Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/ifg.cpp
32285 views
1
/*
2
* Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "compiler/oopMap.hpp"
27
#include "memory/allocation.inline.hpp"
28
#include "opto/addnode.hpp"
29
#include "opto/block.hpp"
30
#include "opto/callnode.hpp"
31
#include "opto/cfgnode.hpp"
32
#include "opto/chaitin.hpp"
33
#include "opto/coalesce.hpp"
34
#include "opto/connode.hpp"
35
#include "opto/indexSet.hpp"
36
#include "opto/machnode.hpp"
37
#include "opto/memnode.hpp"
38
#include "opto/opcodes.hpp"
39
40
PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
41
}
42
43
void PhaseIFG::init( uint maxlrg ) {
44
_maxlrg = maxlrg;
45
_yanked = new (_arena) VectorSet(_arena);
46
_is_square = false;
47
// Make uninitialized adjacency lists
48
_adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
49
// Also make empty live range structures
50
_lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
51
memset(_lrgs,0,sizeof(LRG)*maxlrg);
52
// Init all to empty
53
for( uint i = 0; i < maxlrg; i++ ) {
54
_adjs[i].initialize(maxlrg);
55
_lrgs[i].Set_All();
56
}
57
}
58
59
// Add edge between vertices a & b. These are sorted (triangular matrix),
60
// then the smaller number is inserted in the larger numbered array.
61
int PhaseIFG::add_edge( uint a, uint b ) {
62
lrgs(a).invalid_degree();
63
lrgs(b).invalid_degree();
64
// Sort a and b, so that a is bigger
65
assert( !_is_square, "only on triangular" );
66
if( a < b ) { uint tmp = a; a = b; b = tmp; }
67
return _adjs[a].insert( b );
68
}
69
70
// Add an edge between 'a' and everything in the vector.
71
void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
72
// IFG is triangular, so do the inserts where 'a' < 'b'.
73
assert( !_is_square, "only on triangular" );
74
IndexSet *adjs_a = &_adjs[a];
75
if( !vec->count() ) return;
76
77
IndexSetIterator elements(vec);
78
uint neighbor;
79
while ((neighbor = elements.next()) != 0) {
80
add_edge( a, neighbor );
81
}
82
}
83
84
// Is there an edge between a and b?
85
int PhaseIFG::test_edge( uint a, uint b ) const {
86
// Sort a and b, so that a is larger
87
assert( !_is_square, "only on triangular" );
88
if( a < b ) { uint tmp = a; a = b; b = tmp; }
89
return _adjs[a].member(b);
90
}
91
92
// Convert triangular matrix to square matrix
93
void PhaseIFG::SquareUp() {
94
assert( !_is_square, "only on triangular" );
95
96
// Simple transpose
97
for( uint i = 0; i < _maxlrg; i++ ) {
98
IndexSetIterator elements(&_adjs[i]);
99
uint datum;
100
while ((datum = elements.next()) != 0) {
101
_adjs[datum].insert( i );
102
}
103
}
104
_is_square = true;
105
}
106
107
// Compute effective degree in bulk
108
void PhaseIFG::Compute_Effective_Degree() {
109
assert( _is_square, "only on square" );
110
111
for( uint i = 0; i < _maxlrg; i++ )
112
lrgs(i).set_degree(effective_degree(i));
113
}
114
115
int PhaseIFG::test_edge_sq( uint a, uint b ) const {
116
assert( _is_square, "only on square" );
117
// Swap, so that 'a' has the lesser count. Then binary search is on
118
// the smaller of a's list and b's list.
119
if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
120
//return _adjs[a].unordered_member(b);
121
return _adjs[a].member(b);
122
}
123
124
// Union edges of B into A
125
void PhaseIFG::Union( uint a, uint b ) {
126
assert( _is_square, "only on square" );
127
IndexSet *A = &_adjs[a];
128
IndexSetIterator b_elements(&_adjs[b]);
129
uint datum;
130
while ((datum = b_elements.next()) != 0) {
131
if(A->insert(datum)) {
132
_adjs[datum].insert(a);
133
lrgs(a).invalid_degree();
134
lrgs(datum).invalid_degree();
135
}
136
}
137
}
138
139
// Yank a Node and all connected edges from the IFG. Return a
140
// list of neighbors (edges) yanked.
141
IndexSet *PhaseIFG::remove_node( uint a ) {
142
assert( _is_square, "only on square" );
143
assert( !_yanked->test(a), "" );
144
_yanked->set(a);
145
146
// I remove the LRG from all neighbors.
147
IndexSetIterator elements(&_adjs[a]);
148
LRG &lrg_a = lrgs(a);
149
uint datum;
150
while ((datum = elements.next()) != 0) {
151
_adjs[datum].remove(a);
152
lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
153
}
154
return neighbors(a);
155
}
156
157
// Re-insert a yanked Node.
158
void PhaseIFG::re_insert( uint a ) {
159
assert( _is_square, "only on square" );
160
assert( _yanked->test(a), "" );
161
(*_yanked) >>= a;
162
163
IndexSetIterator elements(&_adjs[a]);
164
uint datum;
165
while ((datum = elements.next()) != 0) {
166
_adjs[datum].insert(a);
167
lrgs(datum).invalid_degree();
168
}
169
}
170
171
// Compute the degree between 2 live ranges. If both live ranges are
172
// aligned-adjacent powers-of-2 then we use the MAX size. If either is
173
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to
174
// MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
175
// this is so.
176
int LRG::compute_degree( LRG &l ) const {
177
int tmp;
178
int num_regs = _num_regs;
179
int nregs = l.num_regs();
180
tmp = (_fat_proj || l._fat_proj) // either is a fat-proj?
181
? (num_regs * nregs) // then use product
182
: MAX2(num_regs,nregs); // else use max
183
return tmp;
184
}
185
186
// Compute effective degree for this live range. If both live ranges are
187
// aligned-adjacent powers-of-2 then we use the MAX size. If either is
188
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to
189
// MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
190
// this is so.
191
int PhaseIFG::effective_degree( uint lidx ) const {
192
int eff = 0;
193
int num_regs = lrgs(lidx).num_regs();
194
int fat_proj = lrgs(lidx)._fat_proj;
195
IndexSet *s = neighbors(lidx);
196
IndexSetIterator elements(s);
197
uint nidx;
198
while((nidx = elements.next()) != 0) {
199
LRG &lrgn = lrgs(nidx);
200
int nregs = lrgn.num_regs();
201
eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
202
? (num_regs * nregs) // then use product
203
: MAX2(num_regs,nregs); // else use max
204
}
205
return eff;
206
}
207
208
209
#ifndef PRODUCT
210
void PhaseIFG::dump() const {
211
tty->print_cr("-- Interference Graph --%s--",
212
_is_square ? "square" : "triangular" );
213
if( _is_square ) {
214
for( uint i = 0; i < _maxlrg; i++ ) {
215
tty->print( (*_yanked)[i] ? "XX " : " ");
216
tty->print("L%d: { ",i);
217
IndexSetIterator elements(&_adjs[i]);
218
uint datum;
219
while ((datum = elements.next()) != 0) {
220
tty->print("L%d ", datum);
221
}
222
tty->print_cr("}");
223
224
}
225
return;
226
}
227
228
// Triangular
229
for( uint i = 0; i < _maxlrg; i++ ) {
230
uint j;
231
tty->print( (*_yanked)[i] ? "XX " : " ");
232
tty->print("L%d: { ",i);
233
for( j = _maxlrg; j > i; j-- )
234
if( test_edge(j - 1,i) ) {
235
tty->print("L%d ",j - 1);
236
}
237
tty->print("| ");
238
IndexSetIterator elements(&_adjs[i]);
239
uint datum;
240
while ((datum = elements.next()) != 0) {
241
tty->print("L%d ", datum);
242
}
243
tty->print("}\n");
244
}
245
tty->print("\n");
246
}
247
248
void PhaseIFG::stats() const {
249
ResourceMark rm;
250
int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
251
memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
252
uint i;
253
for( i = 0; i < _maxlrg; i++ ) {
254
h_cnt[neighbor_cnt(i)]++;
255
}
256
tty->print_cr("--Histogram of counts--");
257
for( i = 0; i < _maxlrg*2; i++ )
258
if( h_cnt[i] )
259
tty->print("%d/%d ",i,h_cnt[i]);
260
tty->cr();
261
}
262
263
void PhaseIFG::verify( const PhaseChaitin *pc ) const {
264
// IFG is square, sorted and no need for Find
265
for( uint i = 0; i < _maxlrg; i++ ) {
266
assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
267
IndexSet *set = &_adjs[i];
268
IndexSetIterator elements(set);
269
uint idx;
270
uint last = 0;
271
while ((idx = elements.next()) != 0) {
272
assert(idx != i, "Must have empty diagonal");
273
assert(pc->_lrg_map.find_const(idx) == idx, "Must not need Find");
274
assert(_adjs[idx].member(i), "IFG not square");
275
assert(!(*_yanked)[idx], "No yanked neighbors");
276
assert(last < idx, "not sorted increasing");
277
last = idx;
278
}
279
assert(!lrgs(i)._degree_valid || effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong");
280
}
281
}
282
#endif
283
284
// Interfere this register with everything currently live. Use the RegMasks
285
// to trim the set of possible interferences. Return a count of register-only
286
// interferences as an estimate of register pressure.
287
void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
288
uint retval = 0;
289
// Interfere with everything live.
290
const RegMask &rm = lrgs(r).mask();
291
// Check for interference by checking overlap of regmasks.
292
// Only interfere if acceptable register masks overlap.
293
IndexSetIterator elements(liveout);
294
uint l;
295
while( (l = elements.next()) != 0 )
296
if( rm.overlap( lrgs(l).mask() ) )
297
_ifg->add_edge( r, l );
298
}
299
300
// Actually build the interference graph. Uses virtual registers only, no
301
// physical register masks. This allows me to be very aggressive when
302
// coalescing copies. Some of this aggressiveness will have to be undone
303
// later, but I'd rather get all the copies I can now (since unremoved copies
304
// at this point can end up in bad places). Copies I re-insert later I have
305
// more opportunity to insert them in low-frequency locations.
306
void PhaseChaitin::build_ifg_virtual( ) {
307
308
// For all blocks (in any order) do...
309
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
310
Block* block = _cfg.get_block(i);
311
IndexSet* liveout = _live->live(block);
312
313
// The IFG is built by a single reverse pass over each basic block.
314
// Starting with the known live-out set, we remove things that get
315
// defined and add things that become live (essentially executing one
316
// pass of a standard LIVE analysis). Just before a Node defines a value
317
// (and removes it from the live-ness set) that value is certainly live.
318
// The defined value interferes with everything currently live. The
319
// value is then removed from the live-ness set and it's inputs are
320
// added to the live-ness set.
321
for (uint j = block->end_idx() + 1; j > 1; j--) {
322
Node* n = block->get_node(j - 1);
323
324
// Get value being defined
325
uint r = _lrg_map.live_range_id(n);
326
327
// Some special values do not allocate
328
if (r) {
329
330
// Remove from live-out set
331
liveout->remove(r);
332
333
// Copies do not define a new value and so do not interfere.
334
// Remove the copies source from the liveout set before interfering.
335
uint idx = n->is_Copy();
336
if (idx) {
337
liveout->remove(_lrg_map.live_range_id(n->in(idx)));
338
}
339
340
// Interfere with everything live
341
interfere_with_live(r, liveout);
342
}
343
344
// Make all inputs live
345
if (!n->is_Phi()) { // Phi function uses come from prior block
346
for(uint k = 1; k < n->req(); k++) {
347
liveout->insert(_lrg_map.live_range_id(n->in(k)));
348
}
349
}
350
351
// 2-address instructions always have the defined value live
352
// on entry to the instruction, even though it is being defined
353
// by the instruction. We pretend a virtual copy sits just prior
354
// to the instruction and kills the src-def'd register.
355
// In other words, for 2-address instructions the defined value
356
// interferes with all inputs.
357
uint idx;
358
if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
359
const MachNode *mach = n->as_Mach();
360
// Sometimes my 2-address ADDs are commuted in a bad way.
361
// We generally want the USE-DEF register to refer to the
362
// loop-varying quantity, to avoid a copy.
363
uint op = mach->ideal_Opcode();
364
// Check that mach->num_opnds() == 3 to ensure instruction is
365
// not subsuming constants, effectively excludes addI_cin_imm
366
// Can NOT swap for instructions like addI_cin_imm since it
367
// is adding zero to yhi + carry and the second ideal-input
368
// points to the result of adding low-halves.
369
// Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
370
if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
371
n->in(1)->bottom_type()->base() == Type::Int &&
372
// See if the ADD is involved in a tight data loop the wrong way
373
n->in(2)->is_Phi() &&
374
n->in(2)->in(2) == n ) {
375
Node *tmp = n->in(1);
376
n->set_req( 1, n->in(2) );
377
n->set_req( 2, tmp );
378
}
379
// Defined value interferes with all inputs
380
uint lidx = _lrg_map.live_range_id(n->in(idx));
381
for (uint k = 1; k < n->req(); k++) {
382
uint kidx = _lrg_map.live_range_id(n->in(k));
383
if (kidx != lidx) {
384
_ifg->add_edge(r, kidx);
385
}
386
}
387
}
388
} // End of forall instructions in block
389
} // End of forall blocks
390
}
391
392
uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
393
IndexSetIterator elements(liveout);
394
uint lidx;
395
uint cnt = 0;
396
while ((lidx = elements.next()) != 0) {
397
if( lrgs(lidx).mask().is_UP() &&
398
lrgs(lidx).mask_size() &&
399
!lrgs(lidx)._is_float &&
400
!lrgs(lidx)._is_vector &&
401
lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
402
cnt += lrgs(lidx).reg_pressure();
403
}
404
return cnt;
405
}
406
407
uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
408
IndexSetIterator elements(liveout);
409
uint lidx;
410
uint cnt = 0;
411
while ((lidx = elements.next()) != 0) {
412
if( lrgs(lidx).mask().is_UP() &&
413
lrgs(lidx).mask_size() &&
414
(lrgs(lidx)._is_float || lrgs(lidx)._is_vector))
415
cnt += lrgs(lidx).reg_pressure();
416
}
417
return cnt;
418
}
419
420
// Adjust register pressure down by 1. Capture last hi-to-low transition,
421
static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
422
if (lrg->mask().is_UP() && lrg->mask_size()) {
423
if (lrg->_is_float || lrg->_is_vector) {
424
pressure[1] -= lrg->reg_pressure();
425
if( pressure[1] == (uint)FLOATPRESSURE ) {
426
hrp_index[1] = where;
427
if( pressure[1] > b->_freg_pressure )
428
b->_freg_pressure = pressure[1]+1;
429
}
430
} else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
431
pressure[0] -= lrg->reg_pressure();
432
if( pressure[0] == (uint)INTPRESSURE ) {
433
hrp_index[0] = where;
434
if( pressure[0] > b->_reg_pressure )
435
b->_reg_pressure = pressure[0]+1;
436
}
437
}
438
}
439
}
440
441
// Build the interference graph using physical registers when available.
442
// That is, if 2 live ranges are simultaneously alive but in their acceptable
443
// register sets do not overlap, then they do not interfere.
444
uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
445
NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
446
447
uint must_spill = 0;
448
449
// For all blocks (in any order) do...
450
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
451
Block* block = _cfg.get_block(i);
452
// Clone (rather than smash in place) the liveout info, so it is alive
453
// for the "collect_gc_info" phase later.
454
IndexSet liveout(_live->live(block));
455
uint last_inst = block->end_idx();
456
// Compute first nonphi node index
457
uint first_inst;
458
for (first_inst = 1; first_inst < last_inst; first_inst++) {
459
if (!block->get_node(first_inst)->is_Phi()) {
460
break;
461
}
462
}
463
464
// Spills could be inserted before CreateEx node which should be
465
// first instruction in block after Phis. Move CreateEx up.
466
for (uint insidx = first_inst; insidx < last_inst; insidx++) {
467
Node *ex = block->get_node(insidx);
468
if (ex->is_SpillCopy()) {
469
continue;
470
}
471
if (insidx > first_inst && ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
472
// If the CreateEx isn't above all the MachSpillCopies
473
// then move it to the top.
474
block->remove_node(insidx);
475
block->insert_node(ex, first_inst);
476
}
477
// Stop once a CreateEx or any other node is found
478
break;
479
}
480
481
// Reset block's register pressure values for each ifg construction
482
uint pressure[2], hrp_index[2];
483
pressure[0] = pressure[1] = 0;
484
hrp_index[0] = hrp_index[1] = last_inst+1;
485
block->_reg_pressure = block->_freg_pressure = 0;
486
// Liveout things are presumed live for the whole block. We accumulate
487
// 'area' accordingly. If they get killed in the block, we'll subtract
488
// the unused part of the block from the area.
489
int inst_count = last_inst - first_inst;
490
double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
491
assert(!(cost < 0.0), "negative spill cost" );
492
IndexSetIterator elements(&liveout);
493
uint lidx;
494
while ((lidx = elements.next()) != 0) {
495
LRG &lrg = lrgs(lidx);
496
lrg._area += cost;
497
// Compute initial register pressure
498
if (lrg.mask().is_UP() && lrg.mask_size()) {
499
if (lrg._is_float || lrg._is_vector) { // Count float pressure
500
pressure[1] += lrg.reg_pressure();
501
if (pressure[1] > block->_freg_pressure) {
502
block->_freg_pressure = pressure[1];
503
}
504
// Count int pressure, but do not count the SP, flags
505
} else if(lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) {
506
pressure[0] += lrg.reg_pressure();
507
if (pressure[0] > block->_reg_pressure) {
508
block->_reg_pressure = pressure[0];
509
}
510
}
511
}
512
}
513
assert( pressure[0] == count_int_pressure (&liveout), "" );
514
assert( pressure[1] == count_float_pressure(&liveout), "" );
515
516
// The IFG is built by a single reverse pass over each basic block.
517
// Starting with the known live-out set, we remove things that get
518
// defined and add things that become live (essentially executing one
519
// pass of a standard LIVE analysis). Just before a Node defines a value
520
// (and removes it from the live-ness set) that value is certainly live.
521
// The defined value interferes with everything currently live. The
522
// value is then removed from the live-ness set and it's inputs are added
523
// to the live-ness set.
524
uint j;
525
for (j = last_inst + 1; j > 1; j--) {
526
Node* n = block->get_node(j - 1);
527
528
// Get value being defined
529
uint r = _lrg_map.live_range_id(n);
530
531
// Some special values do not allocate
532
if(r) {
533
// A DEF normally costs block frequency; rematerialized values are
534
// removed from the DEF sight, so LOWER costs here.
535
lrgs(r)._cost += n->rematerialize() ? 0 : block->_freq;
536
537
// If it is not live, then this instruction is dead. Probably caused
538
// by spilling and rematerialization. Who cares why, yank this baby.
539
if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
540
Node *def = n->in(0);
541
if( !n->is_Proj() ||
542
// Could also be a flags-projection of a dead ADD or such.
543
(_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) {
544
bool remove = true;
545
if (n->is_MachProj()) {
546
// Don't remove KILL projections if their "defining" nodes have
547
// memory effects (have SCMemProj projection node) -
548
// they are not dead even when their result is not used.
549
// For example, compareAndSwapL (and other CAS) and EncodeISOArray nodes.
550
// The method add_input_to_liveout() keeps such nodes alive (put them on liveout list)
551
// when it sees SCMemProj node in a block. Unfortunately SCMemProj node could be placed
552
// in block in such order that KILL MachProj nodes are processed first.
553
uint cnt = def->outcnt();
554
for (uint i = 0; i < cnt; i++) {
555
Node* proj = def->raw_out(i);
556
if (proj->Opcode() == Op_SCMemProj) {
557
remove = false;
558
break;
559
}
560
}
561
}
562
if (remove) {
563
block->remove_node(j - 1);
564
if (lrgs(r)._def == n) {
565
lrgs(r)._def = 0;
566
}
567
n->disconnect_inputs(NULL, C);
568
_cfg.unmap_node_from_block(n);
569
n->replace_by(C->top());
570
// Since yanking a Node from block, high pressure moves up one
571
hrp_index[0]--;
572
hrp_index[1]--;
573
continue;
574
}
575
}
576
577
// Fat-projections kill many registers which cannot be used to
578
// hold live ranges.
579
if (lrgs(r)._fat_proj) {
580
// Count the int-only registers
581
RegMask itmp = lrgs(r).mask();
582
itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
583
int iregs = itmp.Size();
584
if (pressure[0]+iregs > block->_reg_pressure) {
585
block->_reg_pressure = pressure[0] + iregs;
586
}
587
if (pressure[0] <= (uint)INTPRESSURE && pressure[0] + iregs > (uint)INTPRESSURE) {
588
hrp_index[0] = j - 1;
589
}
590
// Count the float-only registers
591
RegMask ftmp = lrgs(r).mask();
592
ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
593
int fregs = ftmp.Size();
594
if (pressure[1] + fregs > block->_freg_pressure) {
595
block->_freg_pressure = pressure[1] + fregs;
596
}
597
if(pressure[1] <= (uint)FLOATPRESSURE && pressure[1]+fregs > (uint)FLOATPRESSURE) {
598
hrp_index[1] = j - 1;
599
}
600
}
601
602
} else { // Else it is live
603
// A DEF also ends 'area' partway through the block.
604
lrgs(r)._area -= cost;
605
assert(!(lrgs(r)._area < 0.0), "negative spill area" );
606
607
// Insure high score for immediate-use spill copies so they get a color
608
if( n->is_SpillCopy()
609
&& lrgs(r).is_singledef() // MultiDef live range can still split
610
&& n->outcnt() == 1 // and use must be in this block
611
&& _cfg.get_block_for_node(n->unique_out()) == block) {
612
// All single-use MachSpillCopy(s) that immediately precede their
613
// use must color early. If a longer live range steals their
614
// color, the spill copy will split and may push another spill copy
615
// further away resulting in an infinite spill-split-retry cycle.
616
// Assigning a zero area results in a high score() and a good
617
// location in the simplify list.
618
//
619
620
Node *single_use = n->unique_out();
621
assert(block->find_node(single_use) >= j, "Use must be later in block");
622
// Use can be earlier in block if it is a Phi, but then I should be a MultiDef
623
624
// Find first non SpillCopy 'm' that follows the current instruction
625
// (j - 1) is index for current instruction 'n'
626
Node *m = n;
627
for (uint i = j; i <= last_inst && m->is_SpillCopy(); ++i) {
628
m = block->get_node(i);
629
}
630
if (m == single_use) {
631
lrgs(r)._area = 0.0;
632
}
633
}
634
635
// Remove from live-out set
636
if( liveout.remove(r) ) {
637
// Adjust register pressure.
638
// Capture last hi-to-lo pressure transition
639
lower_pressure(&lrgs(r), j - 1, block, pressure, hrp_index);
640
assert( pressure[0] == count_int_pressure (&liveout), "" );
641
assert( pressure[1] == count_float_pressure(&liveout), "" );
642
}
643
644
// Copies do not define a new value and so do not interfere.
645
// Remove the copies source from the liveout set before interfering.
646
uint idx = n->is_Copy();
647
if (idx) {
648
uint x = _lrg_map.live_range_id(n->in(idx));
649
if (liveout.remove(x)) {
650
lrgs(x)._area -= cost;
651
// Adjust register pressure.
652
lower_pressure(&lrgs(x), j - 1, block, pressure, hrp_index);
653
assert( pressure[0] == count_int_pressure (&liveout), "" );
654
assert( pressure[1] == count_float_pressure(&liveout), "" );
655
}
656
}
657
} // End of if live or not
658
659
// Interfere with everything live. If the defined value must
660
// go in a particular register, just remove that register from
661
// all conflicting parties and avoid the interference.
662
663
// Make exclusions for rematerializable defs. Since rematerializable
664
// DEFs are not bound but the live range is, some uses must be bound.
665
// If we spill live range 'r', it can rematerialize at each use site
666
// according to its bindings.
667
const RegMask &rmask = lrgs(r).mask();
668
if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
669
// Check for common case
670
int r_size = lrgs(r).num_regs();
671
OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
672
// Smear odd bits
673
IndexSetIterator elements(&liveout);
674
uint l;
675
while ((l = elements.next()) != 0) {
676
LRG &lrg = lrgs(l);
677
// If 'l' must spill already, do not further hack his bits.
678
// He'll get some interferences and be forced to spill later.
679
if( lrg._must_spill ) continue;
680
// Remove bound register(s) from 'l's choices
681
RegMask old = lrg.mask();
682
uint old_size = lrg.mask_size();
683
// Remove the bits from LRG 'r' from LRG 'l' so 'l' no
684
// longer interferes with 'r'. If 'l' requires aligned
685
// adjacent pairs, subtract out bit pairs.
686
assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
687
if (lrg.num_regs() > 1 && !lrg._fat_proj) {
688
RegMask r2mask = rmask;
689
// Leave only aligned set of bits.
690
r2mask.smear_to_sets(lrg.num_regs());
691
// It includes vector case.
692
lrg.SUBTRACT( r2mask );
693
lrg.compute_set_mask_size();
694
} else if( r_size != 1 ) { // fat proj
695
lrg.SUBTRACT( rmask );
696
lrg.compute_set_mask_size();
697
} else { // Common case: size 1 bound removal
698
if( lrg.mask().Member(r_reg) ) {
699
lrg.Remove(r_reg);
700
lrg.set_mask_size(lrg.mask().is_AllStack() ? LRG::AllStack_size : old_size - 1);
701
}
702
}
703
// If 'l' goes completely dry, it must spill.
704
if( lrg.not_free() ) {
705
// Give 'l' some kind of reasonable mask, so he picks up
706
// interferences (and will spill later).
707
lrg.set_mask( old );
708
lrg.set_mask_size(old_size);
709
must_spill++;
710
lrg._must_spill = 1;
711
lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
712
}
713
}
714
} // End of if bound
715
716
// Now interference with everything that is live and has
717
// compatible register sets.
718
interfere_with_live(r,&liveout);
719
720
} // End of if normal register-allocated value
721
722
// Area remaining in the block
723
inst_count--;
724
cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
725
726
// Make all inputs live
727
if( !n->is_Phi() ) { // Phi function uses come from prior block
728
JVMState* jvms = n->jvms();
729
uint debug_start = jvms ? jvms->debug_start() : 999999;
730
// Start loop at 1 (skip control edge) for most Nodes.
731
// SCMemProj's might be the sole use of a StoreLConditional.
732
// While StoreLConditionals set memory (the SCMemProj use)
733
// they also def flags; if that flag def is unused the
734
// allocator sees a flag-setting instruction with no use of
735
// the flags and assumes it's dead. This keeps the (useless)
736
// flag-setting behavior alive while also keeping the (useful)
737
// memory update effect.
738
for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) {
739
Node *def = n->in(k);
740
uint x = _lrg_map.live_range_id(def);
741
if (!x) {
742
continue;
743
}
744
LRG &lrg = lrgs(x);
745
// No use-side cost for spilling debug info
746
if (k < debug_start) {
747
// A USE costs twice block frequency (once for the Load, once
748
// for a Load-delay). Rematerialized uses only cost once.
749
lrg._cost += (def->rematerialize() ? block->_freq : (block->_freq + block->_freq));
750
}
751
// It is live now
752
if (liveout.insert(x)) {
753
// Newly live things assumed live from here to top of block
754
lrg._area += cost;
755
// Adjust register pressure
756
if (lrg.mask().is_UP() && lrg.mask_size()) {
757
if (lrg._is_float || lrg._is_vector) {
758
pressure[1] += lrg.reg_pressure();
759
if (pressure[1] > block->_freg_pressure) {
760
block->_freg_pressure = pressure[1];
761
}
762
} else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
763
pressure[0] += lrg.reg_pressure();
764
if (pressure[0] > block->_reg_pressure) {
765
block->_reg_pressure = pressure[0];
766
}
767
}
768
}
769
assert( pressure[0] == count_int_pressure (&liveout), "" );
770
assert( pressure[1] == count_float_pressure(&liveout), "" );
771
}
772
assert(!(lrg._area < 0.0), "negative spill area" );
773
}
774
}
775
} // End of reverse pass over all instructions in block
776
777
// If we run off the top of the block with high pressure and
778
// never see a hi-to-low pressure transition, just record that
779
// the whole block is high pressure.
780
if (pressure[0] > (uint)INTPRESSURE) {
781
hrp_index[0] = 0;
782
if (pressure[0] > block->_reg_pressure) {
783
block->_reg_pressure = pressure[0];
784
}
785
}
786
if (pressure[1] > (uint)FLOATPRESSURE) {
787
hrp_index[1] = 0;
788
if (pressure[1] > block->_freg_pressure) {
789
block->_freg_pressure = pressure[1];
790
}
791
}
792
793
// Compute high pressure indice; avoid landing in the middle of projnodes
794
j = hrp_index[0];
795
if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
796
Node* cur = block->get_node(j);
797
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
798
j--;
799
cur = block->get_node(j);
800
}
801
}
802
block->_ihrp_index = j;
803
j = hrp_index[1];
804
if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
805
Node* cur = block->get_node(j);
806
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
807
j--;
808
cur = block->get_node(j);
809
}
810
}
811
block->_fhrp_index = j;
812
813
#ifndef PRODUCT
814
// Gather Register Pressure Statistics
815
if( PrintOptoStatistics ) {
816
if (block->_reg_pressure > (uint)INTPRESSURE || block->_freg_pressure > (uint)FLOATPRESSURE) {
817
_high_pressure++;
818
} else {
819
_low_pressure++;
820
}
821
}
822
#endif
823
} // End of for all blocks
824
825
return must_spill;
826
}
827
828