Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/escape.cpp
32285 views
1
/*
2
* Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "ci/bcEscapeAnalyzer.hpp"
27
#include "compiler/compileLog.hpp"
28
#include "libadt/vectset.hpp"
29
#include "memory/allocation.hpp"
30
#include "opto/c2compiler.hpp"
31
#include "opto/callnode.hpp"
32
#include "opto/cfgnode.hpp"
33
#include "opto/compile.hpp"
34
#include "opto/escape.hpp"
35
#include "opto/phaseX.hpp"
36
#include "opto/rootnode.hpp"
37
#if INCLUDE_ALL_GCS
38
#include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp"
39
#endif
40
41
ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
42
_nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
43
_in_worklist(C->comp_arena()),
44
_next_pidx(0),
45
_collecting(true),
46
_verify(false),
47
_compile(C),
48
_igvn(igvn),
49
_node_map(C->comp_arena()) {
50
// Add unknown java object.
51
add_java_object(C->top(), PointsToNode::GlobalEscape);
52
phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
53
// Add ConP(#NULL) and ConN(#NULL) nodes.
54
Node* oop_null = igvn->zerocon(T_OBJECT);
55
assert(oop_null->_idx < nodes_size(), "should be created already");
56
add_java_object(oop_null, PointsToNode::NoEscape);
57
null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
58
if (UseCompressedOops) {
59
Node* noop_null = igvn->zerocon(T_NARROWOOP);
60
assert(noop_null->_idx < nodes_size(), "should be created already");
61
map_ideal_node(noop_null, null_obj);
62
}
63
_pcmp_neq = NULL; // Should be initialized
64
_pcmp_eq = NULL;
65
}
66
67
bool ConnectionGraph::has_candidates(Compile *C) {
68
// EA brings benefits only when the code has allocations and/or locks which
69
// are represented by ideal Macro nodes.
70
int cnt = C->macro_count();
71
for (int i = 0; i < cnt; i++) {
72
Node *n = C->macro_node(i);
73
if (n->is_Allocate())
74
return true;
75
if (n->is_Lock()) {
76
Node* obj = n->as_Lock()->obj_node()->uncast();
77
if (!(obj->is_Parm() || obj->is_Con()))
78
return true;
79
}
80
if (n->is_CallStaticJava() &&
81
n->as_CallStaticJava()->is_boxing_method()) {
82
return true;
83
}
84
}
85
return false;
86
}
87
88
void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
89
Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
90
ResourceMark rm;
91
92
// Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
93
// to create space for them in ConnectionGraph::_nodes[].
94
Node* oop_null = igvn->zerocon(T_OBJECT);
95
Node* noop_null = igvn->zerocon(T_NARROWOOP);
96
ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
97
// Perform escape analysis
98
if (congraph->compute_escape()) {
99
// There are non escaping objects.
100
C->set_congraph(congraph);
101
}
102
// Cleanup.
103
if (oop_null->outcnt() == 0)
104
igvn->hash_delete(oop_null);
105
if (noop_null->outcnt() == 0)
106
igvn->hash_delete(noop_null);
107
}
108
109
bool ConnectionGraph::compute_escape() {
110
Compile* C = _compile;
111
PhaseGVN* igvn = _igvn;
112
113
// Worklists used by EA.
114
Unique_Node_List delayed_worklist;
115
GrowableArray<Node*> alloc_worklist;
116
GrowableArray<Node*> ptr_cmp_worklist;
117
GrowableArray<Node*> storestore_worklist;
118
GrowableArray<PointsToNode*> ptnodes_worklist;
119
GrowableArray<JavaObjectNode*> java_objects_worklist;
120
GrowableArray<JavaObjectNode*> non_escaped_worklist;
121
GrowableArray<FieldNode*> oop_fields_worklist;
122
DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
123
124
{ Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
125
126
// 1. Populate Connection Graph (CG) with PointsTo nodes.
127
ideal_nodes.map(C->live_nodes(), NULL); // preallocate space
128
// Initialize worklist
129
if (C->root() != NULL) {
130
ideal_nodes.push(C->root());
131
}
132
// Processed ideal nodes are unique on ideal_nodes list
133
// but several ideal nodes are mapped to the phantom_obj.
134
// To avoid duplicated entries on the following worklists
135
// add the phantom_obj only once to them.
136
ptnodes_worklist.append(phantom_obj);
137
java_objects_worklist.append(phantom_obj);
138
for( uint next = 0; next < ideal_nodes.size(); ++next ) {
139
Node* n = ideal_nodes.at(next);
140
// Create PointsTo nodes and add them to Connection Graph. Called
141
// only once per ideal node since ideal_nodes is Unique_Node list.
142
add_node_to_connection_graph(n, &delayed_worklist);
143
PointsToNode* ptn = ptnode_adr(n->_idx);
144
if (ptn != NULL && ptn != phantom_obj) {
145
ptnodes_worklist.append(ptn);
146
if (ptn->is_JavaObject()) {
147
java_objects_worklist.append(ptn->as_JavaObject());
148
if ((n->is_Allocate() || n->is_CallStaticJava()) &&
149
(ptn->escape_state() < PointsToNode::GlobalEscape)) {
150
// Only allocations and java static calls results are interesting.
151
non_escaped_worklist.append(ptn->as_JavaObject());
152
}
153
} else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
154
oop_fields_worklist.append(ptn->as_Field());
155
}
156
}
157
if (n->is_MergeMem()) {
158
// Collect all MergeMem nodes to add memory slices for
159
// scalar replaceable objects in split_unique_types().
160
_mergemem_worklist.append(n->as_MergeMem());
161
} else if (OptimizePtrCompare && n->is_Cmp() &&
162
(n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
163
// Collect compare pointers nodes.
164
ptr_cmp_worklist.append(n);
165
} else if (n->is_MemBarStoreStore()) {
166
// Collect all MemBarStoreStore nodes so that depending on the
167
// escape status of the associated Allocate node some of them
168
// may be eliminated.
169
storestore_worklist.append(n);
170
} else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
171
(n->req() > MemBarNode::Precedent)) {
172
record_for_optimizer(n);
173
#ifdef ASSERT
174
} else if (n->is_AddP()) {
175
// Collect address nodes for graph verification.
176
addp_worklist.append(n);
177
#endif
178
}
179
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
180
Node* m = n->fast_out(i); // Get user
181
ideal_nodes.push(m);
182
}
183
}
184
if (non_escaped_worklist.length() == 0) {
185
_collecting = false;
186
return false; // Nothing to do.
187
}
188
// Add final simple edges to graph.
189
while(delayed_worklist.size() > 0) {
190
Node* n = delayed_worklist.pop();
191
add_final_edges(n);
192
}
193
int ptnodes_length = ptnodes_worklist.length();
194
195
#ifdef ASSERT
196
if (VerifyConnectionGraph) {
197
// Verify that no new simple edges could be created and all
198
// local vars has edges.
199
_verify = true;
200
for (int next = 0; next < ptnodes_length; ++next) {
201
PointsToNode* ptn = ptnodes_worklist.at(next);
202
add_final_edges(ptn->ideal_node());
203
if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
204
ptn->dump();
205
assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
206
}
207
}
208
_verify = false;
209
}
210
#endif
211
// Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
212
// processing, calls to CI to resolve symbols (types, fields, methods)
213
// referenced in bytecode. During symbol resolution VM may throw
214
// an exception which CI cleans and converts to compilation failure.
215
if (C->failing()) return false;
216
217
// 2. Finish Graph construction by propagating references to all
218
// java objects through graph.
219
if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
220
java_objects_worklist, oop_fields_worklist)) {
221
// All objects escaped or hit time or iterations limits.
222
_collecting = false;
223
return false;
224
}
225
226
// 3. Adjust scalar_replaceable state of nonescaping objects and push
227
// scalar replaceable allocations on alloc_worklist for processing
228
// in split_unique_types().
229
int non_escaped_length = non_escaped_worklist.length();
230
for (int next = 0; next < non_escaped_length; next++) {
231
JavaObjectNode* ptn = non_escaped_worklist.at(next);
232
bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
233
Node* n = ptn->ideal_node();
234
if (n->is_Allocate()) {
235
n->as_Allocate()->_is_non_escaping = noescape;
236
}
237
if (n->is_CallStaticJava()) {
238
n->as_CallStaticJava()->_is_non_escaping = noescape;
239
}
240
if (noescape && ptn->scalar_replaceable()) {
241
adjust_scalar_replaceable_state(ptn);
242
if (ptn->scalar_replaceable()) {
243
alloc_worklist.append(ptn->ideal_node());
244
}
245
}
246
}
247
248
#ifdef ASSERT
249
if (VerifyConnectionGraph) {
250
// Verify that graph is complete - no new edges could be added or needed.
251
verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
252
java_objects_worklist, addp_worklist);
253
}
254
assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
255
assert(null_obj->escape_state() == PointsToNode::NoEscape &&
256
null_obj->edge_count() == 0 &&
257
!null_obj->arraycopy_src() &&
258
!null_obj->arraycopy_dst(), "sanity");
259
#endif
260
261
_collecting = false;
262
263
} // TracePhase t3("connectionGraph")
264
265
// 4. Optimize ideal graph based on EA information.
266
bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
267
if (has_non_escaping_obj) {
268
optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
269
}
270
271
#ifndef PRODUCT
272
if (PrintEscapeAnalysis) {
273
dump(ptnodes_worklist); // Dump ConnectionGraph
274
}
275
#endif
276
277
bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
278
#ifdef ASSERT
279
if (VerifyConnectionGraph) {
280
int alloc_length = alloc_worklist.length();
281
for (int next = 0; next < alloc_length; ++next) {
282
Node* n = alloc_worklist.at(next);
283
PointsToNode* ptn = ptnode_adr(n->_idx);
284
assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
285
}
286
}
287
#endif
288
289
// 5. Separate memory graph for scalar replaceable allcations.
290
if (has_scalar_replaceable_candidates &&
291
C->AliasLevel() >= 3 && EliminateAllocations) {
292
// Now use the escape information to create unique types for
293
// scalar replaceable objects.
294
split_unique_types(alloc_worklist);
295
if (C->failing()) return false;
296
C->print_method(PHASE_AFTER_EA, 2);
297
298
#ifdef ASSERT
299
} else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
300
tty->print("=== No allocations eliminated for ");
301
C->method()->print_short_name();
302
if(!EliminateAllocations) {
303
tty->print(" since EliminateAllocations is off ===");
304
} else if(!has_scalar_replaceable_candidates) {
305
tty->print(" since there are no scalar replaceable candidates ===");
306
} else if(C->AliasLevel() < 3) {
307
tty->print(" since AliasLevel < 3 ===");
308
}
309
tty->cr();
310
#endif
311
}
312
return has_non_escaping_obj;
313
}
314
315
// Utility function for nodes that load an object
316
void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
317
// Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
318
// ThreadLocal has RawPtr type.
319
const Type* t = _igvn->type(n);
320
if (t->make_ptr() != NULL) {
321
Node* adr = n->in(MemNode::Address);
322
#ifdef ASSERT
323
if (!adr->is_AddP()) {
324
assert(_igvn->type(adr)->isa_rawptr(), "sanity");
325
} else {
326
assert((ptnode_adr(adr->_idx) == NULL ||
327
ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
328
}
329
#endif
330
add_local_var_and_edge(n, PointsToNode::NoEscape,
331
adr, delayed_worklist);
332
}
333
}
334
335
// Populate Connection Graph with PointsTo nodes and create simple
336
// connection graph edges.
337
void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
338
assert(!_verify, "this method sould not be called for verification");
339
PhaseGVN* igvn = _igvn;
340
uint n_idx = n->_idx;
341
PointsToNode* n_ptn = ptnode_adr(n_idx);
342
if (n_ptn != NULL)
343
return; // No need to redefine PointsTo node during first iteration.
344
345
if (n->is_Call()) {
346
// Arguments to allocation and locking don't escape.
347
if (n->is_AbstractLock()) {
348
// Put Lock and Unlock nodes on IGVN worklist to process them during
349
// first IGVN optimization when escape information is still available.
350
record_for_optimizer(n);
351
} else if (n->is_Allocate()) {
352
add_call_node(n->as_Call());
353
record_for_optimizer(n);
354
} else {
355
if (n->is_CallStaticJava()) {
356
const char* name = n->as_CallStaticJava()->_name;
357
if (name != NULL && strcmp(name, "uncommon_trap") == 0)
358
return; // Skip uncommon traps
359
}
360
// Don't mark as processed since call's arguments have to be processed.
361
delayed_worklist->push(n);
362
// Check if a call returns an object.
363
if ((n->as_Call()->returns_pointer() &&
364
n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
365
(n->is_CallStaticJava() &&
366
n->as_CallStaticJava()->is_boxing_method())) {
367
add_call_node(n->as_Call());
368
}
369
}
370
return;
371
}
372
// Put this check here to process call arguments since some call nodes
373
// point to phantom_obj.
374
if (n_ptn == phantom_obj || n_ptn == null_obj)
375
return; // Skip predefined nodes.
376
377
int opcode = n->Opcode();
378
switch (opcode) {
379
case Op_AddP: {
380
Node* base = get_addp_base(n);
381
PointsToNode* ptn_base = ptnode_adr(base->_idx);
382
// Field nodes are created for all field types. They are used in
383
// adjust_scalar_replaceable_state() and split_unique_types().
384
// Note, non-oop fields will have only base edges in Connection
385
// Graph because such fields are not used for oop loads and stores.
386
int offset = address_offset(n, igvn);
387
add_field(n, PointsToNode::NoEscape, offset);
388
if (ptn_base == NULL) {
389
delayed_worklist->push(n); // Process it later.
390
} else {
391
n_ptn = ptnode_adr(n_idx);
392
add_base(n_ptn->as_Field(), ptn_base);
393
}
394
break;
395
}
396
case Op_CastX2P: {
397
map_ideal_node(n, phantom_obj);
398
break;
399
}
400
case Op_CastPP:
401
case Op_CheckCastPP:
402
case Op_EncodeP:
403
case Op_DecodeN:
404
case Op_EncodePKlass:
405
case Op_DecodeNKlass: {
406
add_local_var_and_edge(n, PointsToNode::NoEscape,
407
n->in(1), delayed_worklist);
408
break;
409
}
410
case Op_CMoveP: {
411
add_local_var(n, PointsToNode::NoEscape);
412
// Do not add edges during first iteration because some could be
413
// not defined yet.
414
delayed_worklist->push(n);
415
break;
416
}
417
case Op_ConP:
418
case Op_ConN:
419
case Op_ConNKlass: {
420
// assume all oop constants globally escape except for null
421
PointsToNode::EscapeState es;
422
const Type* t = igvn->type(n);
423
if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
424
es = PointsToNode::NoEscape;
425
} else {
426
es = PointsToNode::GlobalEscape;
427
}
428
add_java_object(n, es);
429
break;
430
}
431
case Op_CreateEx: {
432
// assume that all exception objects globally escape
433
map_ideal_node(n, phantom_obj);
434
break;
435
}
436
case Op_LoadKlass:
437
case Op_LoadNKlass: {
438
// Unknown class is loaded
439
map_ideal_node(n, phantom_obj);
440
break;
441
}
442
case Op_LoadP:
443
case Op_LoadN:
444
case Op_LoadPLocked: {
445
add_objload_to_connection_graph(n, delayed_worklist);
446
break;
447
}
448
case Op_Parm: {
449
map_ideal_node(n, phantom_obj);
450
break;
451
}
452
case Op_PartialSubtypeCheck: {
453
// Produces Null or notNull and is used in only in CmpP so
454
// phantom_obj could be used.
455
map_ideal_node(n, phantom_obj); // Result is unknown
456
break;
457
}
458
case Op_Phi: {
459
// Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
460
// ThreadLocal has RawPtr type.
461
const Type* t = n->as_Phi()->type();
462
if (t->make_ptr() != NULL) {
463
add_local_var(n, PointsToNode::NoEscape);
464
// Do not add edges during first iteration because some could be
465
// not defined yet.
466
delayed_worklist->push(n);
467
}
468
break;
469
}
470
case Op_Proj: {
471
// we are only interested in the oop result projection from a call
472
if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
473
n->in(0)->as_Call()->returns_pointer()) {
474
add_local_var_and_edge(n, PointsToNode::NoEscape,
475
n->in(0), delayed_worklist);
476
}
477
break;
478
}
479
case Op_Rethrow: // Exception object escapes
480
case Op_Return: {
481
if (n->req() > TypeFunc::Parms &&
482
igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
483
// Treat Return value as LocalVar with GlobalEscape escape state.
484
add_local_var_and_edge(n, PointsToNode::GlobalEscape,
485
n->in(TypeFunc::Parms), delayed_worklist);
486
}
487
break;
488
}
489
case Op_GetAndSetP:
490
case Op_GetAndSetN: {
491
add_objload_to_connection_graph(n, delayed_worklist);
492
// fallthrough
493
}
494
case Op_StoreP:
495
case Op_StoreN:
496
case Op_StoreNKlass:
497
case Op_StorePConditional:
498
case Op_CompareAndSwapP:
499
case Op_CompareAndSwapN: {
500
Node* adr = n->in(MemNode::Address);
501
const Type *adr_type = igvn->type(adr);
502
adr_type = adr_type->make_ptr();
503
if (adr_type == NULL) {
504
break; // skip dead nodes
505
}
506
if (adr_type->isa_oopptr() ||
507
(opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
508
(adr_type == TypeRawPtr::NOTNULL &&
509
adr->in(AddPNode::Address)->is_Proj() &&
510
adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
511
delayed_worklist->push(n); // Process it later.
512
#ifdef ASSERT
513
assert(adr->is_AddP(), "expecting an AddP");
514
if (adr_type == TypeRawPtr::NOTNULL) {
515
// Verify a raw address for a store captured by Initialize node.
516
int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
517
assert(offs != Type::OffsetBot, "offset must be a constant");
518
}
519
#endif
520
} else {
521
// Ignore copy the displaced header to the BoxNode (OSR compilation).
522
if (adr->is_BoxLock())
523
break;
524
// Stored value escapes in unsafe access.
525
if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
526
// Pointer stores in G1 barriers looks like unsafe access.
527
// Ignore such stores to be able scalar replace non-escaping
528
// allocations.
529
if ((UseG1GC || UseShenandoahGC) && adr->is_AddP()) {
530
Node* base = get_addp_base(adr);
531
if (base->Opcode() == Op_LoadP &&
532
base->in(MemNode::Address)->is_AddP()) {
533
adr = base->in(MemNode::Address);
534
Node* tls = get_addp_base(adr);
535
if (tls->Opcode() == Op_ThreadLocal) {
536
int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
537
if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
538
PtrQueue::byte_offset_of_buf())) {
539
break; // G1 pre barier previous oop value store.
540
}
541
if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
542
PtrQueue::byte_offset_of_buf())) {
543
break; // G1 post barier card address store.
544
}
545
}
546
}
547
}
548
delayed_worklist->push(n); // Process unsafe access later.
549
break;
550
}
551
#ifdef ASSERT
552
n->dump(1);
553
assert(false, "not unsafe or G1 barrier raw StoreP");
554
#endif
555
}
556
break;
557
}
558
case Op_AryEq:
559
case Op_StrComp:
560
case Op_StrEquals:
561
case Op_StrIndexOf:
562
case Op_EncodeISOArray: {
563
add_local_var(n, PointsToNode::ArgEscape);
564
delayed_worklist->push(n); // Process it later.
565
break;
566
}
567
case Op_ThreadLocal: {
568
add_java_object(n, PointsToNode::ArgEscape);
569
break;
570
}
571
#if INCLUDE_ALL_GCS
572
case Op_ShenandoahLoadReferenceBarrier:
573
add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist);
574
break;
575
#endif
576
default:
577
; // Do nothing for nodes not related to EA.
578
}
579
return;
580
}
581
582
#ifdef ASSERT
583
#define ELSE_FAIL(name) \
584
/* Should not be called for not pointer type. */ \
585
n->dump(1); \
586
assert(false, name); \
587
break;
588
#else
589
#define ELSE_FAIL(name) \
590
break;
591
#endif
592
593
// Add final simple edges to graph.
594
void ConnectionGraph::add_final_edges(Node *n) {
595
PointsToNode* n_ptn = ptnode_adr(n->_idx);
596
#ifdef ASSERT
597
if (_verify && n_ptn->is_JavaObject())
598
return; // This method does not change graph for JavaObject.
599
#endif
600
601
if (n->is_Call()) {
602
process_call_arguments(n->as_Call());
603
return;
604
}
605
assert(n->is_Store() || n->is_LoadStore() ||
606
(n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
607
"node should be registered already");
608
int opcode = n->Opcode();
609
switch (opcode) {
610
case Op_AddP: {
611
Node* base = get_addp_base(n);
612
PointsToNode* ptn_base = ptnode_adr(base->_idx);
613
assert(ptn_base != NULL, "field's base should be registered");
614
add_base(n_ptn->as_Field(), ptn_base);
615
break;
616
}
617
case Op_CastPP:
618
case Op_CheckCastPP:
619
case Op_EncodeP:
620
case Op_DecodeN:
621
case Op_EncodePKlass:
622
case Op_DecodeNKlass: {
623
add_local_var_and_edge(n, PointsToNode::NoEscape,
624
n->in(1), NULL);
625
break;
626
}
627
case Op_CMoveP: {
628
for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
629
Node* in = n->in(i);
630
if (in == NULL)
631
continue; // ignore NULL
632
Node* uncast_in = in->uncast();
633
if (uncast_in->is_top() || uncast_in == n)
634
continue; // ignore top or inputs which go back this node
635
PointsToNode* ptn = ptnode_adr(in->_idx);
636
assert(ptn != NULL, "node should be registered");
637
add_edge(n_ptn, ptn);
638
}
639
break;
640
}
641
case Op_LoadP:
642
case Op_LoadN:
643
case Op_LoadPLocked: {
644
// Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
645
// ThreadLocal has RawPtr type.
646
const Type* t = _igvn->type(n);
647
if (t->make_ptr() != NULL) {
648
Node* adr = n->in(MemNode::Address);
649
add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
650
break;
651
}
652
ELSE_FAIL("Op_LoadP");
653
}
654
case Op_Phi: {
655
// Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
656
// ThreadLocal has RawPtr type.
657
const Type* t = n->as_Phi()->type();
658
if (t->make_ptr() != NULL) {
659
for (uint i = 1; i < n->req(); i++) {
660
Node* in = n->in(i);
661
if (in == NULL)
662
continue; // ignore NULL
663
Node* uncast_in = in->uncast();
664
if (uncast_in->is_top() || uncast_in == n)
665
continue; // ignore top or inputs which go back this node
666
PointsToNode* ptn = ptnode_adr(in->_idx);
667
assert(ptn != NULL, "node should be registered");
668
add_edge(n_ptn, ptn);
669
}
670
break;
671
}
672
ELSE_FAIL("Op_Phi");
673
}
674
case Op_Proj: {
675
// we are only interested in the oop result projection from a call
676
if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
677
n->in(0)->as_Call()->returns_pointer()) {
678
add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
679
break;
680
}
681
ELSE_FAIL("Op_Proj");
682
}
683
case Op_Rethrow: // Exception object escapes
684
case Op_Return: {
685
if (n->req() > TypeFunc::Parms &&
686
_igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
687
// Treat Return value as LocalVar with GlobalEscape escape state.
688
add_local_var_and_edge(n, PointsToNode::GlobalEscape,
689
n->in(TypeFunc::Parms), NULL);
690
break;
691
}
692
ELSE_FAIL("Op_Return");
693
}
694
case Op_StoreP:
695
case Op_StoreN:
696
case Op_StoreNKlass:
697
case Op_StorePConditional:
698
case Op_CompareAndSwapP:
699
case Op_CompareAndSwapN:
700
case Op_GetAndSetP:
701
case Op_GetAndSetN: {
702
Node* adr = n->in(MemNode::Address);
703
const Type *adr_type = _igvn->type(adr);
704
adr_type = adr_type->make_ptr();
705
#ifdef ASSERT
706
if (adr_type == NULL) {
707
n->dump(1);
708
assert(adr_type != NULL, "dead node should not be on list");
709
break;
710
}
711
#endif
712
if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
713
add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
714
}
715
if (adr_type->isa_oopptr() ||
716
(opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
717
(adr_type == TypeRawPtr::NOTNULL &&
718
adr->in(AddPNode::Address)->is_Proj() &&
719
adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
720
// Point Address to Value
721
PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
722
assert(adr_ptn != NULL &&
723
adr_ptn->as_Field()->is_oop(), "node should be registered");
724
Node *val = n->in(MemNode::ValueIn);
725
PointsToNode* ptn = ptnode_adr(val->_idx);
726
assert(ptn != NULL, "node should be registered");
727
add_edge(adr_ptn, ptn);
728
break;
729
} else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
730
// Stored value escapes in unsafe access.
731
Node *val = n->in(MemNode::ValueIn);
732
PointsToNode* ptn = ptnode_adr(val->_idx);
733
assert(ptn != NULL, "node should be registered");
734
set_escape_state(ptn, PointsToNode::GlobalEscape);
735
// Add edge to object for unsafe access with offset.
736
PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
737
assert(adr_ptn != NULL, "node should be registered");
738
if (adr_ptn->is_Field()) {
739
assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
740
add_edge(adr_ptn, ptn);
741
}
742
break;
743
}
744
ELSE_FAIL("Op_StoreP");
745
}
746
case Op_AryEq:
747
case Op_StrComp:
748
case Op_StrEquals:
749
case Op_StrIndexOf:
750
case Op_EncodeISOArray: {
751
// char[] arrays passed to string intrinsic do not escape but
752
// they are not scalar replaceable. Adjust escape state for them.
753
// Start from in(2) edge since in(1) is memory edge.
754
for (uint i = 2; i < n->req(); i++) {
755
Node* adr = n->in(i);
756
const Type* at = _igvn->type(adr);
757
if (!adr->is_top() && at->isa_ptr()) {
758
assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
759
at->isa_ptr() != NULL, "expecting a pointer");
760
if (adr->is_AddP()) {
761
adr = get_addp_base(adr);
762
}
763
PointsToNode* ptn = ptnode_adr(adr->_idx);
764
assert(ptn != NULL, "node should be registered");
765
add_edge(n_ptn, ptn);
766
}
767
}
768
break;
769
}
770
#if INCLUDE_ALL_GCS
771
case Op_ShenandoahLoadReferenceBarrier:
772
add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), NULL);
773
break;
774
#endif
775
default: {
776
// This method should be called only for EA specific nodes which may
777
// miss some edges when they were created.
778
#ifdef ASSERT
779
n->dump(1);
780
#endif
781
guarantee(false, "unknown node");
782
}
783
}
784
return;
785
}
786
787
void ConnectionGraph::add_call_node(CallNode* call) {
788
assert(call->returns_pointer(), "only for call which returns pointer");
789
uint call_idx = call->_idx;
790
if (call->is_Allocate()) {
791
Node* k = call->in(AllocateNode::KlassNode);
792
const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
793
assert(kt != NULL, "TypeKlassPtr required.");
794
ciKlass* cik = kt->klass();
795
PointsToNode::EscapeState es = PointsToNode::NoEscape;
796
bool scalar_replaceable = true;
797
if (call->is_AllocateArray()) {
798
if (!cik->is_array_klass()) { // StressReflectiveCode
799
es = PointsToNode::GlobalEscape;
800
} else {
801
int length = call->in(AllocateNode::ALength)->find_int_con(-1);
802
if (length < 0 || length > EliminateAllocationArraySizeLimit) {
803
// Not scalar replaceable if the length is not constant or too big.
804
scalar_replaceable = false;
805
}
806
}
807
} else { // Allocate instance
808
if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
809
cik->is_subclass_of(_compile->env()->Reference_klass()) ||
810
!cik->is_instance_klass() || // StressReflectiveCode
811
cik->as_instance_klass()->has_finalizer()) {
812
es = PointsToNode::GlobalEscape;
813
}
814
}
815
add_java_object(call, es);
816
PointsToNode* ptn = ptnode_adr(call_idx);
817
if (!scalar_replaceable && ptn->scalar_replaceable()) {
818
ptn->set_scalar_replaceable(false);
819
}
820
} else if (call->is_CallStaticJava()) {
821
// Call nodes could be different types:
822
//
823
// 1. CallDynamicJavaNode (what happened during call is unknown):
824
//
825
// - mapped to GlobalEscape JavaObject node if oop is returned;
826
//
827
// - all oop arguments are escaping globally;
828
//
829
// 2. CallStaticJavaNode (execute bytecode analysis if possible):
830
//
831
// - the same as CallDynamicJavaNode if can't do bytecode analysis;
832
//
833
// - mapped to GlobalEscape JavaObject node if unknown oop is returned;
834
// - mapped to NoEscape JavaObject node if non-escaping object allocated
835
// during call is returned;
836
// - mapped to ArgEscape LocalVar node pointed to object arguments
837
// which are returned and does not escape during call;
838
//
839
// - oop arguments escaping status is defined by bytecode analysis;
840
//
841
// For a static call, we know exactly what method is being called.
842
// Use bytecode estimator to record whether the call's return value escapes.
843
ciMethod* meth = call->as_CallJava()->method();
844
if (meth == NULL) {
845
const char* name = call->as_CallStaticJava()->_name;
846
assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
847
// Returns a newly allocated unescaped object.
848
add_java_object(call, PointsToNode::NoEscape);
849
ptnode_adr(call_idx)->set_scalar_replaceable(false);
850
} else if (meth->is_boxing_method()) {
851
// Returns boxing object
852
PointsToNode::EscapeState es;
853
vmIntrinsics::ID intr = meth->intrinsic_id();
854
if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
855
// It does not escape if object is always allocated.
856
es = PointsToNode::NoEscape;
857
} else {
858
// It escapes globally if object could be loaded from cache.
859
es = PointsToNode::GlobalEscape;
860
}
861
add_java_object(call, es);
862
} else {
863
BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
864
call_analyzer->copy_dependencies(_compile->dependencies());
865
if (call_analyzer->is_return_allocated()) {
866
// Returns a newly allocated unescaped object, simply
867
// update dependency information.
868
// Mark it as NoEscape so that objects referenced by
869
// it's fields will be marked as NoEscape at least.
870
add_java_object(call, PointsToNode::NoEscape);
871
ptnode_adr(call_idx)->set_scalar_replaceable(false);
872
} else {
873
// Determine whether any arguments are returned.
874
const TypeTuple* d = call->tf()->domain();
875
bool ret_arg = false;
876
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
877
if (d->field_at(i)->isa_ptr() != NULL &&
878
call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
879
ret_arg = true;
880
break;
881
}
882
}
883
if (ret_arg) {
884
add_local_var(call, PointsToNode::ArgEscape);
885
} else {
886
// Returns unknown object.
887
map_ideal_node(call, phantom_obj);
888
}
889
}
890
}
891
} else {
892
// An other type of call, assume the worst case:
893
// returned value is unknown and globally escapes.
894
assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
895
map_ideal_node(call, phantom_obj);
896
}
897
}
898
899
void ConnectionGraph::process_call_arguments(CallNode *call) {
900
bool is_arraycopy = false;
901
switch (call->Opcode()) {
902
#ifdef ASSERT
903
case Op_Allocate:
904
case Op_AllocateArray:
905
case Op_Lock:
906
case Op_Unlock:
907
assert(false, "should be done already");
908
break;
909
#endif
910
case Op_CallLeafNoFP:
911
is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
912
strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
913
// fall through
914
case Op_CallLeaf: {
915
// Stub calls, objects do not escape but they are not scale replaceable.
916
// Adjust escape state for outgoing arguments.
917
const TypeTuple * d = call->tf()->domain();
918
bool src_has_oops = false;
919
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
920
const Type* at = d->field_at(i);
921
Node *arg = call->in(i);
922
const Type *aat = _igvn->type(arg);
923
if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
924
continue;
925
if (arg->is_AddP()) {
926
//
927
// The inline_native_clone() case when the arraycopy stub is called
928
// after the allocation before Initialize and CheckCastPP nodes.
929
// Or normal arraycopy for object arrays case.
930
//
931
// Set AddP's base (Allocate) as not scalar replaceable since
932
// pointer to the base (with offset) is passed as argument.
933
//
934
arg = get_addp_base(arg);
935
}
936
PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
937
assert(arg_ptn != NULL, "should be registered");
938
PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
939
if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
940
assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
941
aat->isa_ptr() != NULL, "expecting an Ptr");
942
bool arg_has_oops = aat->isa_oopptr() &&
943
(aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
944
(aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
945
if (i == TypeFunc::Parms) {
946
src_has_oops = arg_has_oops;
947
}
948
//
949
// src or dst could be j.l.Object when other is basic type array:
950
//
951
// arraycopy(char[],0,Object*,0,size);
952
// arraycopy(Object*,0,char[],0,size);
953
//
954
// Don't add edges in such cases.
955
//
956
bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
957
arg_has_oops && (i > TypeFunc::Parms);
958
#ifdef ASSERT
959
if (!(is_arraycopy ||
960
(call->as_CallLeaf()->_name != NULL &&
961
(strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
962
strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
963
strcmp(call->as_CallLeaf()->_name, "shenandoah_clone_barrier") == 0 ||
964
strcmp(call->as_CallLeaf()->_name, "shenandoah_cas_obj") == 0 ||
965
strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
966
strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
967
strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
968
strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
969
strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
970
strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
971
strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
972
strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
973
strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
974
strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
975
strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
976
strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
977
strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
978
strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
979
strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
980
strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
981
strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0)
982
))) {
983
call->dump();
984
fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
985
}
986
#endif
987
// Always process arraycopy's destination object since
988
// we need to add all possible edges to references in
989
// source object.
990
if (arg_esc >= PointsToNode::ArgEscape &&
991
!arg_is_arraycopy_dest) {
992
continue;
993
}
994
set_escape_state(arg_ptn, PointsToNode::ArgEscape);
995
if (arg_is_arraycopy_dest) {
996
Node* src = call->in(TypeFunc::Parms);
997
if (src->is_AddP()) {
998
src = get_addp_base(src);
999
}
1000
PointsToNode* src_ptn = ptnode_adr(src->_idx);
1001
assert(src_ptn != NULL, "should be registered");
1002
if (arg_ptn != src_ptn) {
1003
// Special arraycopy edge:
1004
// A destination object's field can't have the source object
1005
// as base since objects escape states are not related.
1006
// Only escape state of destination object's fields affects
1007
// escape state of fields in source object.
1008
add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
1009
}
1010
}
1011
}
1012
}
1013
break;
1014
}
1015
case Op_CallStaticJava: {
1016
// For a static call, we know exactly what method is being called.
1017
// Use bytecode estimator to record the call's escape affects
1018
#ifdef ASSERT
1019
const char* name = call->as_CallStaticJava()->_name;
1020
assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1021
#endif
1022
ciMethod* meth = call->as_CallJava()->method();
1023
if ((meth != NULL) && meth->is_boxing_method()) {
1024
break; // Boxing methods do not modify any oops.
1025
}
1026
BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1027
// fall-through if not a Java method or no analyzer information
1028
if (call_analyzer != NULL) {
1029
PointsToNode* call_ptn = ptnode_adr(call->_idx);
1030
const TypeTuple* d = call->tf()->domain();
1031
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1032
const Type* at = d->field_at(i);
1033
int k = i - TypeFunc::Parms;
1034
Node* arg = call->in(i);
1035
PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1036
if (at->isa_ptr() != NULL &&
1037
call_analyzer->is_arg_returned(k)) {
1038
// The call returns arguments.
1039
if (call_ptn != NULL) { // Is call's result used?
1040
assert(call_ptn->is_LocalVar(), "node should be registered");
1041
assert(arg_ptn != NULL, "node should be registered");
1042
add_edge(call_ptn, arg_ptn);
1043
}
1044
}
1045
if (at->isa_oopptr() != NULL &&
1046
arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1047
if (!call_analyzer->is_arg_stack(k)) {
1048
// The argument global escapes
1049
set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1050
} else {
1051
set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1052
if (!call_analyzer->is_arg_local(k)) {
1053
// The argument itself doesn't escape, but any fields might
1054
set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1055
}
1056
}
1057
}
1058
}
1059
if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1060
// The call returns arguments.
1061
assert(call_ptn->edge_count() > 0, "sanity");
1062
if (!call_analyzer->is_return_local()) {
1063
// Returns also unknown object.
1064
add_edge(call_ptn, phantom_obj);
1065
}
1066
}
1067
break;
1068
}
1069
}
1070
default: {
1071
// Fall-through here if not a Java method or no analyzer information
1072
// or some other type of call, assume the worst case: all arguments
1073
// globally escape.
1074
const TypeTuple* d = call->tf()->domain();
1075
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1076
const Type* at = d->field_at(i);
1077
if (at->isa_oopptr() != NULL) {
1078
Node* arg = call->in(i);
1079
if (arg->is_AddP()) {
1080
arg = get_addp_base(arg);
1081
}
1082
assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1083
set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1084
}
1085
}
1086
}
1087
}
1088
}
1089
1090
1091
// Finish Graph construction.
1092
bool ConnectionGraph::complete_connection_graph(
1093
GrowableArray<PointsToNode*>& ptnodes_worklist,
1094
GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1095
GrowableArray<JavaObjectNode*>& java_objects_worklist,
1096
GrowableArray<FieldNode*>& oop_fields_worklist) {
1097
// Normally only 1-3 passes needed to build Connection Graph depending
1098
// on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1099
// Set limit to 20 to catch situation when something did go wrong and
1100
// bailout Escape Analysis.
1101
// Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1102
#define CG_BUILD_ITER_LIMIT 20
1103
1104
// Propagate GlobalEscape and ArgEscape escape states and check that
1105
// we still have non-escaping objects. The method pushs on _worklist
1106
// Field nodes which reference phantom_object.
1107
if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1108
return false; // Nothing to do.
1109
}
1110
// Now propagate references to all JavaObject nodes.
1111
int java_objects_length = java_objects_worklist.length();
1112
elapsedTimer time;
1113
bool timeout = false;
1114
int new_edges = 1;
1115
int iterations = 0;
1116
do {
1117
while ((new_edges > 0) &&
1118
(iterations++ < CG_BUILD_ITER_LIMIT)) {
1119
double start_time = time.seconds();
1120
time.start();
1121
new_edges = 0;
1122
// Propagate references to phantom_object for nodes pushed on _worklist
1123
// by find_non_escaped_objects() and find_field_value().
1124
new_edges += add_java_object_edges(phantom_obj, false);
1125
for (int next = 0; next < java_objects_length; ++next) {
1126
JavaObjectNode* ptn = java_objects_worklist.at(next);
1127
new_edges += add_java_object_edges(ptn, true);
1128
1129
#define SAMPLE_SIZE 4
1130
if ((next % SAMPLE_SIZE) == 0) {
1131
// Each 4 iterations calculate how much time it will take
1132
// to complete graph construction.
1133
time.stop();
1134
// Poll for requests from shutdown mechanism to quiesce compiler
1135
// because Connection graph construction may take long time.
1136
CompileBroker::maybe_block();
1137
double stop_time = time.seconds();
1138
double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1139
double time_until_end = time_per_iter * (double)(java_objects_length - next);
1140
if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1141
timeout = true;
1142
break; // Timeout
1143
}
1144
start_time = stop_time;
1145
time.start();
1146
}
1147
#undef SAMPLE_SIZE
1148
1149
}
1150
if (timeout) break;
1151
if (new_edges > 0) {
1152
// Update escape states on each iteration if graph was updated.
1153
if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1154
return false; // Nothing to do.
1155
}
1156
}
1157
time.stop();
1158
if (time.seconds() >= EscapeAnalysisTimeout) {
1159
timeout = true;
1160
break;
1161
}
1162
}
1163
if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1164
time.start();
1165
// Find fields which have unknown value.
1166
int fields_length = oop_fields_worklist.length();
1167
for (int next = 0; next < fields_length; next++) {
1168
FieldNode* field = oop_fields_worklist.at(next);
1169
if (field->edge_count() == 0) {
1170
new_edges += find_field_value(field);
1171
// This code may added new edges to phantom_object.
1172
// Need an other cycle to propagate references to phantom_object.
1173
}
1174
}
1175
time.stop();
1176
if (time.seconds() >= EscapeAnalysisTimeout) {
1177
timeout = true;
1178
break;
1179
}
1180
} else {
1181
new_edges = 0; // Bailout
1182
}
1183
} while (new_edges > 0);
1184
1185
// Bailout if passed limits.
1186
if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1187
Compile* C = _compile;
1188
if (C->log() != NULL) {
1189
C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1190
C->log()->text("%s", timeout ? "time" : "iterations");
1191
C->log()->end_elem(" limit'");
1192
}
1193
assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1194
time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1195
// Possible infinite build_connection_graph loop,
1196
// bailout (no changes to ideal graph were made).
1197
return false;
1198
}
1199
#ifdef ASSERT
1200
if (Verbose && PrintEscapeAnalysis) {
1201
tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1202
iterations, nodes_size(), ptnodes_worklist.length());
1203
}
1204
#endif
1205
1206
#undef CG_BUILD_ITER_LIMIT
1207
1208
// Find fields initialized by NULL for non-escaping Allocations.
1209
int non_escaped_length = non_escaped_worklist.length();
1210
for (int next = 0; next < non_escaped_length; next++) {
1211
JavaObjectNode* ptn = non_escaped_worklist.at(next);
1212
PointsToNode::EscapeState es = ptn->escape_state();
1213
assert(es <= PointsToNode::ArgEscape, "sanity");
1214
if (es == PointsToNode::NoEscape) {
1215
if (find_init_values(ptn, null_obj, _igvn) > 0) {
1216
// Adding references to NULL object does not change escape states
1217
// since it does not escape. Also no fields are added to NULL object.
1218
add_java_object_edges(null_obj, false);
1219
}
1220
}
1221
Node* n = ptn->ideal_node();
1222
if (n->is_Allocate()) {
1223
// The object allocated by this Allocate node will never be
1224
// seen by an other thread. Mark it so that when it is
1225
// expanded no MemBarStoreStore is added.
1226
InitializeNode* ini = n->as_Allocate()->initialization();
1227
if (ini != NULL)
1228
ini->set_does_not_escape();
1229
}
1230
}
1231
return true; // Finished graph construction.
1232
}
1233
1234
// Propagate GlobalEscape and ArgEscape escape states to all nodes
1235
// and check that we still have non-escaping java objects.
1236
bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1237
GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1238
GrowableArray<PointsToNode*> escape_worklist;
1239
// First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1240
int ptnodes_length = ptnodes_worklist.length();
1241
for (int next = 0; next < ptnodes_length; ++next) {
1242
PointsToNode* ptn = ptnodes_worklist.at(next);
1243
if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1244
ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1245
escape_worklist.push(ptn);
1246
}
1247
}
1248
// Set escape states to referenced nodes (edges list).
1249
while (escape_worklist.length() > 0) {
1250
PointsToNode* ptn = escape_worklist.pop();
1251
PointsToNode::EscapeState es = ptn->escape_state();
1252
PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1253
if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1254
es >= PointsToNode::ArgEscape) {
1255
// GlobalEscape or ArgEscape state of field means it has unknown value.
1256
if (add_edge(ptn, phantom_obj)) {
1257
// New edge was added
1258
add_field_uses_to_worklist(ptn->as_Field());
1259
}
1260
}
1261
for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1262
PointsToNode* e = i.get();
1263
if (e->is_Arraycopy()) {
1264
assert(ptn->arraycopy_dst(), "sanity");
1265
// Propagate only fields escape state through arraycopy edge.
1266
if (e->fields_escape_state() < field_es) {
1267
set_fields_escape_state(e, field_es);
1268
escape_worklist.push(e);
1269
}
1270
} else if (es >= field_es) {
1271
// fields_escape_state is also set to 'es' if it is less than 'es'.
1272
if (e->escape_state() < es) {
1273
set_escape_state(e, es);
1274
escape_worklist.push(e);
1275
}
1276
} else {
1277
// Propagate field escape state.
1278
bool es_changed = false;
1279
if (e->fields_escape_state() < field_es) {
1280
set_fields_escape_state(e, field_es);
1281
es_changed = true;
1282
}
1283
if ((e->escape_state() < field_es) &&
1284
e->is_Field() && ptn->is_JavaObject() &&
1285
e->as_Field()->is_oop()) {
1286
// Change escape state of referenced fileds.
1287
set_escape_state(e, field_es);
1288
es_changed = true;;
1289
} else if (e->escape_state() < es) {
1290
set_escape_state(e, es);
1291
es_changed = true;;
1292
}
1293
if (es_changed) {
1294
escape_worklist.push(e);
1295
}
1296
}
1297
}
1298
}
1299
// Remove escaped objects from non_escaped list.
1300
for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1301
JavaObjectNode* ptn = non_escaped_worklist.at(next);
1302
if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1303
non_escaped_worklist.delete_at(next);
1304
}
1305
if (ptn->escape_state() == PointsToNode::NoEscape) {
1306
// Find fields in non-escaped allocations which have unknown value.
1307
find_init_values(ptn, phantom_obj, NULL);
1308
}
1309
}
1310
return (non_escaped_worklist.length() > 0);
1311
}
1312
1313
// Add all references to JavaObject node by walking over all uses.
1314
int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1315
int new_edges = 0;
1316
if (populate_worklist) {
1317
// Populate _worklist by uses of jobj's uses.
1318
for (UseIterator i(jobj); i.has_next(); i.next()) {
1319
PointsToNode* use = i.get();
1320
if (use->is_Arraycopy())
1321
continue;
1322
add_uses_to_worklist(use);
1323
if (use->is_Field() && use->as_Field()->is_oop()) {
1324
// Put on worklist all field's uses (loads) and
1325
// related field nodes (same base and offset).
1326
add_field_uses_to_worklist(use->as_Field());
1327
}
1328
}
1329
}
1330
for (int l = 0; l < _worklist.length(); l++) {
1331
PointsToNode* use = _worklist.at(l);
1332
if (PointsToNode::is_base_use(use)) {
1333
// Add reference from jobj to field and from field to jobj (field's base).
1334
use = PointsToNode::get_use_node(use)->as_Field();
1335
if (add_base(use->as_Field(), jobj)) {
1336
new_edges++;
1337
}
1338
continue;
1339
}
1340
assert(!use->is_JavaObject(), "sanity");
1341
if (use->is_Arraycopy()) {
1342
if (jobj == null_obj) // NULL object does not have field edges
1343
continue;
1344
// Added edge from Arraycopy node to arraycopy's source java object
1345
if (add_edge(use, jobj)) {
1346
jobj->set_arraycopy_src();
1347
new_edges++;
1348
}
1349
// and stop here.
1350
continue;
1351
}
1352
if (!add_edge(use, jobj))
1353
continue; // No new edge added, there was such edge already.
1354
new_edges++;
1355
if (use->is_LocalVar()) {
1356
add_uses_to_worklist(use);
1357
if (use->arraycopy_dst()) {
1358
for (EdgeIterator i(use); i.has_next(); i.next()) {
1359
PointsToNode* e = i.get();
1360
if (e->is_Arraycopy()) {
1361
if (jobj == null_obj) // NULL object does not have field edges
1362
continue;
1363
// Add edge from arraycopy's destination java object to Arraycopy node.
1364
if (add_edge(jobj, e)) {
1365
new_edges++;
1366
jobj->set_arraycopy_dst();
1367
}
1368
}
1369
}
1370
}
1371
} else {
1372
// Added new edge to stored in field values.
1373
// Put on worklist all field's uses (loads) and
1374
// related field nodes (same base and offset).
1375
add_field_uses_to_worklist(use->as_Field());
1376
}
1377
}
1378
_worklist.clear();
1379
_in_worklist.Reset();
1380
return new_edges;
1381
}
1382
1383
// Put on worklist all related field nodes.
1384
void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1385
assert(field->is_oop(), "sanity");
1386
int offset = field->offset();
1387
add_uses_to_worklist(field);
1388
// Loop over all bases of this field and push on worklist Field nodes
1389
// with the same offset and base (since they may reference the same field).
1390
for (BaseIterator i(field); i.has_next(); i.next()) {
1391
PointsToNode* base = i.get();
1392
add_fields_to_worklist(field, base);
1393
// Check if the base was source object of arraycopy and go over arraycopy's
1394
// destination objects since values stored to a field of source object are
1395
// accessable by uses (loads) of fields of destination objects.
1396
if (base->arraycopy_src()) {
1397
for (UseIterator j(base); j.has_next(); j.next()) {
1398
PointsToNode* arycp = j.get();
1399
if (arycp->is_Arraycopy()) {
1400
for (UseIterator k(arycp); k.has_next(); k.next()) {
1401
PointsToNode* abase = k.get();
1402
if (abase->arraycopy_dst() && abase != base) {
1403
// Look for the same arracopy reference.
1404
add_fields_to_worklist(field, abase);
1405
}
1406
}
1407
}
1408
}
1409
}
1410
}
1411
}
1412
1413
// Put on worklist all related field nodes.
1414
void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1415
int offset = field->offset();
1416
if (base->is_LocalVar()) {
1417
for (UseIterator j(base); j.has_next(); j.next()) {
1418
PointsToNode* f = j.get();
1419
if (PointsToNode::is_base_use(f)) { // Field
1420
f = PointsToNode::get_use_node(f);
1421
if (f == field || !f->as_Field()->is_oop())
1422
continue;
1423
int offs = f->as_Field()->offset();
1424
if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1425
add_to_worklist(f);
1426
}
1427
}
1428
}
1429
} else {
1430
assert(base->is_JavaObject(), "sanity");
1431
if (// Skip phantom_object since it is only used to indicate that
1432
// this field's content globally escapes.
1433
(base != phantom_obj) &&
1434
// NULL object node does not have fields.
1435
(base != null_obj)) {
1436
for (EdgeIterator i(base); i.has_next(); i.next()) {
1437
PointsToNode* f = i.get();
1438
// Skip arraycopy edge since store to destination object field
1439
// does not update value in source object field.
1440
if (f->is_Arraycopy()) {
1441
assert(base->arraycopy_dst(), "sanity");
1442
continue;
1443
}
1444
if (f == field || !f->as_Field()->is_oop())
1445
continue;
1446
int offs = f->as_Field()->offset();
1447
if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1448
add_to_worklist(f);
1449
}
1450
}
1451
}
1452
}
1453
}
1454
1455
// Find fields which have unknown value.
1456
int ConnectionGraph::find_field_value(FieldNode* field) {
1457
// Escaped fields should have init value already.
1458
assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1459
int new_edges = 0;
1460
for (BaseIterator i(field); i.has_next(); i.next()) {
1461
PointsToNode* base = i.get();
1462
if (base->is_JavaObject()) {
1463
// Skip Allocate's fields which will be processed later.
1464
if (base->ideal_node()->is_Allocate())
1465
return 0;
1466
assert(base == null_obj, "only NULL ptr base expected here");
1467
}
1468
}
1469
if (add_edge(field, phantom_obj)) {
1470
// New edge was added
1471
new_edges++;
1472
add_field_uses_to_worklist(field);
1473
}
1474
return new_edges;
1475
}
1476
1477
// Find fields initializing values for allocations.
1478
int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1479
assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1480
int new_edges = 0;
1481
Node* alloc = pta->ideal_node();
1482
if (init_val == phantom_obj) {
1483
// Do nothing for Allocate nodes since its fields values are "known".
1484
if (alloc->is_Allocate())
1485
return 0;
1486
assert(alloc->as_CallStaticJava(), "sanity");
1487
#ifdef ASSERT
1488
if (alloc->as_CallStaticJava()->method() == NULL) {
1489
const char* name = alloc->as_CallStaticJava()->_name;
1490
assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1491
}
1492
#endif
1493
// Non-escaped allocation returned from Java or runtime call have
1494
// unknown values in fields.
1495
for (EdgeIterator i(pta); i.has_next(); i.next()) {
1496
PointsToNode* field = i.get();
1497
if (field->is_Field() && field->as_Field()->is_oop()) {
1498
if (add_edge(field, phantom_obj)) {
1499
// New edge was added
1500
new_edges++;
1501
add_field_uses_to_worklist(field->as_Field());
1502
}
1503
}
1504
}
1505
return new_edges;
1506
}
1507
assert(init_val == null_obj, "sanity");
1508
// Do nothing for Call nodes since its fields values are unknown.
1509
if (!alloc->is_Allocate())
1510
return 0;
1511
1512
InitializeNode* ini = alloc->as_Allocate()->initialization();
1513
Compile* C = _compile;
1514
bool visited_bottom_offset = false;
1515
GrowableArray<int> offsets_worklist;
1516
1517
// Check if an oop field's initializing value is recorded and add
1518
// a corresponding NULL if field's value if it is not recorded.
1519
// Connection Graph does not record a default initialization by NULL
1520
// captured by Initialize node.
1521
//
1522
for (EdgeIterator i(pta); i.has_next(); i.next()) {
1523
PointsToNode* field = i.get(); // Field (AddP)
1524
if (!field->is_Field() || !field->as_Field()->is_oop())
1525
continue; // Not oop field
1526
int offset = field->as_Field()->offset();
1527
if (offset == Type::OffsetBot) {
1528
if (!visited_bottom_offset) {
1529
// OffsetBot is used to reference array's element,
1530
// always add reference to NULL to all Field nodes since we don't
1531
// known which element is referenced.
1532
if (add_edge(field, null_obj)) {
1533
// New edge was added
1534
new_edges++;
1535
add_field_uses_to_worklist(field->as_Field());
1536
visited_bottom_offset = true;
1537
}
1538
}
1539
} else {
1540
// Check only oop fields.
1541
const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1542
if (adr_type->isa_rawptr()) {
1543
#ifdef ASSERT
1544
// Raw pointers are used for initializing stores so skip it
1545
// since it should be recorded already
1546
Node* base = get_addp_base(field->ideal_node());
1547
assert(adr_type->isa_rawptr() && base->is_Proj() &&
1548
(base->in(0) == alloc),"unexpected pointer type");
1549
#endif
1550
continue;
1551
}
1552
if (!offsets_worklist.contains(offset)) {
1553
offsets_worklist.append(offset);
1554
Node* value = NULL;
1555
if (ini != NULL) {
1556
// StoreP::memory_type() == T_ADDRESS
1557
BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1558
Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1559
// Make sure initializing store has the same type as this AddP.
1560
// This AddP may reference non existing field because it is on a
1561
// dead branch of bimorphic call which is not eliminated yet.
1562
if (store != NULL && store->is_Store() &&
1563
store->as_Store()->memory_type() == ft) {
1564
value = store->in(MemNode::ValueIn);
1565
#ifdef ASSERT
1566
if (VerifyConnectionGraph) {
1567
// Verify that AddP already points to all objects the value points to.
1568
PointsToNode* val = ptnode_adr(value->_idx);
1569
assert((val != NULL), "should be processed already");
1570
PointsToNode* missed_obj = NULL;
1571
if (val->is_JavaObject()) {
1572
if (!field->points_to(val->as_JavaObject())) {
1573
missed_obj = val;
1574
}
1575
} else {
1576
if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1577
tty->print_cr("----------init store has invalid value -----");
1578
store->dump();
1579
val->dump();
1580
assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1581
}
1582
for (EdgeIterator j(val); j.has_next(); j.next()) {
1583
PointsToNode* obj = j.get();
1584
if (obj->is_JavaObject()) {
1585
if (!field->points_to(obj->as_JavaObject())) {
1586
missed_obj = obj;
1587
break;
1588
}
1589
}
1590
}
1591
}
1592
if (missed_obj != NULL) {
1593
tty->print_cr("----------field---------------------------------");
1594
field->dump();
1595
tty->print_cr("----------missed referernce to object-----------");
1596
missed_obj->dump();
1597
tty->print_cr("----------object referernced by init store -----");
1598
store->dump();
1599
val->dump();
1600
assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1601
}
1602
}
1603
#endif
1604
} else {
1605
// There could be initializing stores which follow allocation.
1606
// For example, a volatile field store is not collected
1607
// by Initialize node.
1608
//
1609
// Need to check for dependent loads to separate such stores from
1610
// stores which follow loads. For now, add initial value NULL so
1611
// that compare pointers optimization works correctly.
1612
}
1613
}
1614
if (value == NULL) {
1615
// A field's initializing value was not recorded. Add NULL.
1616
if (add_edge(field, null_obj)) {
1617
// New edge was added
1618
new_edges++;
1619
add_field_uses_to_worklist(field->as_Field());
1620
}
1621
}
1622
}
1623
}
1624
}
1625
return new_edges;
1626
}
1627
1628
// Adjust scalar_replaceable state after Connection Graph is built.
1629
void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1630
// Search for non-escaping objects which are not scalar replaceable
1631
// and mark them to propagate the state to referenced objects.
1632
1633
// 1. An object is not scalar replaceable if the field into which it is
1634
// stored has unknown offset (stored into unknown element of an array).
1635
//
1636
for (UseIterator i(jobj); i.has_next(); i.next()) {
1637
PointsToNode* use = i.get();
1638
assert(!use->is_Arraycopy(), "sanity");
1639
if (use->is_Field()) {
1640
FieldNode* field = use->as_Field();
1641
assert(field->is_oop() && field->scalar_replaceable() &&
1642
field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1643
if (field->offset() == Type::OffsetBot) {
1644
jobj->set_scalar_replaceable(false);
1645
return;
1646
}
1647
// 2. An object is not scalar replaceable if the field into which it is
1648
// stored has multiple bases one of which is null.
1649
if (field->base_count() > 1) {
1650
for (BaseIterator i(field); i.has_next(); i.next()) {
1651
PointsToNode* base = i.get();
1652
if (base == null_obj) {
1653
jobj->set_scalar_replaceable(false);
1654
return;
1655
}
1656
}
1657
}
1658
}
1659
assert(use->is_Field() || use->is_LocalVar(), "sanity");
1660
// 3. An object is not scalar replaceable if it is merged with other objects.
1661
for (EdgeIterator j(use); j.has_next(); j.next()) {
1662
PointsToNode* ptn = j.get();
1663
if (ptn->is_JavaObject() && ptn != jobj) {
1664
// Mark all objects.
1665
jobj->set_scalar_replaceable(false);
1666
ptn->set_scalar_replaceable(false);
1667
}
1668
}
1669
if (!jobj->scalar_replaceable()) {
1670
return;
1671
}
1672
}
1673
1674
for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1675
// Non-escaping object node should point only to field nodes.
1676
FieldNode* field = j.get()->as_Field();
1677
int offset = field->as_Field()->offset();
1678
1679
// 4. An object is not scalar replaceable if it has a field with unknown
1680
// offset (array's element is accessed in loop).
1681
if (offset == Type::OffsetBot) {
1682
jobj->set_scalar_replaceable(false);
1683
return;
1684
}
1685
// 5. Currently an object is not scalar replaceable if a LoadStore node
1686
// access its field since the field value is unknown after it.
1687
//
1688
Node* n = field->ideal_node();
1689
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1690
if (n->fast_out(i)->is_LoadStore()) {
1691
jobj->set_scalar_replaceable(false);
1692
return;
1693
}
1694
}
1695
1696
// 6. Or the address may point to more then one object. This may produce
1697
// the false positive result (set not scalar replaceable)
1698
// since the flow-insensitive escape analysis can't separate
1699
// the case when stores overwrite the field's value from the case
1700
// when stores happened on different control branches.
1701
//
1702
// Note: it will disable scalar replacement in some cases:
1703
//
1704
// Point p[] = new Point[1];
1705
// p[0] = new Point(); // Will be not scalar replaced
1706
//
1707
// but it will save us from incorrect optimizations in next cases:
1708
//
1709
// Point p[] = new Point[1];
1710
// if ( x ) p[0] = new Point(); // Will be not scalar replaced
1711
//
1712
if (field->base_count() > 1) {
1713
for (BaseIterator i(field); i.has_next(); i.next()) {
1714
PointsToNode* base = i.get();
1715
// Don't take into account LocalVar nodes which
1716
// may point to only one object which should be also
1717
// this field's base by now.
1718
if (base->is_JavaObject() && base != jobj) {
1719
// Mark all bases.
1720
jobj->set_scalar_replaceable(false);
1721
base->set_scalar_replaceable(false);
1722
}
1723
}
1724
}
1725
}
1726
}
1727
1728
#ifdef ASSERT
1729
void ConnectionGraph::verify_connection_graph(
1730
GrowableArray<PointsToNode*>& ptnodes_worklist,
1731
GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1732
GrowableArray<JavaObjectNode*>& java_objects_worklist,
1733
GrowableArray<Node*>& addp_worklist) {
1734
// Verify that graph is complete - no new edges could be added.
1735
int java_objects_length = java_objects_worklist.length();
1736
int non_escaped_length = non_escaped_worklist.length();
1737
int new_edges = 0;
1738
for (int next = 0; next < java_objects_length; ++next) {
1739
JavaObjectNode* ptn = java_objects_worklist.at(next);
1740
new_edges += add_java_object_edges(ptn, true);
1741
}
1742
assert(new_edges == 0, "graph was not complete");
1743
// Verify that escape state is final.
1744
int length = non_escaped_worklist.length();
1745
find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1746
assert((non_escaped_length == non_escaped_worklist.length()) &&
1747
(non_escaped_length == length) &&
1748
(_worklist.length() == 0), "escape state was not final");
1749
1750
// Verify fields information.
1751
int addp_length = addp_worklist.length();
1752
for (int next = 0; next < addp_length; ++next ) {
1753
Node* n = addp_worklist.at(next);
1754
FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1755
if (field->is_oop()) {
1756
// Verify that field has all bases
1757
Node* base = get_addp_base(n);
1758
PointsToNode* ptn = ptnode_adr(base->_idx);
1759
if (ptn->is_JavaObject()) {
1760
assert(field->has_base(ptn->as_JavaObject()), "sanity");
1761
} else {
1762
assert(ptn->is_LocalVar(), "sanity");
1763
for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1764
PointsToNode* e = i.get();
1765
if (e->is_JavaObject()) {
1766
assert(field->has_base(e->as_JavaObject()), "sanity");
1767
}
1768
}
1769
}
1770
// Verify that all fields have initializing values.
1771
if (field->edge_count() == 0) {
1772
tty->print_cr("----------field does not have references----------");
1773
field->dump();
1774
for (BaseIterator i(field); i.has_next(); i.next()) {
1775
PointsToNode* base = i.get();
1776
tty->print_cr("----------field has next base---------------------");
1777
base->dump();
1778
if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1779
tty->print_cr("----------base has fields-------------------------");
1780
for (EdgeIterator j(base); j.has_next(); j.next()) {
1781
j.get()->dump();
1782
}
1783
tty->print_cr("----------base has references---------------------");
1784
for (UseIterator j(base); j.has_next(); j.next()) {
1785
j.get()->dump();
1786
}
1787
}
1788
}
1789
for (UseIterator i(field); i.has_next(); i.next()) {
1790
i.get()->dump();
1791
}
1792
assert(field->edge_count() > 0, "sanity");
1793
}
1794
}
1795
}
1796
}
1797
#endif
1798
1799
// Optimize ideal graph.
1800
void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1801
GrowableArray<Node*>& storestore_worklist) {
1802
Compile* C = _compile;
1803
PhaseIterGVN* igvn = _igvn;
1804
if (EliminateLocks) {
1805
// Mark locks before changing ideal graph.
1806
int cnt = C->macro_count();
1807
for( int i=0; i < cnt; i++ ) {
1808
Node *n = C->macro_node(i);
1809
if (n->is_AbstractLock()) { // Lock and Unlock nodes
1810
AbstractLockNode* alock = n->as_AbstractLock();
1811
if (!alock->is_non_esc_obj()) {
1812
if (not_global_escape(alock->obj_node())) {
1813
assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1814
// The lock could be marked eliminated by lock coarsening
1815
// code during first IGVN before EA. Replace coarsened flag
1816
// to eliminate all associated locks/unlocks.
1817
#ifdef ASSERT
1818
alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1819
#endif
1820
alock->set_non_esc_obj();
1821
}
1822
}
1823
}
1824
}
1825
}
1826
1827
if (OptimizePtrCompare) {
1828
// Add ConI(#CC_GT) and ConI(#CC_EQ).
1829
_pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1830
_pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1831
// Optimize objects compare.
1832
while (ptr_cmp_worklist.length() != 0) {
1833
Node *n = ptr_cmp_worklist.pop();
1834
Node *res = optimize_ptr_compare(n);
1835
if (res != NULL) {
1836
#ifndef PRODUCT
1837
if (PrintOptimizePtrCompare) {
1838
tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1839
if (Verbose) {
1840
n->dump(1);
1841
}
1842
}
1843
#endif
1844
igvn->replace_node(n, res);
1845
}
1846
}
1847
// cleanup
1848
if (_pcmp_neq->outcnt() == 0)
1849
igvn->hash_delete(_pcmp_neq);
1850
if (_pcmp_eq->outcnt() == 0)
1851
igvn->hash_delete(_pcmp_eq);
1852
}
1853
1854
// For MemBarStoreStore nodes added in library_call.cpp, check
1855
// escape status of associated AllocateNode and optimize out
1856
// MemBarStoreStore node if the allocated object never escapes.
1857
while (storestore_worklist.length() != 0) {
1858
Node *n = storestore_worklist.pop();
1859
MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1860
Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1861
assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1862
if (not_global_escape(alloc)) {
1863
MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1864
mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1865
mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1866
igvn->register_new_node_with_optimizer(mb);
1867
igvn->replace_node(storestore, mb);
1868
}
1869
}
1870
}
1871
1872
// Optimize objects compare.
1873
Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1874
assert(OptimizePtrCompare, "sanity");
1875
PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1876
PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1877
JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1878
JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1879
assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1880
assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1881
1882
// Check simple cases first.
1883
if (jobj1 != NULL) {
1884
if (jobj1->escape_state() == PointsToNode::NoEscape) {
1885
if (jobj1 == jobj2) {
1886
// Comparing the same not escaping object.
1887
return _pcmp_eq;
1888
}
1889
Node* obj = jobj1->ideal_node();
1890
// Comparing not escaping allocation.
1891
if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1892
!ptn2->points_to(jobj1)) {
1893
return _pcmp_neq; // This includes nullness check.
1894
}
1895
}
1896
}
1897
if (jobj2 != NULL) {
1898
if (jobj2->escape_state() == PointsToNode::NoEscape) {
1899
Node* obj = jobj2->ideal_node();
1900
// Comparing not escaping allocation.
1901
if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1902
!ptn1->points_to(jobj2)) {
1903
return _pcmp_neq; // This includes nullness check.
1904
}
1905
}
1906
}
1907
if (jobj1 != NULL && jobj1 != phantom_obj &&
1908
jobj2 != NULL && jobj2 != phantom_obj &&
1909
jobj1->ideal_node()->is_Con() &&
1910
jobj2->ideal_node()->is_Con()) {
1911
// Klass or String constants compare. Need to be careful with
1912
// compressed pointers - compare types of ConN and ConP instead of nodes.
1913
const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1914
const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1915
if (t1->make_ptr() == t2->make_ptr()) {
1916
return _pcmp_eq;
1917
} else {
1918
return _pcmp_neq;
1919
}
1920
}
1921
if (ptn1->meet(ptn2)) {
1922
return NULL; // Sets are not disjoint
1923
}
1924
1925
// Sets are disjoint.
1926
bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1927
bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1928
bool set1_has_null_ptr = ptn1->points_to(null_obj);
1929
bool set2_has_null_ptr = ptn2->points_to(null_obj);
1930
if (set1_has_unknown_ptr && set2_has_null_ptr ||
1931
set2_has_unknown_ptr && set1_has_null_ptr) {
1932
// Check nullness of unknown object.
1933
return NULL;
1934
}
1935
1936
// Disjointness by itself is not sufficient since
1937
// alias analysis is not complete for escaped objects.
1938
// Disjoint sets are definitely unrelated only when
1939
// at least one set has only not escaping allocations.
1940
if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1941
if (ptn1->non_escaping_allocation()) {
1942
return _pcmp_neq;
1943
}
1944
}
1945
if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1946
if (ptn2->non_escaping_allocation()) {
1947
return _pcmp_neq;
1948
}
1949
}
1950
return NULL;
1951
}
1952
1953
// Connection Graph constuction functions.
1954
1955
void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1956
PointsToNode* ptadr = _nodes.at(n->_idx);
1957
if (ptadr != NULL) {
1958
assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1959
return;
1960
}
1961
Compile* C = _compile;
1962
ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1963
_nodes.at_put(n->_idx, ptadr);
1964
}
1965
1966
void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1967
PointsToNode* ptadr = _nodes.at(n->_idx);
1968
if (ptadr != NULL) {
1969
assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1970
return;
1971
}
1972
Compile* C = _compile;
1973
ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
1974
_nodes.at_put(n->_idx, ptadr);
1975
}
1976
1977
void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1978
PointsToNode* ptadr = _nodes.at(n->_idx);
1979
if (ptadr != NULL) {
1980
assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1981
return;
1982
}
1983
bool unsafe = false;
1984
bool is_oop = is_oop_field(n, offset, &unsafe);
1985
if (unsafe) {
1986
es = PointsToNode::GlobalEscape;
1987
}
1988
Compile* C = _compile;
1989
FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
1990
_nodes.at_put(n->_idx, field);
1991
}
1992
1993
void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1994
PointsToNode* src, PointsToNode* dst) {
1995
assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1996
assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1997
PointsToNode* ptadr = _nodes.at(n->_idx);
1998
if (ptadr != NULL) {
1999
assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2000
return;
2001
}
2002
Compile* C = _compile;
2003
ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2004
_nodes.at_put(n->_idx, ptadr);
2005
// Add edge from arraycopy node to source object.
2006
(void)add_edge(ptadr, src);
2007
src->set_arraycopy_src();
2008
// Add edge from destination object to arraycopy node.
2009
(void)add_edge(dst, ptadr);
2010
dst->set_arraycopy_dst();
2011
}
2012
2013
bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2014
const Type* adr_type = n->as_AddP()->bottom_type();
2015
BasicType bt = T_INT;
2016
if (offset == Type::OffsetBot) {
2017
// Check only oop fields.
2018
if (!adr_type->isa_aryptr() ||
2019
(adr_type->isa_aryptr()->klass() == NULL) ||
2020
adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2021
// OffsetBot is used to reference array's element. Ignore first AddP.
2022
if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2023
bt = T_OBJECT;
2024
}
2025
}
2026
} else if (offset != oopDesc::klass_offset_in_bytes()) {
2027
if (adr_type->isa_instptr()) {
2028
ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2029
if (field != NULL) {
2030
bt = field->layout_type();
2031
} else {
2032
// Check for unsafe oop field access
2033
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2034
int opcode = n->fast_out(i)->Opcode();
2035
if (opcode == Op_StoreP || opcode == Op_StoreN ||
2036
opcode == Op_LoadP || opcode == Op_LoadN ||
2037
opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
2038
opcode == Op_CompareAndSwapP || opcode == Op_CompareAndSwapN) {
2039
bt = T_OBJECT;
2040
(*unsafe) = true;
2041
break;
2042
}
2043
}
2044
}
2045
} else if (adr_type->isa_aryptr()) {
2046
if (offset == arrayOopDesc::length_offset_in_bytes()) {
2047
// Ignore array length load.
2048
} else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2049
// Ignore first AddP.
2050
} else {
2051
const Type* elemtype = adr_type->isa_aryptr()->elem();
2052
bt = elemtype->array_element_basic_type();
2053
}
2054
} else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2055
// Allocation initialization, ThreadLocal field access, unsafe access
2056
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2057
int opcode = n->fast_out(i)->Opcode();
2058
if (opcode == Op_StoreP || opcode == Op_StoreN ||
2059
opcode == Op_LoadP || opcode == Op_LoadN ||
2060
opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
2061
opcode == Op_CompareAndSwapP || opcode == Op_CompareAndSwapN) {
2062
bt = T_OBJECT;
2063
break;
2064
}
2065
}
2066
}
2067
}
2068
return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2069
}
2070
2071
// Returns unique pointed java object or NULL.
2072
JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2073
assert(!_collecting, "should not call when contructed graph");
2074
// If the node was created after the escape computation we can't answer.
2075
uint idx = n->_idx;
2076
if (idx >= nodes_size()) {
2077
return NULL;
2078
}
2079
PointsToNode* ptn = ptnode_adr(idx);
2080
if (ptn == NULL) {
2081
return NULL;
2082
}
2083
if (ptn->is_JavaObject()) {
2084
return ptn->as_JavaObject();
2085
}
2086
assert(ptn->is_LocalVar(), "sanity");
2087
// Check all java objects it points to.
2088
JavaObjectNode* jobj = NULL;
2089
for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2090
PointsToNode* e = i.get();
2091
if (e->is_JavaObject()) {
2092
if (jobj == NULL) {
2093
jobj = e->as_JavaObject();
2094
} else if (jobj != e) {
2095
return NULL;
2096
}
2097
}
2098
}
2099
return jobj;
2100
}
2101
2102
// Return true if this node points only to non-escaping allocations.
2103
bool PointsToNode::non_escaping_allocation() {
2104
if (is_JavaObject()) {
2105
Node* n = ideal_node();
2106
if (n->is_Allocate() || n->is_CallStaticJava()) {
2107
return (escape_state() == PointsToNode::NoEscape);
2108
} else {
2109
return false;
2110
}
2111
}
2112
assert(is_LocalVar(), "sanity");
2113
// Check all java objects it points to.
2114
for (EdgeIterator i(this); i.has_next(); i.next()) {
2115
PointsToNode* e = i.get();
2116
if (e->is_JavaObject()) {
2117
Node* n = e->ideal_node();
2118
if ((e->escape_state() != PointsToNode::NoEscape) ||
2119
!(n->is_Allocate() || n->is_CallStaticJava())) {
2120
return false;
2121
}
2122
}
2123
}
2124
return true;
2125
}
2126
2127
// Return true if we know the node does not escape globally.
2128
bool ConnectionGraph::not_global_escape(Node *n) {
2129
assert(!_collecting, "should not call during graph construction");
2130
// If the node was created after the escape computation we can't answer.
2131
uint idx = n->_idx;
2132
if (idx >= nodes_size()) {
2133
return false;
2134
}
2135
PointsToNode* ptn = ptnode_adr(idx);
2136
if (ptn == NULL) {
2137
return false; // not in congraph (e.g. ConI)
2138
}
2139
PointsToNode::EscapeState es = ptn->escape_state();
2140
// If we have already computed a value, return it.
2141
if (es >= PointsToNode::GlobalEscape)
2142
return false;
2143
if (ptn->is_JavaObject()) {
2144
return true; // (es < PointsToNode::GlobalEscape);
2145
}
2146
assert(ptn->is_LocalVar(), "sanity");
2147
// Check all java objects it points to.
2148
for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2149
if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2150
return false;
2151
}
2152
return true;
2153
}
2154
2155
2156
// Helper functions
2157
2158
// Return true if this node points to specified node or nodes it points to.
2159
bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2160
if (is_JavaObject()) {
2161
return (this == ptn);
2162
}
2163
assert(is_LocalVar() || is_Field(), "sanity");
2164
for (EdgeIterator i(this); i.has_next(); i.next()) {
2165
if (i.get() == ptn)
2166
return true;
2167
}
2168
return false;
2169
}
2170
2171
// Return true if one node points to an other.
2172
bool PointsToNode::meet(PointsToNode* ptn) {
2173
if (this == ptn) {
2174
return true;
2175
} else if (ptn->is_JavaObject()) {
2176
return this->points_to(ptn->as_JavaObject());
2177
} else if (this->is_JavaObject()) {
2178
return ptn->points_to(this->as_JavaObject());
2179
}
2180
assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2181
int ptn_count = ptn->edge_count();
2182
for (EdgeIterator i(this); i.has_next(); i.next()) {
2183
PointsToNode* this_e = i.get();
2184
for (int j = 0; j < ptn_count; j++) {
2185
if (this_e == ptn->edge(j))
2186
return true;
2187
}
2188
}
2189
return false;
2190
}
2191
2192
#ifdef ASSERT
2193
// Return true if bases point to this java object.
2194
bool FieldNode::has_base(JavaObjectNode* jobj) const {
2195
for (BaseIterator i(this); i.has_next(); i.next()) {
2196
if (i.get() == jobj)
2197
return true;
2198
}
2199
return false;
2200
}
2201
#endif
2202
2203
int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2204
const Type *adr_type = phase->type(adr);
2205
if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2206
adr->in(AddPNode::Address)->is_Proj() &&
2207
adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2208
// We are computing a raw address for a store captured by an Initialize
2209
// compute an appropriate address type. AddP cases #3 and #5 (see below).
2210
int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2211
assert(offs != Type::OffsetBot ||
2212
adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2213
"offset must be a constant or it is initialization of array");
2214
return offs;
2215
}
2216
const TypePtr *t_ptr = adr_type->isa_ptr();
2217
assert(t_ptr != NULL, "must be a pointer type");
2218
return t_ptr->offset();
2219
}
2220
2221
Node* ConnectionGraph::get_addp_base(Node *addp) {
2222
assert(addp->is_AddP(), "must be AddP");
2223
//
2224
// AddP cases for Base and Address inputs:
2225
// case #1. Direct object's field reference:
2226
// Allocate
2227
// |
2228
// Proj #5 ( oop result )
2229
// |
2230
// CheckCastPP (cast to instance type)
2231
// | |
2232
// AddP ( base == address )
2233
//
2234
// case #2. Indirect object's field reference:
2235
// Phi
2236
// |
2237
// CastPP (cast to instance type)
2238
// | |
2239
// AddP ( base == address )
2240
//
2241
// case #3. Raw object's field reference for Initialize node:
2242
// Allocate
2243
// |
2244
// Proj #5 ( oop result )
2245
// top |
2246
// \ |
2247
// AddP ( base == top )
2248
//
2249
// case #4. Array's element reference:
2250
// {CheckCastPP | CastPP}
2251
// | | |
2252
// | AddP ( array's element offset )
2253
// | |
2254
// AddP ( array's offset )
2255
//
2256
// case #5. Raw object's field reference for arraycopy stub call:
2257
// The inline_native_clone() case when the arraycopy stub is called
2258
// after the allocation before Initialize and CheckCastPP nodes.
2259
// Allocate
2260
// |
2261
// Proj #5 ( oop result )
2262
// | |
2263
// AddP ( base == address )
2264
//
2265
// case #6. Constant Pool, ThreadLocal, CastX2P or
2266
// Raw object's field reference:
2267
// {ConP, ThreadLocal, CastX2P, raw Load}
2268
// top |
2269
// \ |
2270
// AddP ( base == top )
2271
//
2272
// case #7. Klass's field reference.
2273
// LoadKlass
2274
// | |
2275
// AddP ( base == address )
2276
//
2277
// case #8. narrow Klass's field reference.
2278
// LoadNKlass
2279
// |
2280
// DecodeN
2281
// | |
2282
// AddP ( base == address )
2283
//
2284
Node *base = addp->in(AddPNode::Base);
2285
if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2286
base = addp->in(AddPNode::Address);
2287
while (base->is_AddP()) {
2288
// Case #6 (unsafe access) may have several chained AddP nodes.
2289
assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2290
base = base->in(AddPNode::Address);
2291
}
2292
Node* uncast_base = base->uncast();
2293
int opcode = uncast_base->Opcode();
2294
assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2295
opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2296
(uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2297
(uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()) ||
2298
(uncast_base->is_Phi() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2299
uncast_base->Opcode() == Op_ShenandoahLoadReferenceBarrier, "sanity");
2300
}
2301
return base;
2302
}
2303
2304
Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2305
assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2306
Node* addp2 = addp->raw_out(0);
2307
if (addp->outcnt() == 1 && addp2->is_AddP() &&
2308
addp2->in(AddPNode::Base) == n &&
2309
addp2->in(AddPNode::Address) == addp) {
2310
assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2311
//
2312
// Find array's offset to push it on worklist first and
2313
// as result process an array's element offset first (pushed second)
2314
// to avoid CastPP for the array's offset.
2315
// Otherwise the inserted CastPP (LocalVar) will point to what
2316
// the AddP (Field) points to. Which would be wrong since
2317
// the algorithm expects the CastPP has the same point as
2318
// as AddP's base CheckCastPP (LocalVar).
2319
//
2320
// ArrayAllocation
2321
// |
2322
// CheckCastPP
2323
// |
2324
// memProj (from ArrayAllocation CheckCastPP)
2325
// | ||
2326
// | || Int (element index)
2327
// | || | ConI (log(element size))
2328
// | || | /
2329
// | || LShift
2330
// | || /
2331
// | AddP (array's element offset)
2332
// | |
2333
// | | ConI (array's offset: #12(32-bits) or #24(64-bits))
2334
// | / /
2335
// AddP (array's offset)
2336
// |
2337
// Load/Store (memory operation on array's element)
2338
//
2339
return addp2;
2340
}
2341
return NULL;
2342
}
2343
2344
//
2345
// Adjust the type and inputs of an AddP which computes the
2346
// address of a field of an instance
2347
//
2348
bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2349
PhaseGVN* igvn = _igvn;
2350
const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2351
assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2352
const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2353
if (t == NULL) {
2354
// We are computing a raw address for a store captured by an Initialize
2355
// compute an appropriate address type (cases #3 and #5).
2356
assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2357
assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2358
intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2359
assert(offs != Type::OffsetBot, "offset must be a constant");
2360
t = base_t->add_offset(offs)->is_oopptr();
2361
}
2362
int inst_id = base_t->instance_id();
2363
assert(!t->is_known_instance() || t->instance_id() == inst_id,
2364
"old type must be non-instance or match new type");
2365
2366
// The type 't' could be subclass of 'base_t'.
2367
// As result t->offset() could be large then base_t's size and it will
2368
// cause the failure in add_offset() with narrow oops since TypeOopPtr()
2369
// constructor verifies correctness of the offset.
2370
//
2371
// It could happened on subclass's branch (from the type profiling
2372
// inlining) which was not eliminated during parsing since the exactness
2373
// of the allocation type was not propagated to the subclass type check.
2374
//
2375
// Or the type 't' could be not related to 'base_t' at all.
2376
// It could happened when CHA type is different from MDO type on a dead path
2377
// (for example, from instanceof check) which is not collapsed during parsing.
2378
//
2379
// Do nothing for such AddP node and don't process its users since
2380
// this code branch will go away.
2381
//
2382
if (!t->is_known_instance() &&
2383
!base_t->klass()->is_subtype_of(t->klass())) {
2384
return false; // bail out
2385
}
2386
const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2387
// Do NOT remove the next line: ensure a new alias index is allocated
2388
// for the instance type. Note: C++ will not remove it since the call
2389
// has side effect.
2390
int alias_idx = _compile->get_alias_index(tinst);
2391
igvn->set_type(addp, tinst);
2392
// record the allocation in the node map
2393
set_map(addp, get_map(base->_idx));
2394
// Set addp's Base and Address to 'base'.
2395
Node *abase = addp->in(AddPNode::Base);
2396
Node *adr = addp->in(AddPNode::Address);
2397
if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2398
adr->in(0)->_idx == (uint)inst_id) {
2399
// Skip AddP cases #3 and #5.
2400
} else {
2401
assert(!abase->is_top(), "sanity"); // AddP case #3
2402
if (abase != base) {
2403
igvn->hash_delete(addp);
2404
addp->set_req(AddPNode::Base, base);
2405
if (abase == adr) {
2406
addp->set_req(AddPNode::Address, base);
2407
} else {
2408
// AddP case #4 (adr is array's element offset AddP node)
2409
#ifdef ASSERT
2410
const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2411
assert(adr->is_AddP() && atype != NULL &&
2412
atype->instance_id() == inst_id, "array's element offset should be processed first");
2413
#endif
2414
}
2415
igvn->hash_insert(addp);
2416
}
2417
}
2418
// Put on IGVN worklist since at least addp's type was changed above.
2419
record_for_optimizer(addp);
2420
return true;
2421
}
2422
2423
//
2424
// Create a new version of orig_phi if necessary. Returns either the newly
2425
// created phi or an existing phi. Sets create_new to indicate whether a new
2426
// phi was created. Cache the last newly created phi in the node map.
2427
//
2428
PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) {
2429
Compile *C = _compile;
2430
PhaseGVN* igvn = _igvn;
2431
new_created = false;
2432
int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2433
// nothing to do if orig_phi is bottom memory or matches alias_idx
2434
if (phi_alias_idx == alias_idx) {
2435
return orig_phi;
2436
}
2437
// Have we recently created a Phi for this alias index?
2438
PhiNode *result = get_map_phi(orig_phi->_idx);
2439
if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2440
return result;
2441
}
2442
// Previous check may fail when the same wide memory Phi was split into Phis
2443
// for different memory slices. Search all Phis for this region.
2444
if (result != NULL) {
2445
Node* region = orig_phi->in(0);
2446
for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2447
Node* phi = region->fast_out(i);
2448
if (phi->is_Phi() &&
2449
C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2450
assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2451
return phi->as_Phi();
2452
}
2453
}
2454
}
2455
if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2456
if (C->do_escape_analysis() == true && !C->failing()) {
2457
// Retry compilation without escape analysis.
2458
// If this is the first failure, the sentinel string will "stick"
2459
// to the Compile object, and the C2Compiler will see it and retry.
2460
C->record_failure(C2Compiler::retry_no_escape_analysis());
2461
}
2462
return NULL;
2463
}
2464
orig_phi_worklist.append_if_missing(orig_phi);
2465
const TypePtr *atype = C->get_adr_type(alias_idx);
2466
result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2467
C->copy_node_notes_to(result, orig_phi);
2468
igvn->set_type(result, result->bottom_type());
2469
record_for_optimizer(result);
2470
set_map(orig_phi, result);
2471
new_created = true;
2472
return result;
2473
}
2474
2475
//
2476
// Return a new version of Memory Phi "orig_phi" with the inputs having the
2477
// specified alias index.
2478
//
2479
PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) {
2480
assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2481
Compile *C = _compile;
2482
PhaseGVN* igvn = _igvn;
2483
bool new_phi_created;
2484
PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2485
if (!new_phi_created) {
2486
return result;
2487
}
2488
GrowableArray<PhiNode *> phi_list;
2489
GrowableArray<uint> cur_input;
2490
PhiNode *phi = orig_phi;
2491
uint idx = 1;
2492
bool finished = false;
2493
while(!finished) {
2494
while (idx < phi->req()) {
2495
Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2496
if (mem != NULL && mem->is_Phi()) {
2497
PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2498
if (new_phi_created) {
2499
// found an phi for which we created a new split, push current one on worklist and begin
2500
// processing new one
2501
phi_list.push(phi);
2502
cur_input.push(idx);
2503
phi = mem->as_Phi();
2504
result = newphi;
2505
idx = 1;
2506
continue;
2507
} else {
2508
mem = newphi;
2509
}
2510
}
2511
if (C->failing()) {
2512
return NULL;
2513
}
2514
result->set_req(idx++, mem);
2515
}
2516
#ifdef ASSERT
2517
// verify that the new Phi has an input for each input of the original
2518
assert( phi->req() == result->req(), "must have same number of inputs.");
2519
assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2520
#endif
2521
// Check if all new phi's inputs have specified alias index.
2522
// Otherwise use old phi.
2523
for (uint i = 1; i < phi->req(); i++) {
2524
Node* in = result->in(i);
2525
assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2526
}
2527
// we have finished processing a Phi, see if there are any more to do
2528
finished = (phi_list.length() == 0 );
2529
if (!finished) {
2530
phi = phi_list.pop();
2531
idx = cur_input.pop();
2532
PhiNode *prev_result = get_map_phi(phi->_idx);
2533
prev_result->set_req(idx++, result);
2534
result = prev_result;
2535
}
2536
}
2537
return result;
2538
}
2539
2540
//
2541
// The next methods are derived from methods in MemNode.
2542
//
2543
Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2544
Node *mem = mmem;
2545
// TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2546
// means an array I have not precisely typed yet. Do not do any
2547
// alias stuff with it any time soon.
2548
if (toop->base() != Type::AnyPtr &&
2549
!(toop->klass() != NULL &&
2550
toop->klass()->is_java_lang_Object() &&
2551
toop->offset() == Type::OffsetBot)) {
2552
mem = mmem->memory_at(alias_idx);
2553
// Update input if it is progress over what we have now
2554
}
2555
return mem;
2556
}
2557
2558
//
2559
// Move memory users to their memory slices.
2560
//
2561
void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) {
2562
Compile* C = _compile;
2563
PhaseGVN* igvn = _igvn;
2564
const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2565
assert(tp != NULL, "ptr type");
2566
int alias_idx = C->get_alias_index(tp);
2567
int general_idx = C->get_general_index(alias_idx);
2568
2569
// Move users first
2570
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2571
Node* use = n->fast_out(i);
2572
if (use->is_MergeMem()) {
2573
MergeMemNode* mmem = use->as_MergeMem();
2574
assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2575
if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2576
continue; // Nothing to do
2577
}
2578
// Replace previous general reference to mem node.
2579
uint orig_uniq = C->unique();
2580
Node* m = find_inst_mem(n, general_idx, orig_phis);
2581
assert(orig_uniq == C->unique(), "no new nodes");
2582
mmem->set_memory_at(general_idx, m);
2583
--imax;
2584
--i;
2585
} else if (use->is_MemBar()) {
2586
assert(!use->is_Initialize(), "initializing stores should not be moved");
2587
if (use->req() > MemBarNode::Precedent &&
2588
use->in(MemBarNode::Precedent) == n) {
2589
// Don't move related membars.
2590
record_for_optimizer(use);
2591
continue;
2592
}
2593
tp = use->as_MemBar()->adr_type()->isa_ptr();
2594
if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2595
alias_idx == general_idx) {
2596
continue; // Nothing to do
2597
}
2598
// Move to general memory slice.
2599
uint orig_uniq = C->unique();
2600
Node* m = find_inst_mem(n, general_idx, orig_phis);
2601
assert(orig_uniq == C->unique(), "no new nodes");
2602
igvn->hash_delete(use);
2603
imax -= use->replace_edge(n, m);
2604
igvn->hash_insert(use);
2605
record_for_optimizer(use);
2606
--i;
2607
#ifdef ASSERT
2608
} else if (use->is_Mem()) {
2609
if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2610
// Don't move related cardmark.
2611
continue;
2612
}
2613
// Memory nodes should have new memory input.
2614
tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2615
assert(tp != NULL, "ptr type");
2616
int idx = C->get_alias_index(tp);
2617
assert(get_map(use->_idx) != NULL || idx == alias_idx,
2618
"Following memory nodes should have new memory input or be on the same memory slice");
2619
} else if (use->is_Phi()) {
2620
// Phi nodes should be split and moved already.
2621
tp = use->as_Phi()->adr_type()->isa_ptr();
2622
assert(tp != NULL, "ptr type");
2623
int idx = C->get_alias_index(tp);
2624
assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2625
} else {
2626
use->dump();
2627
assert(false, "should not be here");
2628
#endif
2629
}
2630
}
2631
}
2632
2633
//
2634
// Search memory chain of "mem" to find a MemNode whose address
2635
// is the specified alias index.
2636
//
2637
Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) {
2638
if (orig_mem == NULL)
2639
return orig_mem;
2640
Compile* C = _compile;
2641
PhaseGVN* igvn = _igvn;
2642
const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2643
bool is_instance = (toop != NULL) && toop->is_known_instance();
2644
Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2645
Node *prev = NULL;
2646
Node *result = orig_mem;
2647
while (prev != result) {
2648
prev = result;
2649
if (result == start_mem)
2650
break; // hit one of our sentinels
2651
if (result->is_Mem()) {
2652
const Type *at = igvn->type(result->in(MemNode::Address));
2653
if (at == Type::TOP)
2654
break; // Dead
2655
assert (at->isa_ptr() != NULL, "pointer type required.");
2656
int idx = C->get_alias_index(at->is_ptr());
2657
if (idx == alias_idx)
2658
break; // Found
2659
if (!is_instance && (at->isa_oopptr() == NULL ||
2660
!at->is_oopptr()->is_known_instance())) {
2661
break; // Do not skip store to general memory slice.
2662
}
2663
result = result->in(MemNode::Memory);
2664
}
2665
if (!is_instance)
2666
continue; // don't search further for non-instance types
2667
// skip over a call which does not affect this memory slice
2668
if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2669
Node *proj_in = result->in(0);
2670
if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2671
break; // hit one of our sentinels
2672
} else if (proj_in->is_Call()) {
2673
CallNode *call = proj_in->as_Call();
2674
if (!call->may_modify(toop, igvn)) {
2675
result = call->in(TypeFunc::Memory);
2676
}
2677
} else if (proj_in->is_Initialize()) {
2678
AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2679
// Stop if this is the initialization for the object instance which
2680
// which contains this memory slice, otherwise skip over it.
2681
if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2682
result = proj_in->in(TypeFunc::Memory);
2683
}
2684
} else if (proj_in->is_MemBar()) {
2685
result = proj_in->in(TypeFunc::Memory);
2686
}
2687
} else if (result->is_MergeMem()) {
2688
MergeMemNode *mmem = result->as_MergeMem();
2689
result = step_through_mergemem(mmem, alias_idx, toop);
2690
if (result == mmem->base_memory()) {
2691
// Didn't find instance memory, search through general slice recursively.
2692
result = mmem->memory_at(C->get_general_index(alias_idx));
2693
result = find_inst_mem(result, alias_idx, orig_phis);
2694
if (C->failing()) {
2695
return NULL;
2696
}
2697
mmem->set_memory_at(alias_idx, result);
2698
}
2699
} else if (result->is_Phi() &&
2700
C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2701
Node *un = result->as_Phi()->unique_input(igvn);
2702
if (un != NULL) {
2703
orig_phis.append_if_missing(result->as_Phi());
2704
result = un;
2705
} else {
2706
break;
2707
}
2708
} else if (result->is_ClearArray()) {
2709
if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2710
// Can not bypass initialization of the instance
2711
// we are looking for.
2712
break;
2713
}
2714
// Otherwise skip it (the call updated 'result' value).
2715
} else if (result->Opcode() == Op_SCMemProj) {
2716
Node* mem = result->in(0);
2717
Node* adr = NULL;
2718
if (mem->is_LoadStore()) {
2719
adr = mem->in(MemNode::Address);
2720
} else {
2721
assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2722
adr = mem->in(3); // Memory edge corresponds to destination array
2723
}
2724
const Type *at = igvn->type(adr);
2725
if (at != Type::TOP) {
2726
assert (at->isa_ptr() != NULL, "pointer type required.");
2727
int idx = C->get_alias_index(at->is_ptr());
2728
assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2729
break;
2730
}
2731
result = mem->in(MemNode::Memory);
2732
}
2733
}
2734
if (result->is_Phi()) {
2735
PhiNode *mphi = result->as_Phi();
2736
assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2737
const TypePtr *t = mphi->adr_type();
2738
if (!is_instance) {
2739
// Push all non-instance Phis on the orig_phis worklist to update inputs
2740
// during Phase 4 if needed.
2741
orig_phis.append_if_missing(mphi);
2742
} else if (C->get_alias_index(t) != alias_idx) {
2743
// Create a new Phi with the specified alias index type.
2744
result = split_memory_phi(mphi, alias_idx, orig_phis);
2745
}
2746
}
2747
// the result is either MemNode, PhiNode, InitializeNode.
2748
return result;
2749
}
2750
2751
//
2752
// Convert the types of unescaped object to instance types where possible,
2753
// propagate the new type information through the graph, and update memory
2754
// edges and MergeMem inputs to reflect the new type.
2755
//
2756
// We start with allocations (and calls which may be allocations) on alloc_worklist.
2757
// The processing is done in 4 phases:
2758
//
2759
// Phase 1: Process possible allocations from alloc_worklist. Create instance
2760
// types for the CheckCastPP for allocations where possible.
2761
// Propagate the the new types through users as follows:
2762
// casts and Phi: push users on alloc_worklist
2763
// AddP: cast Base and Address inputs to the instance type
2764
// push any AddP users on alloc_worklist and push any memnode
2765
// users onto memnode_worklist.
2766
// Phase 2: Process MemNode's from memnode_worklist. compute new address type and
2767
// search the Memory chain for a store with the appropriate type
2768
// address type. If a Phi is found, create a new version with
2769
// the appropriate memory slices from each of the Phi inputs.
2770
// For stores, process the users as follows:
2771
// MemNode: push on memnode_worklist
2772
// MergeMem: push on mergemem_worklist
2773
// Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
2774
// moving the first node encountered of each instance type to the
2775
// the input corresponding to its alias index.
2776
// appropriate memory slice.
2777
// Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2778
//
2779
// In the following example, the CheckCastPP nodes are the cast of allocation
2780
// results and the allocation of node 29 is unescaped and eligible to be an
2781
// instance type.
2782
//
2783
// We start with:
2784
//
2785
// 7 Parm #memory
2786
// 10 ConI "12"
2787
// 19 CheckCastPP "Foo"
2788
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
2789
// 29 CheckCastPP "Foo"
2790
// 30 AddP _ 29 29 10 Foo+12 alias_index=4
2791
//
2792
// 40 StoreP 25 7 20 ... alias_index=4
2793
// 50 StoreP 35 40 30 ... alias_index=4
2794
// 60 StoreP 45 50 20 ... alias_index=4
2795
// 70 LoadP _ 60 30 ... alias_index=4
2796
// 80 Phi 75 50 60 Memory alias_index=4
2797
// 90 LoadP _ 80 30 ... alias_index=4
2798
// 100 LoadP _ 80 20 ... alias_index=4
2799
//
2800
//
2801
// Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2802
// and creating a new alias index for node 30. This gives:
2803
//
2804
// 7 Parm #memory
2805
// 10 ConI "12"
2806
// 19 CheckCastPP "Foo"
2807
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
2808
// 29 CheckCastPP "Foo" iid=24
2809
// 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
2810
//
2811
// 40 StoreP 25 7 20 ... alias_index=4
2812
// 50 StoreP 35 40 30 ... alias_index=6
2813
// 60 StoreP 45 50 20 ... alias_index=4
2814
// 70 LoadP _ 60 30 ... alias_index=6
2815
// 80 Phi 75 50 60 Memory alias_index=4
2816
// 90 LoadP _ 80 30 ... alias_index=6
2817
// 100 LoadP _ 80 20 ... alias_index=4
2818
//
2819
// In phase 2, new memory inputs are computed for the loads and stores,
2820
// And a new version of the phi is created. In phase 4, the inputs to
2821
// node 80 are updated and then the memory nodes are updated with the
2822
// values computed in phase 2. This results in:
2823
//
2824
// 7 Parm #memory
2825
// 10 ConI "12"
2826
// 19 CheckCastPP "Foo"
2827
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
2828
// 29 CheckCastPP "Foo" iid=24
2829
// 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
2830
//
2831
// 40 StoreP 25 7 20 ... alias_index=4
2832
// 50 StoreP 35 7 30 ... alias_index=6
2833
// 60 StoreP 45 40 20 ... alias_index=4
2834
// 70 LoadP _ 50 30 ... alias_index=6
2835
// 80 Phi 75 40 60 Memory alias_index=4
2836
// 120 Phi 75 50 50 Memory alias_index=6
2837
// 90 LoadP _ 120 30 ... alias_index=6
2838
// 100 LoadP _ 80 20 ... alias_index=4
2839
//
2840
void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
2841
GrowableArray<Node *> memnode_worklist;
2842
GrowableArray<PhiNode *> orig_phis;
2843
PhaseIterGVN *igvn = _igvn;
2844
uint new_index_start = (uint) _compile->num_alias_types();
2845
Arena* arena = Thread::current()->resource_area();
2846
VectorSet visited(arena);
2847
ideal_nodes.clear(); // Reset for use with set_map/get_map.
2848
uint unique_old = _compile->unique();
2849
2850
// Phase 1: Process possible allocations from alloc_worklist.
2851
// Create instance types for the CheckCastPP for allocations where possible.
2852
//
2853
// (Note: don't forget to change the order of the second AddP node on
2854
// the alloc_worklist if the order of the worklist processing is changed,
2855
// see the comment in find_second_addp().)
2856
//
2857
while (alloc_worklist.length() != 0) {
2858
Node *n = alloc_worklist.pop();
2859
uint ni = n->_idx;
2860
if (n->is_Call()) {
2861
CallNode *alloc = n->as_Call();
2862
// copy escape information to call node
2863
PointsToNode* ptn = ptnode_adr(alloc->_idx);
2864
PointsToNode::EscapeState es = ptn->escape_state();
2865
// We have an allocation or call which returns a Java object,
2866
// see if it is unescaped.
2867
if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2868
continue;
2869
// Find CheckCastPP for the allocate or for the return value of a call
2870
n = alloc->result_cast();
2871
if (n == NULL) { // No uses except Initialize node
2872
if (alloc->is_Allocate()) {
2873
// Set the scalar_replaceable flag for allocation
2874
// so it could be eliminated if it has no uses.
2875
alloc->as_Allocate()->_is_scalar_replaceable = true;
2876
}
2877
if (alloc->is_CallStaticJava()) {
2878
// Set the scalar_replaceable flag for boxing method
2879
// so it could be eliminated if it has no uses.
2880
alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2881
}
2882
continue;
2883
}
2884
if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2885
assert(!alloc->is_Allocate(), "allocation should have unique type");
2886
continue;
2887
}
2888
2889
// The inline code for Object.clone() casts the allocation result to
2890
// java.lang.Object and then to the actual type of the allocated
2891
// object. Detect this case and use the second cast.
2892
// Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2893
// the allocation result is cast to java.lang.Object and then
2894
// to the actual Array type.
2895
if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2896
&& (alloc->is_AllocateArray() ||
2897
igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2898
Node *cast2 = NULL;
2899
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2900
Node *use = n->fast_out(i);
2901
if (use->is_CheckCastPP()) {
2902
cast2 = use;
2903
break;
2904
}
2905
}
2906
if (cast2 != NULL) {
2907
n = cast2;
2908
} else {
2909
// Non-scalar replaceable if the allocation type is unknown statically
2910
// (reflection allocation), the object can't be restored during
2911
// deoptimization without precise type.
2912
continue;
2913
}
2914
}
2915
2916
const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2917
if (t == NULL)
2918
continue; // not a TypeOopPtr
2919
if (!t->klass_is_exact())
2920
continue; // not an unique type
2921
2922
if (alloc->is_Allocate()) {
2923
// Set the scalar_replaceable flag for allocation
2924
// so it could be eliminated.
2925
alloc->as_Allocate()->_is_scalar_replaceable = true;
2926
}
2927
if (alloc->is_CallStaticJava()) {
2928
// Set the scalar_replaceable flag for boxing method
2929
// so it could be eliminated.
2930
alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2931
}
2932
set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2933
// in order for an object to be scalar-replaceable, it must be:
2934
// - a direct allocation (not a call returning an object)
2935
// - non-escaping
2936
// - eligible to be a unique type
2937
// - not determined to be ineligible by escape analysis
2938
set_map(alloc, n);
2939
set_map(n, alloc);
2940
const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2941
igvn->hash_delete(n);
2942
igvn->set_type(n, tinst);
2943
n->raise_bottom_type(tinst);
2944
igvn->hash_insert(n);
2945
record_for_optimizer(n);
2946
if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2947
2948
// First, put on the worklist all Field edges from Connection Graph
2949
// which is more accurate then putting immediate users from Ideal Graph.
2950
for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2951
PointsToNode* tgt = e.get();
2952
Node* use = tgt->ideal_node();
2953
assert(tgt->is_Field() && use->is_AddP(),
2954
"only AddP nodes are Field edges in CG");
2955
if (use->outcnt() > 0) { // Don't process dead nodes
2956
Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2957
if (addp2 != NULL) {
2958
assert(alloc->is_AllocateArray(),"array allocation was expected");
2959
alloc_worklist.append_if_missing(addp2);
2960
}
2961
alloc_worklist.append_if_missing(use);
2962
}
2963
}
2964
2965
// An allocation may have an Initialize which has raw stores. Scan
2966
// the users of the raw allocation result and push AddP users
2967
// on alloc_worklist.
2968
Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2969
assert (raw_result != NULL, "must have an allocation result");
2970
for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2971
Node *use = raw_result->fast_out(i);
2972
if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2973
Node* addp2 = find_second_addp(use, raw_result);
2974
if (addp2 != NULL) {
2975
assert(alloc->is_AllocateArray(),"array allocation was expected");
2976
alloc_worklist.append_if_missing(addp2);
2977
}
2978
alloc_worklist.append_if_missing(use);
2979
} else if (use->is_MemBar()) {
2980
memnode_worklist.append_if_missing(use);
2981
}
2982
}
2983
}
2984
} else if (n->is_AddP()) {
2985
JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2986
if (jobj == NULL || jobj == phantom_obj) {
2987
#ifdef ASSERT
2988
ptnode_adr(get_addp_base(n)->_idx)->dump();
2989
ptnode_adr(n->_idx)->dump();
2990
assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2991
#endif
2992
_compile->record_failure(C2Compiler::retry_no_escape_analysis());
2993
return;
2994
}
2995
Node *base = get_map(jobj->idx()); // CheckCastPP node
2996
if (!split_AddP(n, base)) continue; // wrong type from dead path
2997
} else if (n->is_Phi() ||
2998
n->is_CheckCastPP() ||
2999
n->is_EncodeP() ||
3000
n->is_DecodeN() ||
3001
(n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3002
if (visited.test_set(n->_idx)) {
3003
assert(n->is_Phi(), "loops only through Phi's");
3004
continue; // already processed
3005
}
3006
JavaObjectNode* jobj = unique_java_object(n);
3007
if (jobj == NULL || jobj == phantom_obj) {
3008
#ifdef ASSERT
3009
ptnode_adr(n->_idx)->dump();
3010
assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3011
#endif
3012
_compile->record_failure(C2Compiler::retry_no_escape_analysis());
3013
return;
3014
} else {
3015
Node *val = get_map(jobj->idx()); // CheckCastPP node
3016
TypeNode *tn = n->as_Type();
3017
const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3018
assert(tinst != NULL && tinst->is_known_instance() &&
3019
tinst->instance_id() == jobj->idx() , "instance type expected.");
3020
3021
const Type *tn_type = igvn->type(tn);
3022
const TypeOopPtr *tn_t;
3023
if (tn_type->isa_narrowoop()) {
3024
tn_t = tn_type->make_ptr()->isa_oopptr();
3025
} else {
3026
tn_t = tn_type->isa_oopptr();
3027
}
3028
if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3029
if (tn_type->isa_narrowoop()) {
3030
tn_type = tinst->make_narrowoop();
3031
} else {
3032
tn_type = tinst;
3033
}
3034
igvn->hash_delete(tn);
3035
igvn->set_type(tn, tn_type);
3036
tn->set_type(tn_type);
3037
igvn->hash_insert(tn);
3038
record_for_optimizer(n);
3039
} else {
3040
assert(tn_type == TypePtr::NULL_PTR ||
3041
tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3042
"unexpected type");
3043
continue; // Skip dead path with different type
3044
}
3045
}
3046
} else {
3047
debug_only(n->dump();)
3048
assert(false, "EA: unexpected node");
3049
continue;
3050
}
3051
// push allocation's users on appropriate worklist
3052
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3053
Node *use = n->fast_out(i);
3054
if(use->is_Mem() && use->in(MemNode::Address) == n) {
3055
// Load/store to instance's field
3056
memnode_worklist.append_if_missing(use);
3057
} else if (use->is_MemBar()) {
3058
if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3059
memnode_worklist.append_if_missing(use);
3060
}
3061
} else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3062
Node* addp2 = find_second_addp(use, n);
3063
if (addp2 != NULL) {
3064
alloc_worklist.append_if_missing(addp2);
3065
}
3066
alloc_worklist.append_if_missing(use);
3067
} else if (use->is_Phi() ||
3068
use->is_CheckCastPP() ||
3069
use->is_EncodeNarrowPtr() ||
3070
use->is_DecodeNarrowPtr() ||
3071
(use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3072
alloc_worklist.append_if_missing(use);
3073
#ifdef ASSERT
3074
} else if (use->is_Mem()) {
3075
assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3076
} else if (use->is_MergeMem()) {
3077
assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3078
} else if (use->is_SafePoint()) {
3079
// Look for MergeMem nodes for calls which reference unique allocation
3080
// (through CheckCastPP nodes) even for debug info.
3081
Node* m = use->in(TypeFunc::Memory);
3082
if (m->is_MergeMem()) {
3083
assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3084
}
3085
} else if (use->Opcode() == Op_EncodeISOArray) {
3086
if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3087
// EncodeISOArray overwrites destination array
3088
memnode_worklist.append_if_missing(use);
3089
}
3090
} else {
3091
uint op = use->Opcode();
3092
if (!(op == Op_CmpP || op == Op_Conv2B ||
3093
op == Op_CastP2X || op == Op_StoreCM ||
3094
op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3095
op == Op_StrEquals || op == Op_StrIndexOf)) {
3096
n->dump();
3097
use->dump();
3098
assert(false, "EA: missing allocation reference path");
3099
}
3100
#endif
3101
}
3102
}
3103
3104
}
3105
// New alias types were created in split_AddP().
3106
uint new_index_end = (uint) _compile->num_alias_types();
3107
assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3108
3109
// Phase 2: Process MemNode's from memnode_worklist. compute new address type and
3110
// compute new values for Memory inputs (the Memory inputs are not
3111
// actually updated until phase 4.)
3112
if (memnode_worklist.length() == 0)
3113
return; // nothing to do
3114
while (memnode_worklist.length() != 0) {
3115
Node *n = memnode_worklist.pop();
3116
if (visited.test_set(n->_idx))
3117
continue;
3118
if (n->is_Phi() || n->is_ClearArray()) {
3119
// we don't need to do anything, but the users must be pushed
3120
} else if (n->is_MemBar()) { // Initialize, MemBar nodes
3121
// we don't need to do anything, but the users must be pushed
3122
n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3123
if (n == NULL)
3124
continue;
3125
} else if (n->Opcode() == Op_EncodeISOArray) {
3126
// get the memory projection
3127
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3128
Node *use = n->fast_out(i);
3129
if (use->Opcode() == Op_SCMemProj) {
3130
n = use;
3131
break;
3132
}
3133
}
3134
assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3135
} else {
3136
assert(n->is_Mem(), "memory node required.");
3137
Node *addr = n->in(MemNode::Address);
3138
const Type *addr_t = igvn->type(addr);
3139
if (addr_t == Type::TOP)
3140
continue;
3141
assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3142
int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3143
assert ((uint)alias_idx < new_index_end, "wrong alias index");
3144
Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3145
if (_compile->failing()) {
3146
return;
3147
}
3148
if (mem != n->in(MemNode::Memory)) {
3149
// We delay the memory edge update since we need old one in
3150
// MergeMem code below when instances memory slices are separated.
3151
set_map(n, mem);
3152
}
3153
if (n->is_Load()) {
3154
continue; // don't push users
3155
} else if (n->is_LoadStore()) {
3156
// get the memory projection
3157
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3158
Node *use = n->fast_out(i);
3159
if (use->Opcode() == Op_SCMemProj) {
3160
n = use;
3161
break;
3162
}
3163
}
3164
assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3165
}
3166
}
3167
// push user on appropriate worklist
3168
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3169
Node *use = n->fast_out(i);
3170
if (use->is_Phi() || use->is_ClearArray()) {
3171
memnode_worklist.append_if_missing(use);
3172
} else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3173
if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3174
continue;
3175
memnode_worklist.append_if_missing(use);
3176
} else if (use->is_MemBar()) {
3177
if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3178
memnode_worklist.append_if_missing(use);
3179
}
3180
#ifdef ASSERT
3181
} else if(use->is_Mem()) {
3182
assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3183
} else if (use->is_MergeMem()) {
3184
assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3185
} else if (use->Opcode() == Op_EncodeISOArray) {
3186
if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3187
// EncodeISOArray overwrites destination array
3188
memnode_worklist.append_if_missing(use);
3189
}
3190
} else {
3191
uint op = use->Opcode();
3192
if (!(op == Op_StoreCM ||
3193
(op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3194
strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3195
op == Op_AryEq || op == Op_StrComp ||
3196
op == Op_StrEquals || op == Op_StrIndexOf)) {
3197
n->dump();
3198
use->dump();
3199
assert(false, "EA: missing memory path");
3200
}
3201
#endif
3202
}
3203
}
3204
}
3205
3206
// Phase 3: Process MergeMem nodes from mergemem_worklist.
3207
// Walk each memory slice moving the first node encountered of each
3208
// instance type to the the input corresponding to its alias index.
3209
uint length = _mergemem_worklist.length();
3210
for( uint next = 0; next < length; ++next ) {
3211
MergeMemNode* nmm = _mergemem_worklist.at(next);
3212
assert(!visited.test_set(nmm->_idx), "should not be visited before");
3213
// Note: we don't want to use MergeMemStream here because we only want to
3214
// scan inputs which exist at the start, not ones we add during processing.
3215
// Note 2: MergeMem may already contains instance memory slices added
3216
// during find_inst_mem() call when memory nodes were processed above.
3217
igvn->hash_delete(nmm);
3218
uint nslices = MIN2(nmm->req(), new_index_start);
3219
for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3220
Node* mem = nmm->in(i);
3221
Node* cur = NULL;
3222
if (mem == NULL || mem->is_top())
3223
continue;
3224
// First, update mergemem by moving memory nodes to corresponding slices
3225
// if their type became more precise since this mergemem was created.
3226
while (mem->is_Mem()) {
3227
const Type *at = igvn->type(mem->in(MemNode::Address));
3228
if (at != Type::TOP) {
3229
assert (at->isa_ptr() != NULL, "pointer type required.");
3230
uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3231
if (idx == i) {
3232
if (cur == NULL)
3233
cur = mem;
3234
} else {
3235
if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3236
nmm->set_memory_at(idx, mem);
3237
}
3238
}
3239
}
3240
mem = mem->in(MemNode::Memory);
3241
}
3242
nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3243
// Find any instance of the current type if we haven't encountered
3244
// already a memory slice of the instance along the memory chain.
3245
for (uint ni = new_index_start; ni < new_index_end; ni++) {
3246
if((uint)_compile->get_general_index(ni) == i) {
3247
Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3248
if (nmm->is_empty_memory(m)) {
3249
Node* result = find_inst_mem(mem, ni, orig_phis);
3250
if (_compile->failing()) {
3251
return;
3252
}
3253
nmm->set_memory_at(ni, result);
3254
}
3255
}
3256
}
3257
}
3258
// Find the rest of instances values
3259
for (uint ni = new_index_start; ni < new_index_end; ni++) {
3260
const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3261
Node* result = step_through_mergemem(nmm, ni, tinst);
3262
if (result == nmm->base_memory()) {
3263
// Didn't find instance memory, search through general slice recursively.
3264
result = nmm->memory_at(_compile->get_general_index(ni));
3265
result = find_inst_mem(result, ni, orig_phis);
3266
if (_compile->failing()) {
3267
return;
3268
}
3269
nmm->set_memory_at(ni, result);
3270
}
3271
}
3272
igvn->hash_insert(nmm);
3273
record_for_optimizer(nmm);
3274
}
3275
3276
// Phase 4: Update the inputs of non-instance memory Phis and
3277
// the Memory input of memnodes
3278
// First update the inputs of any non-instance Phi's from
3279
// which we split out an instance Phi. Note we don't have
3280
// to recursively process Phi's encounted on the input memory
3281
// chains as is done in split_memory_phi() since they will
3282
// also be processed here.
3283
for (int j = 0; j < orig_phis.length(); j++) {
3284
PhiNode *phi = orig_phis.at(j);
3285
int alias_idx = _compile->get_alias_index(phi->adr_type());
3286
igvn->hash_delete(phi);
3287
for (uint i = 1; i < phi->req(); i++) {
3288
Node *mem = phi->in(i);
3289
Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3290
if (_compile->failing()) {
3291
return;
3292
}
3293
if (mem != new_mem) {
3294
phi->set_req(i, new_mem);
3295
}
3296
}
3297
igvn->hash_insert(phi);
3298
record_for_optimizer(phi);
3299
}
3300
3301
// Update the memory inputs of MemNodes with the value we computed
3302
// in Phase 2 and move stores memory users to corresponding memory slices.
3303
// Disable memory split verification code until the fix for 6984348.
3304
// Currently it produces false negative results since it does not cover all cases.
3305
#if 0 // ifdef ASSERT
3306
visited.Reset();
3307
Node_Stack old_mems(arena, _compile->unique() >> 2);
3308
#endif
3309
for (uint i = 0; i < ideal_nodes.size(); i++) {
3310
Node* n = ideal_nodes.at(i);
3311
Node* nmem = get_map(n->_idx);
3312
assert(nmem != NULL, "sanity");
3313
if (n->is_Mem()) {
3314
#if 0 // ifdef ASSERT
3315
Node* old_mem = n->in(MemNode::Memory);
3316
if (!visited.test_set(old_mem->_idx)) {
3317
old_mems.push(old_mem, old_mem->outcnt());
3318
}
3319
#endif
3320
assert(n->in(MemNode::Memory) != nmem, "sanity");
3321
if (!n->is_Load()) {
3322
// Move memory users of a store first.
3323
move_inst_mem(n, orig_phis);
3324
}
3325
// Now update memory input
3326
igvn->hash_delete(n);
3327
n->set_req(MemNode::Memory, nmem);
3328
igvn->hash_insert(n);
3329
record_for_optimizer(n);
3330
} else {
3331
assert(n->is_Allocate() || n->is_CheckCastPP() ||
3332
n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3333
}
3334
}
3335
#if 0 // ifdef ASSERT
3336
// Verify that memory was split correctly
3337
while (old_mems.is_nonempty()) {
3338
Node* old_mem = old_mems.node();
3339
uint old_cnt = old_mems.index();
3340
old_mems.pop();
3341
assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3342
}
3343
#endif
3344
}
3345
3346
#ifndef PRODUCT
3347
static const char *node_type_names[] = {
3348
"UnknownType",
3349
"JavaObject",
3350
"LocalVar",
3351
"Field",
3352
"Arraycopy"
3353
};
3354
3355
static const char *esc_names[] = {
3356
"UnknownEscape",
3357
"NoEscape",
3358
"ArgEscape",
3359
"GlobalEscape"
3360
};
3361
3362
void PointsToNode::dump(bool print_state) const {
3363
NodeType nt = node_type();
3364
tty->print("%s ", node_type_names[(int) nt]);
3365
if (print_state) {
3366
EscapeState es = escape_state();
3367
EscapeState fields_es = fields_escape_state();
3368
tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3369
if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3370
tty->print("NSR ");
3371
}
3372
if (is_Field()) {
3373
FieldNode* f = (FieldNode*)this;
3374
if (f->is_oop())
3375
tty->print("oop ");
3376
if (f->offset() > 0)
3377
tty->print("+%d ", f->offset());
3378
tty->print("(");
3379
for (BaseIterator i(f); i.has_next(); i.next()) {
3380
PointsToNode* b = i.get();
3381
tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3382
}
3383
tty->print(" )");
3384
}
3385
tty->print("[");
3386
for (EdgeIterator i(this); i.has_next(); i.next()) {
3387
PointsToNode* e = i.get();
3388
tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3389
}
3390
tty->print(" [");
3391
for (UseIterator i(this); i.has_next(); i.next()) {
3392
PointsToNode* u = i.get();
3393
bool is_base = false;
3394
if (PointsToNode::is_base_use(u)) {
3395
is_base = true;
3396
u = PointsToNode::get_use_node(u)->as_Field();
3397
}
3398
tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3399
}
3400
tty->print(" ]] ");
3401
if (_node == NULL)
3402
tty->print_cr("<null>");
3403
else
3404
_node->dump();
3405
}
3406
3407
void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3408
bool first = true;
3409
int ptnodes_length = ptnodes_worklist.length();
3410
for (int i = 0; i < ptnodes_length; i++) {
3411
PointsToNode *ptn = ptnodes_worklist.at(i);
3412
if (ptn == NULL || !ptn->is_JavaObject())
3413
continue;
3414
PointsToNode::EscapeState es = ptn->escape_state();
3415
if ((es != PointsToNode::NoEscape) && !Verbose) {
3416
continue;
3417
}
3418
Node* n = ptn->ideal_node();
3419
if (n->is_Allocate() || (n->is_CallStaticJava() &&
3420
n->as_CallStaticJava()->is_boxing_method())) {
3421
if (first) {
3422
tty->cr();
3423
tty->print("======== Connection graph for ");
3424
_compile->method()->print_short_name();
3425
tty->cr();
3426
first = false;
3427
}
3428
ptn->dump();
3429
// Print all locals and fields which reference this allocation
3430
for (UseIterator j(ptn); j.has_next(); j.next()) {
3431
PointsToNode* use = j.get();
3432
if (use->is_LocalVar()) {
3433
use->dump(Verbose);
3434
} else if (Verbose) {
3435
use->dump();
3436
}
3437
}
3438
tty->cr();
3439
}
3440
}
3441
}
3442
#endif
3443
3444