;
600
601
// Either input is BOTTOM ==> the result is the local BOTTOM
602
const Type *bot = bottom_type();
603
if( (t1 == bot) || (t2 == bot) ||
604
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
605
return bot;
606
607
// Divide the two numbers. We approximate.
608
// If divisor is a constant and not zero
609
const TypeLong *i1 = t1->is_long();
610
const TypeLong *i2 = t2->is_long();
611
int widen = MAX2(i1->_widen, i2->_widen);
612
613
if( i2->is_con() && i2->get_con() != 0 ) {
614
jlong d = i2->get_con(); // Divisor
615
jlong lo, hi;
616
if( d >= 0 ) {
617
lo = i1->_lo/d;
618
hi = i1->_hi/d;
619
} else {
620
if( d == CONST64(-1) && i1->_lo == min_jlong ) {
621
// 'min_jlong/-1' throws arithmetic exception during compilation
622
lo = min_jlong;
623
// do not support holes, 'hi' must go to either min_jlong or max_jlong:
624
// [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
625
hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
626
} else {
627
lo = i1->_hi/d;
628
hi = i1->_lo/d;
629
}
630
}
631
return TypeLong::make(lo, hi, widen);
632
}
633
634
// If the dividend is a constant
635
if( i1->is_con() ) {
636
jlong d = i1->get_con();
637
if( d < 0 ) {
638
if( d == min_jlong ) {
639
// (-min_jlong) == min_jlong == (min_jlong / -1)
640
return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
641
} else {
642
return TypeLong::make(d, -d, widen);
643
}
644
}
645
return TypeLong::make(-d, d, widen);
646
}
647
648
// Otherwise we give up all hope
649
return TypeLong::LONG;
650
}
651
652
653
//=============================================================================
654
//------------------------------Value------------------------------------------
655
// An DivFNode divides its inputs. The third input is a Control input, used to
656
// prevent hoisting the divide above an unsafe test.
657
const Type *DivFNode::Value( PhaseTransform *phase ) const {
658
// Either input is TOP ==> the result is TOP
659
const Type *t1 = phase->type( in(1) );
660
const Type *t2 = phase->type( in(2) );
661
if( t1 == Type::TOP ) return Type::TOP;
662
if( t2 == Type::TOP ) return Type::TOP;
663
664
// Either input is BOTTOM ==> the result is the local BOTTOM
665
const Type *bot = bottom_type();
666
if( (t1 == bot) || (t2 == bot) ||
667
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
668
return bot;
669
670
// x/x == 1, we ignore 0/0.
671
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
672
// Does not work for variables because of NaN's
673
if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
674
if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
675
return TypeF::ONE;
676
677
if( t2 == TypeF::ONE )
678
return t1;
679
680
// If divisor is a constant and not zero, divide them numbers
681
if( t1->base() == Type::FloatCon &&
682
t2->base() == Type::FloatCon &&
683
t2->getf() != 0.0 ) // could be negative zero
684
return TypeF::make( t1->getf()/t2->getf() );
685
686
// If the dividend is a constant zero
687
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
688
// Test TypeF::ZERO is not sufficient as it could be negative zero
689
690
if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
691
return TypeF::ZERO;
692
693
// Otherwise we give up all hope
694
return Type::FLOAT;
695
}
696
697
//------------------------------isA_Copy---------------------------------------
698
// Dividing by self is 1.
699
// If the divisor is 1, we are an identity on the dividend.
700
Node *DivFNode::Identity( PhaseTransform *phase ) {
701
return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
702
}
703
704
705
//------------------------------Idealize---------------------------------------
706
Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
707
if (in(0) && remove_dead_region(phase, can_reshape)) return this;
708
// Don't bother trying to transform a dead node
709
if( in(0) && in(0)->is_top() ) return NULL;
710
711
const Type *t2 = phase->type( in(2) );
712
if( t2 == TypeF::ONE ) // Identity?
713
return NULL; // Skip it
714
715
const TypeF *tf = t2->isa_float_constant();
716
if( !tf ) return NULL;
717
if( tf->base() != Type::FloatCon ) return NULL;
718
719
// Check for out of range values
720
if( tf->is_nan() || !tf->is_finite() ) return NULL;
721
722
// Get the value
723
float f = tf->getf();
724
int exp;
725
726
// Only for special case of dividing by a power of 2
727
if( frexp((double)f, &exp) != 0.5 ) return NULL;
728
729
// Limit the range of acceptable exponents
730
if( exp < -126 || exp > 126 ) return NULL;
731
732
// Compute the reciprocal
733
float reciprocal = ((float)1.0) / f;
734
735
assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
736
737
// return multiplication by the reciprocal
738
return (new (phase->C) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
739
}
740
741
//=============================================================================
742
//------------------------------Value------------------------------------------
743
// An DivDNode divides its inputs. The third input is a Control input, used to
744
// prevent hoisting the divide above an unsafe test.
745
const Type *DivDNode::Value( PhaseTransform *phase ) const {
746
// Either input is TOP ==> the result is TOP
747
const Type *t1 = phase->type( in(1) );
748
const Type *t2 = phase->type( in(2) );
749
if( t1 == Type::TOP ) return Type::TOP;
750
if( t2 == Type::TOP ) return Type::TOP;
751
752
// Either input is BOTTOM ==> the result is the local BOTTOM
753
const Type *bot = bottom_type();
754
if( (t1 == bot) || (t2 == bot) ||
755
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
756
return bot;
757
758
// x/x == 1, we ignore 0/0.
759
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
760
// Does not work for variables because of NaN's
761
if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
762
if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
763
return TypeD::ONE;
764
765
if( t2 == TypeD::ONE )
766
return t1;
767
768
#if defined(IA32)
769
if (!phase->C->method()->is_strict())
770
// Can't trust native compilers to properly fold strict double
771
// division with round-to-zero on this platform.
772
#endif
773
{
774
// If divisor is a constant and not zero, divide them numbers
775
if( t1->base() == Type::DoubleCon &&
776
t2->base() == Type::DoubleCon &&
777
t2->getd() != 0.0 ) // could be negative zero
778
return TypeD::make( t1->getd()/t2->getd() );
779
}
780
781
// If the dividend is a constant zero
782
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
783
// Test TypeF::ZERO is not sufficient as it could be negative zero
784
if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
785
return TypeD::ZERO;
786
787
// Otherwise we give up all hope
788
return Type::DOUBLE;
789
}
790
791
792
//------------------------------isA_Copy---------------------------------------
793
// Dividing by self is 1.
794
// If the divisor is 1, we are an identity on the dividend.
795
Node *DivDNode::Identity( PhaseTransform *phase ) {
796
return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
797
}
798
799
//------------------------------Idealize---------------------------------------
800
Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
801
if (in(0) && remove_dead_region(phase, can_reshape)) return this;
802
// Don't bother trying to transform a dead node
803
if( in(0) && in(0)->is_top() ) return NULL;
804
805
const Type *t2 = phase->type( in(2) );
806
if( t2 == TypeD::ONE ) // Identity?
807
return NULL; // Skip it
808
809
const TypeD *td = t2->isa_double_constant();
810
if( !td ) return NULL;
811
if( td->base() != Type::DoubleCon ) return NULL;
812
813
// Check for out of range values
814
if( td->is_nan() || !td->is_finite() ) return NULL;
815
816
// Get the value
817
double d = td->getd();
818
int exp;
819
820
// Only for special case of dividing by a power of 2
821
if( frexp(d, &exp) != 0.5 ) return NULL;
822
823
// Limit the range of acceptable exponents
824
if( exp < -1021 || exp > 1022 ) return NULL;
825
826
// Compute the reciprocal
827
double reciprocal = 1.0 / d;
828
829
assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
830
831
// return multiplication by the reciprocal
832
return (new (phase->C) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
833
}
834
835
//=============================================================================
836
//------------------------------Idealize---------------------------------------
837
Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
838
// Check for dead control input
839
if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
840
// Don't bother trying to transform a dead node
841
if( in(0) && in(0)->is_top() ) return NULL;
842
843
// Get the modulus
844
const Type *t = phase->type( in(2) );
845
if( t == Type::TOP ) return NULL;
846
const TypeInt *ti = t->is_int();
847
848
// Check for useless control input
849
// Check for excluding mod-zero case
850
if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
851
set_req(0, NULL); // Yank control input
852
return this;
853
}
854
855
// See if we are MOD'ing by 2^k or 2^k-1.
856
if( !ti->is_con() ) return NULL;
857
jint con = ti->get_con();
858
859
Node *hook = new (phase->C) Node(1);
860
861
// First, special check for modulo 2^k-1
862
if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
863
uint k = exact_log2(con+1); // Extract k
864
865
// Basic algorithm by David Detlefs. See fastmod_int.java for gory details.
866
static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
867
int trip_count = 1;
868
if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
869
870
// If the unroll factor is not too large, and if conditional moves are
871
// ok, then use this case
872
if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
873
Node *x = in(1); // Value being mod'd
874
Node *divisor = in(2); // Also is mask
875
876
hook->init_req(0, x); // Add a use to x to prevent him from dying
877
// Generate code to reduce X rapidly to nearly 2^k-1.
878
for( int i = 0; i < trip_count; i++ ) {
879
Node *xl = phase->transform( new (phase->C) AndINode(x,divisor) );
880
Node *xh = phase->transform( new (phase->C) RShiftINode(x,phase->intcon(k)) ); // Must be signed
881
x = phase->transform( new (phase->C) AddINode(xh,xl) );
882
hook->set_req(0, x);
883
}
884
885
// Generate sign-fixup code. Was original value positive?
886
// int hack_res = (i >= 0) ? divisor : 1;
887
Node *cmp1 = phase->transform( new (phase->C) CmpINode( in(1), phase->intcon(0) ) );
888
Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) );
889
Node *cmov1= phase->transform( new (phase->C) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
890
// if( x >= hack_res ) x -= divisor;
891
Node *sub = phase->transform( new (phase->C) SubINode( x, divisor ) );
892
Node *cmp2 = phase->transform( new (phase->C) CmpINode( x, cmov1 ) );
893
Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) );
894
// Convention is to not transform the return value of an Ideal
895
// since Ideal is expected to return a modified 'this' or a new node.
896
Node *cmov2= new (phase->C) CMoveINode(bol2, x, sub, TypeInt::INT);
897
// cmov2 is now the mod
898
899
// Now remove the bogus extra edges used to keep things alive
900
if (can_reshape) {
901
phase->is_IterGVN()->remove_dead_node(hook);
902
} else {
903
hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
904
}
905
return cmov2;
906
}
907
}
908
909
// Fell thru, the unroll case is not appropriate. Transform the modulo
910
// into a long multiply/int multiply/subtract case
911
912
// Cannot handle mod 0, and min_jint isn't handled by the transform
913
if( con == 0 || con == min_jint ) return NULL;
914
915
// Get the absolute value of the constant; at this point, we can use this
916
jint pos_con = (con >= 0) ? con : -con;
917
918
// integer Mod 1 is always 0
919
if( pos_con == 1 ) return new (phase->C) ConINode(TypeInt::ZERO);
920
921
int log2_con = -1;
922
923
// If this is a power of two, they maybe we can mask it
924
if( is_power_of_2(pos_con) ) {
925
log2_con = log2_intptr((intptr_t)pos_con);
926
927
const Type *dt = phase->type(in(1));
928
const TypeInt *dti = dt->isa_int();
929
930
// See if this can be masked, if the dividend is non-negative
931
if( dti && dti->_lo >= 0 )
932
return ( new (phase->C) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
933
}
934
935
// Save in(1) so that it cannot be changed or deleted
936
hook->init_req(0, in(1));
937
938
// Divide using the transform from DivI to MulL
939
Node *result = transform_int_divide( phase, in(1), pos_con );
940
if (result != NULL) {
941
Node *divide = phase->transform(result);
942
943
// Re-multiply, using a shift if this is a power of two
944
Node *mult = NULL;
945
946
if( log2_con >= 0 )
947
mult = phase->transform( new (phase->C) LShiftINode( divide, phase->intcon( log2_con ) ) );
948
else
949
mult = phase->transform( new (phase->C) MulINode( divide, phase->intcon( pos_con ) ) );
950
951
// Finally, subtract the multiplied divided value from the original
952
result = new (phase->C) SubINode( in(1), mult );
953
}
954
955
// Now remove the bogus extra edges used to keep things alive
956
if (can_reshape) {
957
phase->is_IterGVN()->remove_dead_node(hook);
958
} else {
959
hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
960
}
961
962
// return the value
963
return result;
964
}
965
966
//------------------------------Value------------------------------------------
967
const Type *ModINode::Value( PhaseTransform *phase ) const {
968
// Either input is TOP ==> the result is TOP
969
const Type *t1 = phase->type( in(1) );
970
const Type *t2 = phase->type( in(2) );
971
if( t1 == Type::TOP ) return Type::TOP;
972
if( t2 == Type::TOP ) return Type::TOP;
973
974
// We always generate the dynamic check for 0.
975
// 0 MOD X is 0
976
if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
977
// X MOD X is 0
978
if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
979
980
// Either input is BOTTOM ==> the result is the local BOTTOM
981
const Type *bot = bottom_type();
982
if( (t1 == bot) || (t2 == bot) ||
983
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
984
return bot;
985
986
const TypeInt *i1 = t1->is_int();
987
const TypeInt *i2 = t2->is_int();
988
if( !i1->is_con() || !i2->is_con() ) {
989
if( i1->_lo >= 0 && i2->_lo >= 0 )
990
return TypeInt::POS;
991
// If both numbers are not constants, we know little.
992
return TypeInt::INT;
993
}
994
// Mod by zero? Throw exception at runtime!
995
if( !i2->get_con() ) return TypeInt::POS;
996
997
// We must be modulo'ing 2 float constants.
998
// Check for min_jint % '-1', result is defined to be '0'.
999
if( i1->get_con() == min_jint && i2->get_con() == -1 )
1000
return TypeInt::ZERO;
1001
1002
return TypeInt::make( i1->get_con() % i2->get_con() );
1003
}
1004
1005
1006
//=============================================================================
1007
//------------------------------Idealize---------------------------------------
1008
Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1009
// Check for dead control input
1010
if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
1011
// Don't bother trying to transform a dead node
1012
if( in(0) && in(0)->is_top() ) return NULL;
1013
1014
// Get the modulus
1015
const Type *t = phase->type( in(2) );
1016
if( t == Type::TOP ) return NULL;
1017
const TypeLong *tl = t->is_long();
1018
1019
// Check for useless control input
1020
// Check for excluding mod-zero case
1021
if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
1022
set_req(0, NULL); // Yank control input
1023
return this;
1024
}
1025
1026
// See if we are MOD'ing by 2^k or 2^k-1.
1027
if( !tl->is_con() ) return NULL;
1028
jlong con = tl->get_con();
1029
1030
Node *hook = new (phase->C) Node(1);
1031
1032
// Expand mod
1033
if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
1034
uint k = exact_log2_long(con+1); // Extract k
1035
1036
// Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
1037
// Used to help a popular random number generator which does a long-mod
1038
// of 2^31-1 and shows up in SpecJBB and SciMark.
1039
static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1040
int trip_count = 1;
1041
if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1042
1043
// If the unroll factor is not too large, and if conditional moves are
1044
// ok, then use this case
1045
if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1046
Node *x = in(1); // Value being mod'd
1047
Node *divisor = in(2); // Also is mask
1048
1049
hook->init_req(0, x); // Add a use to x to prevent him from dying
1050
// Generate code to reduce X rapidly to nearly 2^k-1.
1051
for( int i = 0; i < trip_count; i++ ) {
1052
Node *xl = phase->transform( new (phase->C) AndLNode(x,divisor) );
1053
Node *xh = phase->transform( new (phase->C) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
1054
x = phase->transform( new (phase->C) AddLNode(xh,xl) );
1055
hook->set_req(0, x); // Add a use to x to prevent him from dying
1056
}
1057
1058
// Generate sign-fixup code. Was original value positive?
1059
// long hack_res = (i >= 0) ? divisor : CONST64(1);
1060
Node *cmp1 = phase->transform( new (phase->C) CmpLNode( in(1), phase->longcon(0) ) );
1061
Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) );
1062
Node *cmov1= phase->transform( new (phase->C) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
1063
// if( x >= hack_res ) x -= divisor;
1064
Node *sub = phase->transform( new (phase->C) SubLNode( x, divisor ) );
1065
Node *cmp2 = phase->transform( new (phase->C) CmpLNode( x, cmov1 ) );
1066
Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) );
1067
// Convention is to not transform the return value of an Ideal
1068
// since Ideal is expected to return a modified 'this' or a new node.
1069
Node *cmov2= new (phase->C) CMoveLNode(bol2, x, sub, TypeLong::LONG);
1070
// cmov2 is now the mod
1071
1072
// Now remove the bogus extra edges used to keep things alive
1073
if (can_reshape) {
1074
phase->is_IterGVN()->remove_dead_node(hook);
1075
} else {
1076
hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
1077
}
1078
return cmov2;
1079
}
1080
}
1081
1082
// Fell thru, the unroll case is not appropriate. Transform the modulo
1083
// into a long multiply/int multiply/subtract case
1084
1085
// Cannot handle mod 0, and min_jlong isn't handled by the transform
1086
if( con == 0 || con == min_jlong ) return NULL;
1087
1088
// Get the absolute value of the constant; at this point, we can use this
1089
jlong pos_con = (con >= 0) ? con : -con;
1090
1091
// integer Mod 1 is always 0
1092
if( pos_con == 1 ) return new (phase->C) ConLNode(TypeLong::ZERO);
1093
1094
int log2_con = -1;
1095
1096
// If this is a power of two, then maybe we can mask it
1097
if( is_power_of_2_long(pos_con) ) {
1098
log2_con = exact_log2_long(pos_con);
1099
1100
const Type *dt = phase->type(in(1));
1101
const TypeLong *dtl = dt->isa_long();
1102
1103
// See if this can be masked, if the dividend is non-negative
1104
if( dtl && dtl->_lo >= 0 )
1105
return ( new (phase->C) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
1106
}
1107
1108
// Save in(1) so that it cannot be changed or deleted
1109
hook->init_req(0, in(1));
1110
1111
// Divide using the transform from DivL to MulL
1112
Node *result = transform_long_divide( phase, in(1), pos_con );
1113
if (result != NULL) {
1114
Node *divide = phase->transform(result);
1115
1116
// Re-multiply, using a shift if this is a power of two
1117
Node *mult = NULL;
1118
1119
if( log2_con >= 0 )
1120
mult = phase->transform( new (phase->C) LShiftLNode( divide, phase->intcon( log2_con ) ) );
1121
else
1122
mult = phase->transform( new (phase->C) MulLNode( divide, phase->longcon( pos_con ) ) );
1123
1124
// Finally, subtract the multiplied divided value from the original
1125
result = new (phase->C) SubLNode( in(1), mult );
1126
}
1127
1128
// Now remove the bogus extra edges used to keep things alive
1129
if (can_reshape) {
1130
phase->is_IterGVN()->remove_dead_node(hook);
1131
} else {
1132
hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
1133
}
1134
1135
// return the value
1136
return result;
1137
}
1138
1139
//------------------------------Value------------------------------------------
1140
const Type *ModLNode::Value( PhaseTransform *phase ) const {
1141
// Either input is TOP ==> the result is TOP
1142
const Type *t1 = phase->type( in(1) );
1143
const Type *t2 = phase->type( in(2) );
1144
if( t1 == Type::TOP ) return Type::TOP;
1145
if( t2 == Type::TOP ) return Type::TOP;
1146
1147
// We always generate the dynamic check for 0.
1148
// 0 MOD X is 0
1149
if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1150
// X MOD X is 0
1151
if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
1152
1153
// Either input is BOTTOM ==> the result is the local BOTTOM
1154
const Type *bot = bottom_type();
1155
if( (t1 == bot) || (t2 == bot) ||
1156
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1157
return bot;
1158
1159
const TypeLong *i1 = t1->is_long();
1160
const TypeLong *i2 = t2->is_long();
1161
if( !i1->is_con() || !i2->is_con() ) {
1162
if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
1163
return TypeLong::POS;
1164
// If both numbers are not constants, we know little.
1165
return TypeLong::LONG;
1166
}
1167
// Mod by zero? Throw exception at runtime!
1168
if( !i2->get_con() ) return TypeLong::POS;
1169
1170
// We must be modulo'ing 2 float constants.
1171
// Check for min_jint % '-1', result is defined to be '0'.
1172
if( i1->get_con() == min_jlong && i2->get_con() == -1 )
1173
return TypeLong::ZERO;
1174
1175
return TypeLong::make( i1->get_con() % i2->get_con() );
1176
}
1177
1178
1179
//=============================================================================
1180
//------------------------------Value------------------------------------------
1181
const Type *ModFNode::Value( PhaseTransform *phase ) const {
1182
// Either input is TOP ==> the result is TOP
1183
const Type *t1 = phase->type( in(1) );
1184
const Type *t2 = phase->type( in(2) );
1185
if( t1 == Type::TOP ) return Type::TOP;
1186
if( t2 == Type::TOP ) return Type::TOP;
1187
1188
// Either input is BOTTOM ==> the result is the local BOTTOM
1189
const Type *bot = bottom_type();
1190
if( (t1 == bot) || (t2 == bot) ||
1191
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1192
return bot;
1193
1194
// If either number is not a constant, we know nothing.
1195
if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
1196
return Type::FLOAT; // note: x%x can be either NaN or 0
1197
}
1198
1199
float f1 = t1->getf();
1200
float f2 = t2->getf();
1201
jint x1 = jint_cast(f1); // note: *(int*)&f1, not just (int)f1
1202
jint x2 = jint_cast(f2);
1203
1204
// If either is a NaN, return an input NaN
1205
if (g_isnan(f1)) return t1;
1206
if (g_isnan(f2)) return t2;
1207
1208
// If an operand is infinity or the divisor is +/- zero, punt.
1209
if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
1210
return Type::FLOAT;
1211
1212
// We must be modulo'ing 2 float constants.
1213
// Make sure that the sign of the fmod is equal to the sign of the dividend
1214
jint xr = jint_cast(fmod(f1, f2));
1215
if ((x1 ^ xr) < 0) {
1216
xr ^= min_jint;
1217
}
1218
1219
return TypeF::make(jfloat_cast(xr));
1220
}
1221
1222
1223
//=============================================================================
1224
//------------------------------Value------------------------------------------
1225
const Type *ModDNode::Value( PhaseTransform *phase ) const {
1226
// Either input is TOP ==> the result is TOP
1227
const Type *t1 = phase->type( in(1) );
1228
const Type *t2 = phase->type( in(2) );
1229
if( t1 == Type::TOP ) return Type::TOP;
1230
if( t2 == Type::TOP ) return Type::TOP;
1231
1232
// Either input is BOTTOM ==> the result is the local BOTTOM
1233
const Type *bot = bottom_type();
1234
if( (t1 == bot) || (t2 == bot) ||
1235
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1236
return bot;
1237
1238
// If either number is not a constant, we know nothing.
1239
if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
1240
return Type::DOUBLE; // note: x%x can be either NaN or 0
1241
}
1242
1243
double f1 = t1->getd();
1244
double f2 = t2->getd();
1245
jlong x1 = jlong_cast(f1); // note: *(long*)&f1, not just (long)f1
1246
jlong x2 = jlong_cast(f2);
1247
1248
// If either is a NaN, return an input NaN
1249
if (g_isnan(f1)) return t1;
1250
if (g_isnan(f2)) return t2;
1251
1252
// If an operand is infinity or the divisor is +/- zero, punt.
1253
if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
1254
return Type::DOUBLE;
1255
1256
// We must be modulo'ing 2 double constants.
1257
// Make sure that the sign of the fmod is equal to the sign of the dividend
1258
jlong xr = jlong_cast(fmod(f1, f2));
1259
if ((x1 ^ xr) < 0) {
1260
xr ^= min_jlong;
1261
}
1262
1263
return TypeD::make(jdouble_cast(xr));
1264
}
1265
1266
//=============================================================================
1267
1268
DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
1269
init_req(0, c);
1270
init_req(1, dividend);
1271
init_req(2, divisor);
1272
}
1273
1274
//------------------------------make------------------------------------------
1275
DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
1276
Node* n = div_or_mod;
1277
assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
1278
"only div or mod input pattern accepted");
1279
1280
DivModINode* divmod = new (C) DivModINode(n->in(0), n->in(1), n->in(2));
1281
Node* dproj = new (C) ProjNode(divmod, DivModNode::div_proj_num);
1282
Node* mproj = new (C) ProjNode(divmod, DivModNode::mod_proj_num);
1283
return divmod;
1284
}
1285
1286
//------------------------------make------------------------------------------
1287
DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
1288
Node* n = div_or_mod;
1289
assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
1290
"only div or mod input pattern accepted");
1291
1292
DivModLNode* divmod = new (C) DivModLNode(n->in(0), n->in(1), n->in(2));
1293
Node* dproj = new (C) ProjNode(divmod, DivModNode::div_proj_num);
1294
Node* mproj = new (C) ProjNode(divmod, DivModNode::mod_proj_num);
1295
return divmod;
1296
}
1297
1298
//------------------------------match------------------------------------------
1299
// return result(s) along with their RegMask info
1300
Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
1301
uint ideal_reg = proj->ideal_reg();
1302
RegMask rm;
1303
if (proj->_con == div_proj_num) {
1304
rm = match->divI_proj_mask();
1305
} else {
1306
assert(proj->_con == mod_proj_num, "must be div or mod projection");
1307
rm = match->modI_proj_mask();
1308
}
1309
return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg);
1310
}
1311
1312
1313
//------------------------------match------------------------------------------
1314
// return result(s) along with their RegMask info
1315
Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
1316
uint ideal_reg = proj->ideal_reg();
1317
RegMask rm;
1318
if (proj->_con == div_proj_num) {
1319
rm = match->divL_proj_mask();
1320
} else {
1321
assert(proj->_con == mod_proj_num, "must be div or mod projection");
1322
rm = match->modL_proj_mask();
1323
}
1324
return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg);
1325
}
1326
1327