Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/domgraph.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "libadt/vectset.hpp"
27
#include "memory/allocation.hpp"
28
#include "opto/block.hpp"
29
#include "opto/machnode.hpp"
30
#include "opto/phaseX.hpp"
31
#include "opto/rootnode.hpp"
32
33
// Portions of code courtesy of Clifford Click
34
35
// A data structure that holds all the information needed to find dominators.
36
struct Tarjan {
37
Block *_block; // Basic block for this info
38
39
uint _semi; // Semi-dominators
40
uint _size; // Used for faster LINK and EVAL
41
Tarjan *_parent; // Parent in DFS
42
Tarjan *_label; // Used for LINK and EVAL
43
Tarjan *_ancestor; // Used for LINK and EVAL
44
Tarjan *_child; // Used for faster LINK and EVAL
45
Tarjan *_dom; // Parent in dominator tree (immediate dom)
46
Tarjan *_bucket; // Set of vertices with given semidominator
47
48
Tarjan *_dom_child; // Child in dominator tree
49
Tarjan *_dom_next; // Next in dominator tree
50
51
// Fast union-find work
52
void COMPRESS();
53
Tarjan *EVAL(void);
54
void LINK( Tarjan *w, Tarjan *tarjan0 );
55
56
void setdepth( uint size );
57
58
};
59
60
// Compute the dominator tree of the CFG. The CFG must already have been
61
// constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
62
void PhaseCFG::build_dominator_tree() {
63
// Pre-grow the blocks array, prior to the ResourceMark kicking in
64
_blocks.map(number_of_blocks(), 0);
65
66
ResourceMark rm;
67
// Setup mappings from my Graph to Tarjan's stuff and back
68
// Note: Tarjan uses 1-based arrays
69
Tarjan* tarjan = NEW_RESOURCE_ARRAY(Tarjan, number_of_blocks() + 1);
70
71
// Tarjan's algorithm, almost verbatim:
72
// Step 1:
73
uint dfsnum = do_DFS(tarjan, number_of_blocks());
74
if (dfsnum - 1 != number_of_blocks()) { // Check for unreachable loops!
75
// If the returned dfsnum does not match the number of blocks, then we
76
// must have some unreachable loops. These can be made at any time by
77
// IterGVN. They are cleaned up by CCP or the loop opts, but the last
78
// IterGVN can always make more that are not cleaned up. Highly unlikely
79
// except in ZKM.jar, where endless irreducible loops cause the loop opts
80
// to not get run.
81
//
82
// Having found unreachable loops, we have made a bad RPO _block layout.
83
// We can re-run the above DFS pass with the correct number of blocks,
84
// and hack the Tarjan algorithm below to be robust in the presence of
85
// such dead loops (as was done for the NTarjan code farther below).
86
// Since this situation is so unlikely, instead I've decided to bail out.
87
// CNC 7/24/2001
88
C->record_method_not_compilable("unreachable loop");
89
return;
90
}
91
_blocks._cnt = number_of_blocks();
92
93
// Tarjan is using 1-based arrays, so these are some initialize flags
94
tarjan[0]._size = tarjan[0]._semi = 0;
95
tarjan[0]._label = &tarjan[0];
96
97
for (uint i = number_of_blocks(); i >= 2; i--) { // For all vertices in DFS order
98
Tarjan *w = &tarjan[i]; // Get vertex from DFS
99
100
// Step 2:
101
Node *whead = w->_block->head();
102
for (uint j = 1; j < whead->req(); j++) {
103
Block* b = get_block_for_node(whead->in(j));
104
Tarjan *vx = &tarjan[b->_pre_order];
105
Tarjan *u = vx->EVAL();
106
if( u->_semi < w->_semi )
107
w->_semi = u->_semi;
108
}
109
110
// w is added to a bucket here, and only here.
111
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
112
// Thus bucket can be a linked list.
113
// Thus we do not need a small integer name for each Block.
114
w->_bucket = tarjan[w->_semi]._bucket;
115
tarjan[w->_semi]._bucket = w;
116
117
w->_parent->LINK( w, &tarjan[0] );
118
119
// Step 3:
120
for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
121
Tarjan *u = vx->EVAL();
122
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
123
}
124
}
125
126
// Step 4:
127
for (uint i = 2; i <= number_of_blocks(); i++) {
128
Tarjan *w = &tarjan[i];
129
if( w->_dom != &tarjan[w->_semi] )
130
w->_dom = w->_dom->_dom;
131
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
132
}
133
// No immediate dominator for the root
134
Tarjan *w = &tarjan[get_root_block()->_pre_order];
135
w->_dom = NULL;
136
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
137
138
// Convert the dominator tree array into my kind of graph
139
for(uint i = 1; i <= number_of_blocks(); i++){ // For all Tarjan vertices
140
Tarjan *t = &tarjan[i]; // Handy access
141
Tarjan *tdom = t->_dom; // Handy access to immediate dominator
142
if( tdom ) { // Root has no immediate dominator
143
t->_block->_idom = tdom->_block; // Set immediate dominator
144
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
145
tdom->_dom_child = t; // Make me a child of my parent
146
} else
147
t->_block->_idom = NULL; // Root
148
}
149
w->setdepth(number_of_blocks() + 1); // Set depth in dominator tree
150
151
}
152
153
class Block_Stack {
154
private:
155
struct Block_Descr {
156
Block *block; // Block
157
int index; // Index of block's successor pushed on stack
158
int freq_idx; // Index of block's most frequent successor
159
};
160
Block_Descr *_stack_top;
161
Block_Descr *_stack_max;
162
Block_Descr *_stack;
163
Tarjan *_tarjan;
164
uint most_frequent_successor( Block *b );
165
public:
166
Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
167
_stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
168
_stack_max = _stack + size;
169
_stack_top = _stack - 1; // stack is empty
170
}
171
void push(uint pre_order, Block *b) {
172
Tarjan *t = &_tarjan[pre_order]; // Fast local access
173
b->_pre_order = pre_order; // Flag as visited
174
t->_block = b; // Save actual block
175
t->_semi = pre_order; // Block to DFS map
176
t->_label = t; // DFS to vertex map
177
t->_ancestor = NULL; // Fast LINK & EVAL setup
178
t->_child = &_tarjan[0]; // Sentenial
179
t->_size = 1;
180
t->_bucket = NULL;
181
if (pre_order == 1)
182
t->_parent = NULL; // first block doesn't have parent
183
else {
184
// Save parent (current top block on stack) in DFS
185
t->_parent = &_tarjan[_stack_top->block->_pre_order];
186
}
187
// Now put this block on stack
188
++_stack_top;
189
assert(_stack_top < _stack_max, ""); // assert if stack have to grow
190
_stack_top->block = b;
191
_stack_top->index = -1;
192
// Find the index into b->succs[] array of the most frequent successor.
193
_stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
194
}
195
Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
196
bool is_nonempty() { return (_stack_top >= _stack); }
197
bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
198
Block* next_successor() {
199
int i = _stack_top->index;
200
i++;
201
if (i == _stack_top->freq_idx) i++;
202
if (i >= (int)(_stack_top->block->_num_succs)) {
203
i = _stack_top->freq_idx; // process most frequent successor last
204
}
205
_stack_top->index = i;
206
return _stack_top->block->_succs[ i ];
207
}
208
};
209
210
// Find the index into the b->succs[] array of the most frequent successor.
211
uint Block_Stack::most_frequent_successor( Block *b ) {
212
uint freq_idx = 0;
213
int eidx = b->end_idx();
214
Node *n = b->get_node(eidx);
215
int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
216
switch( op ) {
217
case Op_CountedLoopEnd:
218
case Op_If: { // Split frequency amongst children
219
float prob = n->as_MachIf()->_prob;
220
// Is succ[0] the TRUE branch or the FALSE branch?
221
if( b->get_node(eidx+1)->Opcode() == Op_IfFalse )
222
prob = 1.0f - prob;
223
freq_idx = prob < PROB_FAIR; // freq=1 for succ[0] < 0.5 prob
224
break;
225
}
226
case Op_Catch: // Split frequency amongst children
227
for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
228
if( b->get_node(eidx+1+freq_idx)->as_CatchProj()->_con == CatchProjNode::fall_through_index )
229
break;
230
// Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
231
if( freq_idx == b->_num_succs ) freq_idx = 0;
232
break;
233
// Currently there is no support for finding out the most
234
// frequent successor for jumps, so lets just make it the first one
235
case Op_Jump:
236
case Op_Root:
237
case Op_Goto:
238
case Op_NeverBranch:
239
freq_idx = 0; // fall thru
240
break;
241
case Op_TailCall:
242
case Op_TailJump:
243
case Op_Return:
244
case Op_Halt:
245
case Op_Rethrow:
246
break;
247
default:
248
ShouldNotReachHere();
249
}
250
return freq_idx;
251
}
252
253
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
254
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
255
uint PhaseCFG::do_DFS(Tarjan *tarjan, uint rpo_counter) {
256
Block* root_block = get_root_block();
257
uint pre_order = 1;
258
// Allocate stack of size number_of_blocks() + 1 to avoid frequent realloc
259
Block_Stack bstack(tarjan, number_of_blocks() + 1);
260
261
// Push on stack the state for the first block
262
bstack.push(pre_order, root_block);
263
++pre_order;
264
265
while (bstack.is_nonempty()) {
266
if (!bstack.last_successor()) {
267
// Walk over all successors in pre-order (DFS).
268
Block* next_block = bstack.next_successor();
269
if (next_block->_pre_order == 0) { // Check for no-pre-order, not-visited
270
// Push on stack the state of successor
271
bstack.push(pre_order, next_block);
272
++pre_order;
273
}
274
}
275
else {
276
// Build a reverse post-order in the CFG _blocks array
277
Block *stack_top = bstack.pop();
278
stack_top->_rpo = --rpo_counter;
279
_blocks.map(stack_top->_rpo, stack_top);
280
}
281
}
282
return pre_order;
283
}
284
285
void Tarjan::COMPRESS()
286
{
287
assert( _ancestor != 0, "" );
288
if( _ancestor->_ancestor != 0 ) {
289
_ancestor->COMPRESS( );
290
if( _ancestor->_label->_semi < _label->_semi )
291
_label = _ancestor->_label;
292
_ancestor = _ancestor->_ancestor;
293
}
294
}
295
296
Tarjan *Tarjan::EVAL() {
297
if( !_ancestor ) return _label;
298
COMPRESS();
299
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
300
}
301
302
void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
303
Tarjan *s = w;
304
while( w->_label->_semi < s->_child->_label->_semi ) {
305
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
306
s->_child->_ancestor = s;
307
s->_child = s->_child->_child;
308
} else {
309
s->_child->_size = s->_size;
310
s = s->_ancestor = s->_child;
311
}
312
}
313
s->_label = w->_label;
314
_size += w->_size;
315
if( _size < (w->_size << 1) ) {
316
Tarjan *tmp = s; s = _child; _child = tmp;
317
}
318
while( s != tarjan0 ) {
319
s->_ancestor = this;
320
s = s->_child;
321
}
322
}
323
324
void Tarjan::setdepth( uint stack_size ) {
325
Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
326
Tarjan **next = top;
327
Tarjan **last;
328
uint depth = 0;
329
*top = this;
330
++top;
331
do {
332
// next level
333
++depth;
334
last = top;
335
do {
336
// Set current depth for all tarjans on this level
337
Tarjan *t = *next; // next tarjan from stack
338
++next;
339
do {
340
t->_block->_dom_depth = depth; // Set depth in dominator tree
341
Tarjan *dom_child = t->_dom_child;
342
t = t->_dom_next; // next tarjan
343
if (dom_child != NULL) {
344
*top = dom_child; // save child on stack
345
++top;
346
}
347
} while (t != NULL);
348
} while (next < last);
349
} while (last < top);
350
}
351
352
// Compute dominators on the Sea of Nodes form
353
// A data structure that holds all the information needed to find dominators.
354
struct NTarjan {
355
Node *_control; // Control node associated with this info
356
357
uint _semi; // Semi-dominators
358
uint _size; // Used for faster LINK and EVAL
359
NTarjan *_parent; // Parent in DFS
360
NTarjan *_label; // Used for LINK and EVAL
361
NTarjan *_ancestor; // Used for LINK and EVAL
362
NTarjan *_child; // Used for faster LINK and EVAL
363
NTarjan *_dom; // Parent in dominator tree (immediate dom)
364
NTarjan *_bucket; // Set of vertices with given semidominator
365
366
NTarjan *_dom_child; // Child in dominator tree
367
NTarjan *_dom_next; // Next in dominator tree
368
369
// Perform DFS search.
370
// Setup 'vertex' as DFS to vertex mapping.
371
// Setup 'semi' as vertex to DFS mapping.
372
// Set 'parent' to DFS parent.
373
static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
374
void setdepth( uint size, uint *dom_depth );
375
376
// Fast union-find work
377
void COMPRESS();
378
NTarjan *EVAL(void);
379
void LINK( NTarjan *w, NTarjan *ntarjan0 );
380
#ifndef PRODUCT
381
void dump(int offset) const;
382
#endif
383
};
384
385
// Compute the dominator tree of the sea of nodes. This version walks all CFG
386
// nodes (using the is_CFG() call) and places them in a dominator tree. Thus,
387
// it needs a count of the CFG nodes for the mapping table. This is the
388
// Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
389
void PhaseIdealLoop::Dominators() {
390
ResourceMark rm;
391
// Setup mappings from my Graph to Tarjan's stuff and back
392
// Note: Tarjan uses 1-based arrays
393
NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
394
// Initialize _control field for fast reference
395
int i;
396
for( i= C->unique()-1; i>=0; i-- )
397
ntarjan[i]._control = NULL;
398
399
// Store the DFS order for the main loop
400
uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
401
memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));
402
403
// Tarjan's algorithm, almost verbatim:
404
// Step 1:
405
VectorSet visited(Thread::current()->resource_area());
406
int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
407
408
// Tarjan is using 1-based arrays, so these are some initialize flags
409
ntarjan[0]._size = ntarjan[0]._semi = 0;
410
ntarjan[0]._label = &ntarjan[0];
411
412
for( i = dfsnum-1; i>1; i-- ) { // For all nodes in reverse DFS order
413
NTarjan *w = &ntarjan[i]; // Get Node from DFS
414
assert(w->_control != NULL,"bad DFS walk");
415
416
// Step 2:
417
Node *whead = w->_control;
418
for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
419
if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
420
continue; // Only process control nodes
421
uint b = dfsorder[whead->in(j)->_idx];
422
if(b == max_uint) continue;
423
NTarjan *vx = &ntarjan[b];
424
NTarjan *u = vx->EVAL();
425
if( u->_semi < w->_semi )
426
w->_semi = u->_semi;
427
}
428
429
// w is added to a bucket here, and only here.
430
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
431
// Thus bucket can be a linked list.
432
w->_bucket = ntarjan[w->_semi]._bucket;
433
ntarjan[w->_semi]._bucket = w;
434
435
w->_parent->LINK( w, &ntarjan[0] );
436
437
// Step 3:
438
for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
439
NTarjan *u = vx->EVAL();
440
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
441
}
442
443
// Cleanup any unreachable loops now. Unreachable loops are loops that
444
// flow into the main graph (and hence into ROOT) but are not reachable
445
// from above. Such code is dead, but requires a global pass to detect
446
// it; this global pass was the 'build_loop_tree' pass run just prior.
447
if( !_verify_only && whead->is_Region() ) {
448
for( uint i = 1; i < whead->req(); i++ ) {
449
if (!has_node(whead->in(i))) {
450
// Kill dead input path
451
assert( !visited.test(whead->in(i)->_idx),
452
"input with no loop must be dead" );
453
_igvn.delete_input_of(whead, i);
454
for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
455
Node* p = whead->fast_out(j);
456
if( p->is_Phi() ) {
457
_igvn.delete_input_of(p, i);
458
}
459
}
460
i--; // Rerun same iteration
461
} // End of if dead input path
462
} // End of for all input paths
463
} // End if if whead is a Region
464
} // End of for all Nodes in reverse DFS order
465
466
// Step 4:
467
for( i=2; i < dfsnum; i++ ) { // DFS order
468
NTarjan *w = &ntarjan[i];
469
assert(w->_control != NULL,"Bad DFS walk");
470
if( w->_dom != &ntarjan[w->_semi] )
471
w->_dom = w->_dom->_dom;
472
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
473
}
474
// No immediate dominator for the root
475
NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
476
w->_dom = NULL;
477
w->_parent = NULL;
478
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
479
480
// Convert the dominator tree array into my kind of graph
481
for( i=1; i<dfsnum; i++ ) { // For all Tarjan vertices
482
NTarjan *t = &ntarjan[i]; // Handy access
483
assert(t->_control != NULL,"Bad DFS walk");
484
NTarjan *tdom = t->_dom; // Handy access to immediate dominator
485
if( tdom ) { // Root has no immediate dominator
486
_idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
487
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
488
tdom->_dom_child = t; // Make me a child of my parent
489
} else
490
_idom[C->root()->_idx] = NULL; // Root
491
}
492
w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
493
// Pick up the 'top' node as well
494
_idom [C->top()->_idx] = C->root();
495
_dom_depth[C->top()->_idx] = 1;
496
497
// Debug Print of Dominator tree
498
if( PrintDominators ) {
499
#ifndef PRODUCT
500
w->dump(0);
501
#endif
502
}
503
}
504
505
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
506
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
507
int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
508
// Allocate stack of size C->live_nodes()/8 to avoid frequent realloc
509
GrowableArray <Node *> dfstack(pil->C->live_nodes() >> 3);
510
Node *b = pil->C->root();
511
int dfsnum = 1;
512
dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
513
dfstack.push(b);
514
515
while (dfstack.is_nonempty()) {
516
b = dfstack.pop();
517
if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
518
NTarjan *w = &ntarjan[dfsnum];
519
// Only fully process control nodes
520
w->_control = b; // Save actual node
521
// Use parent's cached dfsnum to identify "Parent in DFS"
522
w->_parent = &ntarjan[dfsorder[b->_idx]];
523
dfsorder[b->_idx] = dfsnum; // Save DFS order info
524
w->_semi = dfsnum; // Node to DFS map
525
w->_label = w; // DFS to vertex map
526
w->_ancestor = NULL; // Fast LINK & EVAL setup
527
w->_child = &ntarjan[0]; // Sentinal
528
w->_size = 1;
529
w->_bucket = NULL;
530
531
// Need DEF-USE info for this pass
532
for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
533
Node* s = b->raw_out(i); // Get a use
534
// CFG nodes only and not dead stuff
535
if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
536
dfsorder[s->_idx] = dfsnum; // Cache parent's dfsnum for a later use
537
dfstack.push(s);
538
}
539
}
540
dfsnum++; // update after parent's dfsnum has been cached.
541
}
542
}
543
544
return dfsnum;
545
}
546
547
void NTarjan::COMPRESS()
548
{
549
assert( _ancestor != 0, "" );
550
if( _ancestor->_ancestor != 0 ) {
551
_ancestor->COMPRESS( );
552
if( _ancestor->_label->_semi < _label->_semi )
553
_label = _ancestor->_label;
554
_ancestor = _ancestor->_ancestor;
555
}
556
}
557
558
NTarjan *NTarjan::EVAL() {
559
if( !_ancestor ) return _label;
560
COMPRESS();
561
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
562
}
563
564
void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
565
NTarjan *s = w;
566
while( w->_label->_semi < s->_child->_label->_semi ) {
567
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
568
s->_child->_ancestor = s;
569
s->_child = s->_child->_child;
570
} else {
571
s->_child->_size = s->_size;
572
s = s->_ancestor = s->_child;
573
}
574
}
575
s->_label = w->_label;
576
_size += w->_size;
577
if( _size < (w->_size << 1) ) {
578
NTarjan *tmp = s; s = _child; _child = tmp;
579
}
580
while( s != ntarjan0 ) {
581
s->_ancestor = this;
582
s = s->_child;
583
}
584
}
585
586
void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
587
NTarjan **top = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
588
NTarjan **next = top;
589
NTarjan **last;
590
uint depth = 0;
591
*top = this;
592
++top;
593
do {
594
// next level
595
++depth;
596
last = top;
597
do {
598
// Set current depth for all tarjans on this level
599
NTarjan *t = *next; // next tarjan from stack
600
++next;
601
do {
602
dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
603
NTarjan *dom_child = t->_dom_child;
604
t = t->_dom_next; // next tarjan
605
if (dom_child != NULL) {
606
*top = dom_child; // save child on stack
607
++top;
608
}
609
} while (t != NULL);
610
} while (next < last);
611
} while (last < top);
612
}
613
614
#ifndef PRODUCT
615
void NTarjan::dump(int offset) const {
616
// Dump the data from this node
617
int i;
618
for(i = offset; i >0; i--) // Use indenting for tree structure
619
tty->print(" ");
620
tty->print("Dominator Node: ");
621
_control->dump(); // Control node for this dom node
622
tty->print("\n");
623
for(i = offset; i >0; i--) // Use indenting for tree structure
624
tty->print(" ");
625
tty->print("semi:%d, size:%d\n",_semi, _size);
626
for(i = offset; i >0; i--) // Use indenting for tree structure
627
tty->print(" ");
628
tty->print("DFS Parent: ");
629
if(_parent != NULL)
630
_parent->_control->dump(); // Parent in DFS
631
tty->print("\n");
632
for(i = offset; i >0; i--) // Use indenting for tree structure
633
tty->print(" ");
634
tty->print("Dom Parent: ");
635
if(_dom != NULL)
636
_dom->_control->dump(); // Parent in Dominator Tree
637
tty->print("\n");
638
639
// Recurse over remaining tree
640
if( _dom_child ) _dom_child->dump(offset+2); // Children in dominator tree
641
if( _dom_next ) _dom_next ->dump(offset ); // Siblings in dominator tree
642
643
}
644
#endif
645
646