Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/opto/lcm.cpp
32285 views
1
/*
2
* Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "opto/block.hpp"
28
#include "opto/c2compiler.hpp"
29
#include "opto/callnode.hpp"
30
#include "opto/cfgnode.hpp"
31
#include "opto/machnode.hpp"
32
#include "opto/runtime.hpp"
33
#if defined AD_MD_HPP
34
# include AD_MD_HPP
35
#elif defined TARGET_ARCH_MODEL_x86_32
36
# include "adfiles/ad_x86_32.hpp"
37
#elif defined TARGET_ARCH_MODEL_x86_64
38
# include "adfiles/ad_x86_64.hpp"
39
#elif defined TARGET_ARCH_MODEL_aarch32
40
# include "adfiles/ad_aarch32.hpp"
41
#elif defined TARGET_ARCH_MODEL_aarch64
42
# include "adfiles/ad_aarch64.hpp"
43
#elif defined TARGET_ARCH_MODEL_sparc
44
# include "adfiles/ad_sparc.hpp"
45
#elif defined TARGET_ARCH_MODEL_zero
46
# include "adfiles/ad_zero.hpp"
47
#elif defined TARGET_ARCH_MODEL_ppc_64
48
# include "adfiles/ad_ppc_64.hpp"
49
#endif
50
51
// Optimization - Graph Style
52
53
// Check whether val is not-null-decoded compressed oop,
54
// i.e. will grab into the base of the heap if it represents NULL.
55
static bool accesses_heap_base_zone(Node *val) {
56
if (Universe::narrow_oop_base() != NULL) { // Implies UseCompressedOops.
57
if (val && val->is_Mach()) {
58
if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
59
// This assumes all Decodes with TypePtr::NotNull are matched to nodes that
60
// decode NULL to point to the heap base (Decode_NN).
61
if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
62
return true;
63
}
64
}
65
// Must recognize load operation with Decode matched in memory operand.
66
// We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
67
// returns true everywhere else. On PPC, no such memory operands
68
// exist, therefore we did not yet implement a check for such operands.
69
NOT_AIX(Unimplemented());
70
}
71
}
72
return false;
73
}
74
75
static bool needs_explicit_null_check_for_read(Node *val) {
76
// On some OSes (AIX) the page at address 0 is only write protected.
77
// If so, only Store operations will trap.
78
if (os::zero_page_read_protected()) {
79
return false; // Implicit null check will work.
80
}
81
// Also a read accessing the base of a heap-based compressed heap will trap.
82
if (accesses_heap_base_zone(val) && // Hits the base zone page.
83
Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
84
return false;
85
}
86
87
return true;
88
}
89
90
//------------------------------implicit_null_check----------------------------
91
// Detect implicit-null-check opportunities. Basically, find NULL checks
92
// with suitable memory ops nearby. Use the memory op to do the NULL check.
93
// I can generate a memory op if there is not one nearby.
94
// The proj is the control projection for the not-null case.
95
// The val is the pointer being checked for nullness or
96
// decodeHeapOop_not_null node if it did not fold into address.
97
void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
98
// Assume if null check need for 0 offset then always needed
99
// Intel solaris doesn't support any null checks yet and no
100
// mechanism exists (yet) to set the switches at an os_cpu level
101
if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
102
103
// Make sure the ptr-is-null path appears to be uncommon!
104
float f = block->end()->as_MachIf()->_prob;
105
if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
106
if( f > PROB_UNLIKELY_MAG(4) ) return;
107
108
uint bidx = 0; // Capture index of value into memop
109
bool was_store; // Memory op is a store op
110
111
// Get the successor block for if the test ptr is non-null
112
Block* not_null_block; // this one goes with the proj
113
Block* null_block;
114
if (block->get_node(block->number_of_nodes()-1) == proj) {
115
null_block = block->_succs[0];
116
not_null_block = block->_succs[1];
117
} else {
118
assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
119
not_null_block = block->_succs[0];
120
null_block = block->_succs[1];
121
}
122
while (null_block->is_Empty() == Block::empty_with_goto) {
123
null_block = null_block->_succs[0];
124
}
125
126
// Search the exception block for an uncommon trap.
127
// (See Parse::do_if and Parse::do_ifnull for the reason
128
// we need an uncommon trap. Briefly, we need a way to
129
// detect failure of this optimization, as in 6366351.)
130
{
131
bool found_trap = false;
132
for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
133
Node* nn = null_block->get_node(i1);
134
if (nn->is_MachCall() &&
135
nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
136
const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
137
if (trtype->isa_int() && trtype->is_int()->is_con()) {
138
jint tr_con = trtype->is_int()->get_con();
139
Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
140
Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
141
assert((int)reason < (int)BitsPerInt, "recode bit map");
142
if (is_set_nth_bit(allowed_reasons, (int) reason)
143
&& action != Deoptimization::Action_none) {
144
// This uncommon trap is sure to recompile, eventually.
145
// When that happens, C->too_many_traps will prevent
146
// this transformation from happening again.
147
found_trap = true;
148
}
149
}
150
break;
151
}
152
}
153
if (!found_trap) {
154
// We did not find an uncommon trap.
155
return;
156
}
157
}
158
159
// Check for decodeHeapOop_not_null node which did not fold into address
160
bool is_decoden = ((intptr_t)val) & 1;
161
val = (Node*)(((intptr_t)val) & ~1);
162
163
assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
164
(val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
165
166
// Search the successor block for a load or store who's base value is also
167
// the tested value. There may be several.
168
Node_List *out = new Node_List(Thread::current()->resource_area());
169
MachNode *best = NULL; // Best found so far
170
for (DUIterator i = val->outs(); val->has_out(i); i++) {
171
Node *m = val->out(i);
172
if( !m->is_Mach() ) continue;
173
MachNode *mach = m->as_Mach();
174
was_store = false;
175
int iop = mach->ideal_Opcode();
176
switch( iop ) {
177
case Op_LoadB:
178
case Op_LoadUB:
179
case Op_LoadUS:
180
case Op_LoadD:
181
case Op_LoadF:
182
case Op_LoadI:
183
case Op_LoadL:
184
case Op_LoadP:
185
case Op_LoadN:
186
case Op_LoadS:
187
case Op_LoadKlass:
188
case Op_LoadNKlass:
189
case Op_LoadRange:
190
case Op_LoadD_unaligned:
191
case Op_LoadL_unaligned:
192
case Op_StoreB:
193
case Op_StoreC:
194
case Op_StoreCM:
195
case Op_StoreD:
196
case Op_StoreF:
197
case Op_StoreI:
198
case Op_StoreL:
199
case Op_StoreP:
200
case Op_StoreN:
201
case Op_StoreNKlass:
202
was_store = true; // Memory op is a store op
203
// Stores will have their address in slot 2 (memory in slot 1).
204
// If the value being nul-checked is in another slot, it means we
205
// are storing the checked value, which does NOT check the value!
206
if( mach->in(2) != val ) continue;
207
break; // Found a memory op?
208
case Op_StrComp:
209
case Op_StrEquals:
210
case Op_StrIndexOf:
211
case Op_AryEq:
212
case Op_EncodeISOArray:
213
// Not a legit memory op for implicit null check regardless of
214
// embedded loads
215
continue;
216
default: // Also check for embedded loads
217
if( !mach->needs_anti_dependence_check() )
218
continue; // Not an memory op; skip it
219
if( must_clone[iop] ) {
220
// Do not move nodes which produce flags because
221
// RA will try to clone it to place near branch and
222
// it will cause recompilation, see clone_node().
223
continue;
224
}
225
{
226
// Check that value is used in memory address in
227
// instructions with embedded load (CmpP val1,(val2+off)).
228
Node* base;
229
Node* index;
230
const MachOper* oper = mach->memory_inputs(base, index);
231
if (oper == NULL || oper == (MachOper*)-1) {
232
continue; // Not an memory op; skip it
233
}
234
if (val == base ||
235
val == index && val->bottom_type()->isa_narrowoop()) {
236
break; // Found it
237
} else {
238
continue; // Skip it
239
}
240
}
241
break;
242
}
243
244
// On some OSes (AIX) the page at address 0 is only write protected.
245
// If so, only Store operations will trap.
246
// But a read accessing the base of a heap-based compressed heap will trap.
247
if (!was_store && needs_explicit_null_check_for_read(val)) {
248
continue;
249
}
250
251
// Check that node's control edge is not-null block's head or dominates it,
252
// otherwise we can't hoist it because there are other control dependencies.
253
Node* ctrl = mach->in(0);
254
if (ctrl != NULL && !(ctrl == not_null_block->head() ||
255
get_block_for_node(ctrl)->dominates(not_null_block))) {
256
continue;
257
}
258
259
// check if the offset is not too high for implicit exception
260
{
261
intptr_t offset = 0;
262
const TypePtr *adr_type = NULL; // Do not need this return value here
263
const Node* base = mach->get_base_and_disp(offset, adr_type);
264
if (base == NULL || base == NodeSentinel) {
265
// Narrow oop address doesn't have base, only index
266
if( val->bottom_type()->isa_narrowoop() &&
267
MacroAssembler::needs_explicit_null_check(offset) )
268
continue; // Give up if offset is beyond page size
269
// cannot reason about it; is probably not implicit null exception
270
} else {
271
const TypePtr* tptr;
272
if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
273
Universe::narrow_klass_shift() == 0)) {
274
// 32-bits narrow oop can be the base of address expressions
275
tptr = base->get_ptr_type();
276
} else {
277
// only regular oops are expected here
278
tptr = base->bottom_type()->is_ptr();
279
}
280
// Give up if offset is not a compile-time constant
281
if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
282
continue;
283
offset += tptr->_offset; // correct if base is offseted
284
if( MacroAssembler::needs_explicit_null_check(offset) )
285
continue; // Give up is reference is beyond 4K page size
286
}
287
}
288
289
// Check ctrl input to see if the null-check dominates the memory op
290
Block *cb = get_block_for_node(mach);
291
cb = cb->_idom; // Always hoist at least 1 block
292
if( !was_store ) { // Stores can be hoisted only one block
293
while( cb->_dom_depth > (block->_dom_depth + 1))
294
cb = cb->_idom; // Hoist loads as far as we want
295
// The non-null-block should dominate the memory op, too. Live
296
// range spilling will insert a spill in the non-null-block if it is
297
// needs to spill the memory op for an implicit null check.
298
if (cb->_dom_depth == (block->_dom_depth + 1)) {
299
if (cb != not_null_block) continue;
300
cb = cb->_idom;
301
}
302
}
303
if( cb != block ) continue;
304
305
// Found a memory user; see if it can be hoisted to check-block
306
uint vidx = 0; // Capture index of value into memop
307
uint j;
308
for( j = mach->req()-1; j > 0; j-- ) {
309
if( mach->in(j) == val ) {
310
vidx = j;
311
// Ignore DecodeN val which could be hoisted to where needed.
312
if( is_decoden ) continue;
313
}
314
// Block of memory-op input
315
Block *inb = get_block_for_node(mach->in(j));
316
Block *b = block; // Start from nul check
317
while( b != inb && b->_dom_depth > inb->_dom_depth )
318
b = b->_idom; // search upwards for input
319
// See if input dominates null check
320
if( b != inb )
321
break;
322
}
323
if( j > 0 )
324
continue;
325
Block *mb = get_block_for_node(mach);
326
// Hoisting stores requires more checks for the anti-dependence case.
327
// Give up hoisting if we have to move the store past any load.
328
if( was_store ) {
329
Block *b = mb; // Start searching here for a local load
330
// mach use (faulting) trying to hoist
331
// n might be blocker to hoisting
332
while( b != block ) {
333
uint k;
334
for( k = 1; k < b->number_of_nodes(); k++ ) {
335
Node *n = b->get_node(k);
336
if( n->needs_anti_dependence_check() &&
337
n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
338
break; // Found anti-dependent load
339
}
340
if( k < b->number_of_nodes() )
341
break; // Found anti-dependent load
342
// Make sure control does not do a merge (would have to check allpaths)
343
if( b->num_preds() != 2 ) break;
344
b = get_block_for_node(b->pred(1)); // Move up to predecessor block
345
}
346
if( b != block ) continue;
347
}
348
349
// Make sure this memory op is not already being used for a NullCheck
350
Node *e = mb->end();
351
if( e->is_MachNullCheck() && e->in(1) == mach )
352
continue; // Already being used as a NULL check
353
354
// Found a candidate! Pick one with least dom depth - the highest
355
// in the dom tree should be closest to the null check.
356
if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
357
best = mach;
358
bidx = vidx;
359
}
360
}
361
// No candidate!
362
if (best == NULL) {
363
return;
364
}
365
366
// ---- Found an implicit null check
367
extern int implicit_null_checks;
368
implicit_null_checks++;
369
370
if( is_decoden ) {
371
// Check if we need to hoist decodeHeapOop_not_null first.
372
Block *valb = get_block_for_node(val);
373
if( block != valb && block->_dom_depth < valb->_dom_depth ) {
374
// Hoist it up to the end of the test block.
375
valb->find_remove(val);
376
block->add_inst(val);
377
map_node_to_block(val, block);
378
// DecodeN on x86 may kill flags. Check for flag-killing projections
379
// that also need to be hoisted.
380
for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
381
Node* n = val->fast_out(j);
382
if( n->is_MachProj() ) {
383
get_block_for_node(n)->find_remove(n);
384
block->add_inst(n);
385
map_node_to_block(n, block);
386
}
387
}
388
}
389
}
390
// Hoist the memory candidate up to the end of the test block.
391
Block *old_block = get_block_for_node(best);
392
old_block->find_remove(best);
393
block->add_inst(best);
394
map_node_to_block(best, block);
395
396
// Move the control dependence if it is pinned to not-null block.
397
// Don't change it in other cases: NULL or dominating control.
398
if (best->in(0) == not_null_block->head()) {
399
// Set it to control edge of null check.
400
best->set_req(0, proj->in(0)->in(0));
401
}
402
403
// Check for flag-killing projections that also need to be hoisted
404
// Should be DU safe because no edge updates.
405
for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
406
Node* n = best->fast_out(j);
407
if( n->is_MachProj() ) {
408
get_block_for_node(n)->find_remove(n);
409
block->add_inst(n);
410
map_node_to_block(n, block);
411
}
412
}
413
414
// proj==Op_True --> ne test; proj==Op_False --> eq test.
415
// One of two graph shapes got matched:
416
// (IfTrue (If (Bool NE (CmpP ptr NULL))))
417
// (IfFalse (If (Bool EQ (CmpP ptr NULL))))
418
// NULL checks are always branch-if-eq. If we see a IfTrue projection
419
// then we are replacing a 'ne' test with a 'eq' NULL check test.
420
// We need to flip the projections to keep the same semantics.
421
if( proj->Opcode() == Op_IfTrue ) {
422
// Swap order of projections in basic block to swap branch targets
423
Node *tmp1 = block->get_node(block->end_idx()+1);
424
Node *tmp2 = block->get_node(block->end_idx()+2);
425
block->map_node(tmp2, block->end_idx()+1);
426
block->map_node(tmp1, block->end_idx()+2);
427
Node *tmp = new (C) Node(C->top()); // Use not NULL input
428
tmp1->replace_by(tmp);
429
tmp2->replace_by(tmp1);
430
tmp->replace_by(tmp2);
431
tmp->destruct();
432
}
433
434
// Remove the existing null check; use a new implicit null check instead.
435
// Since schedule-local needs precise def-use info, we need to correct
436
// it as well.
437
Node *old_tst = proj->in(0);
438
MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
439
block->map_node(nul_chk, block->end_idx());
440
map_node_to_block(nul_chk, block);
441
// Redirect users of old_test to nul_chk
442
for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
443
old_tst->last_out(i2)->set_req(0, nul_chk);
444
// Clean-up any dead code
445
for (uint i3 = 0; i3 < old_tst->req(); i3++) {
446
Node* in = old_tst->in(i3);
447
old_tst->set_req(i3, NULL);
448
if (in->outcnt() == 0) {
449
// Remove dead input node
450
in->disconnect_inputs(NULL, C);
451
block->find_remove(in);
452
}
453
}
454
455
latency_from_uses(nul_chk);
456
latency_from_uses(best);
457
458
// insert anti-dependences to defs in this block
459
if (! best->needs_anti_dependence_check()) {
460
for (uint k = 1; k < block->number_of_nodes(); k++) {
461
Node *n = block->get_node(k);
462
if (n->needs_anti_dependence_check() &&
463
n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
464
// Found anti-dependent load
465
insert_anti_dependences(block, n);
466
}
467
}
468
}
469
}
470
471
472
//------------------------------select-----------------------------------------
473
// Select a nice fellow from the worklist to schedule next. If there is only
474
// one choice, then use it. Projections take top priority for correctness
475
// reasons - if I see a projection, then it is next. There are a number of
476
// other special cases, for instructions that consume condition codes, et al.
477
// These are chosen immediately. Some instructions are required to immediately
478
// precede the last instruction in the block, and these are taken last. Of the
479
// remaining cases (most), choose the instruction with the greatest latency
480
// (that is, the most number of pseudo-cycles required to the end of the
481
// routine). If there is a tie, choose the instruction with the most inputs.
482
Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
483
484
// If only a single entry on the stack, use it
485
uint cnt = worklist.size();
486
if (cnt == 1) {
487
Node *n = worklist[0];
488
worklist.map(0,worklist.pop());
489
return n;
490
}
491
492
uint choice = 0; // Bigger is most important
493
uint latency = 0; // Bigger is scheduled first
494
uint score = 0; // Bigger is better
495
int idx = -1; // Index in worklist
496
int cand_cnt = 0; // Candidate count
497
498
for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
499
// Order in worklist is used to break ties.
500
// See caller for how this is used to delay scheduling
501
// of induction variable increments to after the other
502
// uses of the phi are scheduled.
503
Node *n = worklist[i]; // Get Node on worklist
504
505
int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
506
if( n->is_Proj() || // Projections always win
507
n->Opcode()== Op_Con || // So does constant 'Top'
508
iop == Op_CreateEx || // Create-exception must start block
509
iop == Op_CheckCastPP
510
) {
511
worklist.map(i,worklist.pop());
512
return n;
513
}
514
515
// Final call in a block must be adjacent to 'catch'
516
Node *e = block->end();
517
if( e->is_Catch() && e->in(0)->in(0) == n )
518
continue;
519
520
// Memory op for an implicit null check has to be at the end of the block
521
if( e->is_MachNullCheck() && e->in(1) == n )
522
continue;
523
524
// Schedule IV increment last.
525
if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
526
e->in(1)->in(1) == n && n->is_iteratively_computed())
527
continue;
528
529
uint n_choice = 2;
530
531
// See if this instruction is consumed by a branch. If so, then (as the
532
// branch is the last instruction in the basic block) force it to the
533
// end of the basic block
534
if ( must_clone[iop] ) {
535
// See if any use is a branch
536
bool found_machif = false;
537
538
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
539
Node* use = n->fast_out(j);
540
541
// The use is a conditional branch, make them adjacent
542
if (use->is_MachIf() && get_block_for_node(use) == block) {
543
found_machif = true;
544
break;
545
}
546
547
// More than this instruction pending for successor to be ready,
548
// don't choose this if other opportunities are ready
549
if (ready_cnt.at(use->_idx) > 1)
550
n_choice = 1;
551
}
552
553
// loop terminated, prefer not to use this instruction
554
if (found_machif)
555
continue;
556
}
557
558
// See if this has a predecessor that is "must_clone", i.e. sets the
559
// condition code. If so, choose this first
560
for (uint j = 0; j < n->req() ; j++) {
561
Node *inn = n->in(j);
562
if (inn) {
563
if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
564
n_choice = 3;
565
break;
566
}
567
}
568
}
569
570
// MachTemps should be scheduled last so they are near their uses
571
if (n->is_MachTemp()) {
572
n_choice = 1;
573
}
574
575
uint n_latency = get_latency_for_node(n);
576
uint n_score = n->req(); // Many inputs get high score to break ties
577
578
// Keep best latency found
579
cand_cnt++;
580
if (choice < n_choice ||
581
(choice == n_choice &&
582
((StressLCM && Compile::randomized_select(cand_cnt)) ||
583
(!StressLCM &&
584
(latency < n_latency ||
585
(latency == n_latency &&
586
(score < n_score))))))) {
587
choice = n_choice;
588
latency = n_latency;
589
score = n_score;
590
idx = i; // Also keep index in worklist
591
}
592
} // End of for all ready nodes in worklist
593
594
assert(idx >= 0, "index should be set");
595
Node *n = worklist[(uint)idx]; // Get the winner
596
597
worklist.map((uint)idx, worklist.pop()); // Compress worklist
598
return n;
599
}
600
601
602
//------------------------------set_next_call----------------------------------
603
void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
604
if( next_call.test_set(n->_idx) ) return;
605
for( uint i=0; i<n->len(); i++ ) {
606
Node *m = n->in(i);
607
if( !m ) continue; // must see all nodes in block that precede call
608
if (get_block_for_node(m) == block) {
609
set_next_call(block, m, next_call);
610
}
611
}
612
}
613
614
//------------------------------needed_for_next_call---------------------------
615
// Set the flag 'next_call' for each Node that is needed for the next call to
616
// be scheduled. This flag lets me bias scheduling so Nodes needed for the
617
// next subroutine call get priority - basically it moves things NOT needed
618
// for the next call till after the call. This prevents me from trying to
619
// carry lots of stuff live across a call.
620
void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
621
// Find the next control-defining Node in this block
622
Node* call = NULL;
623
for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
624
Node* m = this_call->fast_out(i);
625
if (get_block_for_node(m) == block && // Local-block user
626
m != this_call && // Not self-start node
627
m->is_MachCall()) {
628
call = m;
629
break;
630
}
631
}
632
if (call == NULL) return; // No next call (e.g., block end is near)
633
// Set next-call for all inputs to this call
634
set_next_call(block, call, next_call);
635
}
636
637
//------------------------------add_call_kills-------------------------------------
638
// helper function that adds caller save registers to MachProjNode
639
static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
640
// Fill in the kill mask for the call
641
for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
642
if( !regs.Member(r) ) { // Not already defined by the call
643
// Save-on-call register?
644
if ((save_policy[r] == 'C') ||
645
(save_policy[r] == 'A') ||
646
((save_policy[r] == 'E') && exclude_soe)) {
647
proj->_rout.Insert(r);
648
}
649
}
650
}
651
}
652
653
654
//------------------------------sched_call-------------------------------------
655
uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
656
RegMask regs;
657
658
// Schedule all the users of the call right now. All the users are
659
// projection Nodes, so they must be scheduled next to the call.
660
// Collect all the defined registers.
661
for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
662
Node* n = mcall->fast_out(i);
663
assert( n->is_MachProj(), "" );
664
int n_cnt = ready_cnt.at(n->_idx)-1;
665
ready_cnt.at_put(n->_idx, n_cnt);
666
assert( n_cnt == 0, "" );
667
// Schedule next to call
668
block->map_node(n, node_cnt++);
669
// Collect defined registers
670
regs.OR(n->out_RegMask());
671
// Check for scheduling the next control-definer
672
if( n->bottom_type() == Type::CONTROL )
673
// Warm up next pile of heuristic bits
674
needed_for_next_call(block, n, next_call);
675
676
// Children of projections are now all ready
677
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
678
Node* m = n->fast_out(j); // Get user
679
if(get_block_for_node(m) != block) {
680
continue;
681
}
682
if( m->is_Phi() ) continue;
683
int m_cnt = ready_cnt.at(m->_idx)-1;
684
ready_cnt.at_put(m->_idx, m_cnt);
685
if( m_cnt == 0 )
686
worklist.push(m);
687
}
688
689
}
690
691
// Act as if the call defines the Frame Pointer.
692
// Certainly the FP is alive and well after the call.
693
regs.Insert(_matcher.c_frame_pointer());
694
695
// Set all registers killed and not already defined by the call.
696
uint r_cnt = mcall->tf()->range()->cnt();
697
int op = mcall->ideal_Opcode();
698
MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
699
map_node_to_block(proj, block);
700
block->insert_node(proj, node_cnt++);
701
702
// Select the right register save policy.
703
const char *save_policy = NULL;
704
switch (op) {
705
case Op_CallRuntime:
706
case Op_CallLeaf:
707
case Op_CallLeafNoFP:
708
// Calling C code so use C calling convention
709
save_policy = _matcher._c_reg_save_policy;
710
break;
711
712
case Op_CallStaticJava:
713
case Op_CallDynamicJava:
714
// Calling Java code so use Java calling convention
715
save_policy = _matcher._register_save_policy;
716
break;
717
718
default:
719
ShouldNotReachHere();
720
}
721
722
// When using CallRuntime mark SOE registers as killed by the call
723
// so values that could show up in the RegisterMap aren't live in a
724
// callee saved register since the register wouldn't know where to
725
// find them. CallLeaf and CallLeafNoFP are ok because they can't
726
// have debug info on them. Strictly speaking this only needs to be
727
// done for oops since idealreg2debugmask takes care of debug info
728
// references but there no way to handle oops differently than other
729
// pointers as far as the kill mask goes.
730
bool exclude_soe = op == Op_CallRuntime;
731
732
// If the call is a MethodHandle invoke, we need to exclude the
733
// register which is used to save the SP value over MH invokes from
734
// the mask. Otherwise this register could be used for
735
// deoptimization information.
736
if (op == Op_CallStaticJava) {
737
MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
738
if (mcallstaticjava->_method_handle_invoke)
739
proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
740
}
741
742
add_call_kills(proj, regs, save_policy, exclude_soe);
743
744
return node_cnt;
745
}
746
747
748
//------------------------------schedule_local---------------------------------
749
// Topological sort within a block. Someday become a real scheduler.
750
bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
751
// Already "sorted" are the block start Node (as the first entry), and
752
// the block-ending Node and any trailing control projections. We leave
753
// these alone. PhiNodes and ParmNodes are made to follow the block start
754
// Node. Everything else gets topo-sorted.
755
756
#ifndef PRODUCT
757
if (trace_opto_pipelining()) {
758
tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
759
for (uint i = 0;i < block->number_of_nodes(); i++) {
760
tty->print("# ");
761
block->get_node(i)->fast_dump();
762
}
763
tty->print_cr("#");
764
}
765
#endif
766
767
// RootNode is already sorted
768
if (block->number_of_nodes() == 1) {
769
return true;
770
}
771
772
// Move PhiNodes and ParmNodes from 1 to cnt up to the start
773
uint node_cnt = block->end_idx();
774
uint phi_cnt = 1;
775
uint i;
776
for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
777
Node *n = block->get_node(i);
778
if( n->is_Phi() || // Found a PhiNode or ParmNode
779
(n->is_Proj() && n->in(0) == block->head()) ) {
780
// Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
781
block->map_node(block->get_node(phi_cnt), i);
782
block->map_node(n, phi_cnt++); // swap Phi/Parm up front
783
} else { // All others
784
// Count block-local inputs to 'n'
785
uint cnt = n->len(); // Input count
786
uint local = 0;
787
for( uint j=0; j<cnt; j++ ) {
788
Node *m = n->in(j);
789
if( m && get_block_for_node(m) == block && !m->is_top() )
790
local++; // One more block-local input
791
}
792
ready_cnt.at_put(n->_idx, local); // Count em up
793
794
#ifdef ASSERT
795
if( UseConcMarkSweepGC || UseG1GC ) {
796
if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
797
// Check the precedence edges
798
for (uint prec = n->req(); prec < n->len(); prec++) {
799
Node* oop_store = n->in(prec);
800
if (oop_store != NULL) {
801
assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
802
}
803
}
804
}
805
}
806
#endif
807
808
// A few node types require changing a required edge to a precedence edge
809
// before allocation.
810
if( n->is_Mach() && n->req() > TypeFunc::Parms &&
811
(n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
812
n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
813
// MemBarAcquire could be created without Precedent edge.
814
// del_req() replaces the specified edge with the last input edge
815
// and then removes the last edge. If the specified edge > number of
816
// edges the last edge will be moved outside of the input edges array
817
// and the edge will be lost. This is why this code should be
818
// executed only when Precedent (== TypeFunc::Parms) edge is present.
819
Node *x = n->in(TypeFunc::Parms);
820
if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
821
// Old edge to node within same block will get removed, but no precedence
822
// edge will get added because it already exists. Update ready count.
823
int cnt = ready_cnt.at(n->_idx);
824
assert(cnt > 1, err_msg("MemBar node %d must not get ready here", n->_idx));
825
ready_cnt.at_put(n->_idx, cnt-1);
826
}
827
n->del_req(TypeFunc::Parms);
828
n->add_prec(x);
829
}
830
}
831
}
832
for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
833
ready_cnt.at_put(block->get_node(i2)->_idx, 0);
834
835
// All the prescheduled guys do not hold back internal nodes
836
uint i3;
837
for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled
838
Node *n = block->get_node(i3); // Get pre-scheduled
839
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
840
Node* m = n->fast_out(j);
841
if (get_block_for_node(m) == block) { // Local-block user
842
int m_cnt = ready_cnt.at(m->_idx)-1;
843
ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count
844
}
845
}
846
}
847
848
Node_List delay;
849
// Make a worklist
850
Node_List worklist;
851
for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
852
Node *m = block->get_node(i4);
853
if( !ready_cnt.at(m->_idx) ) { // Zero ready count?
854
if (m->is_iteratively_computed()) {
855
// Push induction variable increments last to allow other uses
856
// of the phi to be scheduled first. The select() method breaks
857
// ties in scheduling by worklist order.
858
delay.push(m);
859
} else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
860
// Force the CreateEx to the top of the list so it's processed
861
// first and ends up at the start of the block.
862
worklist.insert(0, m);
863
} else {
864
worklist.push(m); // Then on to worklist!
865
}
866
}
867
}
868
while (delay.size()) {
869
Node* d = delay.pop();
870
worklist.push(d);
871
}
872
873
// Warm up the 'next_call' heuristic bits
874
needed_for_next_call(block, block->head(), next_call);
875
876
#ifndef PRODUCT
877
if (trace_opto_pipelining()) {
878
for (uint j=0; j< block->number_of_nodes(); j++) {
879
Node *n = block->get_node(j);
880
int idx = n->_idx;
881
tty->print("# ready cnt:%3d ", ready_cnt.at(idx));
882
tty->print("latency:%3d ", get_latency_for_node(n));
883
tty->print("%4d: %s\n", idx, n->Name());
884
}
885
}
886
#endif
887
888
uint max_idx = (uint)ready_cnt.length();
889
// Pull from worklist and schedule
890
while( worklist.size() ) { // Worklist is not ready
891
892
#ifndef PRODUCT
893
if (trace_opto_pipelining()) {
894
tty->print("# ready list:");
895
for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
896
Node *n = worklist[i]; // Get Node on worklist
897
tty->print(" %d", n->_idx);
898
}
899
tty->cr();
900
}
901
#endif
902
903
// Select and pop a ready guy from worklist
904
Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
905
block->map_node(n, phi_cnt++); // Schedule him next
906
907
#ifndef PRODUCT
908
if (trace_opto_pipelining()) {
909
tty->print("# select %d: %s", n->_idx, n->Name());
910
tty->print(", latency:%d", get_latency_for_node(n));
911
n->dump();
912
if (Verbose) {
913
tty->print("# ready list:");
914
for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
915
Node *n = worklist[i]; // Get Node on worklist
916
tty->print(" %d", n->_idx);
917
}
918
tty->cr();
919
}
920
}
921
922
#endif
923
if( n->is_MachCall() ) {
924
MachCallNode *mcall = n->as_MachCall();
925
phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
926
continue;
927
}
928
929
if (n->is_Mach() && n->as_Mach()->has_call()) {
930
RegMask regs;
931
regs.Insert(_matcher.c_frame_pointer());
932
regs.OR(n->out_RegMask());
933
934
MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
935
map_node_to_block(proj, block);
936
block->insert_node(proj, phi_cnt++);
937
938
add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
939
}
940
941
// Children are now all ready
942
for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
943
Node* m = n->fast_out(i5); // Get user
944
if (get_block_for_node(m) != block) {
945
continue;
946
}
947
if( m->is_Phi() ) continue;
948
if (m->_idx >= max_idx) { // new node, skip it
949
assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
950
continue;
951
}
952
int m_cnt = ready_cnt.at(m->_idx)-1;
953
ready_cnt.at_put(m->_idx, m_cnt);
954
if( m_cnt == 0 )
955
worklist.push(m);
956
}
957
}
958
959
if( phi_cnt != block->end_idx() ) {
960
// did not schedule all. Retry, Bailout, or Die
961
if (C->subsume_loads() == true && !C->failing()) {
962
// Retry with subsume_loads == false
963
// If this is the first failure, the sentinel string will "stick"
964
// to the Compile object, and the C2Compiler will see it and retry.
965
C->record_failure(C2Compiler::retry_no_subsuming_loads());
966
} else {
967
assert(false, "graph should be schedulable");
968
}
969
// assert( phi_cnt == end_idx(), "did not schedule all" );
970
return false;
971
}
972
973
#ifndef PRODUCT
974
if (trace_opto_pipelining()) {
975
tty->print_cr("#");
976
tty->print_cr("# after schedule_local");
977
for (uint i = 0;i < block->number_of_nodes();i++) {
978
tty->print("# ");
979
block->get_node(i)->fast_dump();
980
}
981
tty->cr();
982
}
983
#endif
984
985
986
return true;
987
}
988
989
//--------------------------catch_cleanup_fix_all_inputs-----------------------
990
static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
991
for (uint l = 0; l < use->len(); l++) {
992
if (use->in(l) == old_def) {
993
if (l < use->req()) {
994
use->set_req(l, new_def);
995
} else {
996
use->rm_prec(l);
997
use->add_prec(new_def);
998
l--;
999
}
1000
}
1001
}
1002
}
1003
1004
//------------------------------catch_cleanup_find_cloned_def------------------
1005
Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1006
assert( use_blk != def_blk, "Inter-block cleanup only");
1007
1008
// The use is some block below the Catch. Find and return the clone of the def
1009
// that dominates the use. If there is no clone in a dominating block, then
1010
// create a phi for the def in a dominating block.
1011
1012
// Find which successor block dominates this use. The successor
1013
// blocks must all be single-entry (from the Catch only; I will have
1014
// split blocks to make this so), hence they all dominate.
1015
while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1016
use_blk = use_blk->_idom;
1017
1018
// Find the successor
1019
Node *fixup = NULL;
1020
1021
uint j;
1022
for( j = 0; j < def_blk->_num_succs; j++ )
1023
if( use_blk == def_blk->_succs[j] )
1024
break;
1025
1026
if( j == def_blk->_num_succs ) {
1027
// Block at same level in dom-tree is not a successor. It needs a
1028
// PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1029
Node_Array inputs = new Node_List(Thread::current()->resource_area());
1030
for(uint k = 1; k < use_blk->num_preds(); k++) {
1031
Block* block = get_block_for_node(use_blk->pred(k));
1032
inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1033
}
1034
1035
// Check to see if the use_blk already has an identical phi inserted.
1036
// If it exists, it will be at the first position since all uses of a
1037
// def are processed together.
1038
Node *phi = use_blk->get_node(1);
1039
if( phi->is_Phi() ) {
1040
fixup = phi;
1041
for (uint k = 1; k < use_blk->num_preds(); k++) {
1042
if (phi->in(k) != inputs[k]) {
1043
// Not a match
1044
fixup = NULL;
1045
break;
1046
}
1047
}
1048
}
1049
1050
// If an existing PhiNode was not found, make a new one.
1051
if (fixup == NULL) {
1052
Node *new_phi = PhiNode::make(use_blk->head(), def);
1053
use_blk->insert_node(new_phi, 1);
1054
map_node_to_block(new_phi, use_blk);
1055
for (uint k = 1; k < use_blk->num_preds(); k++) {
1056
new_phi->set_req(k, inputs[k]);
1057
}
1058
fixup = new_phi;
1059
}
1060
1061
} else {
1062
// Found the use just below the Catch. Make it use the clone.
1063
fixup = use_blk->get_node(n_clone_idx);
1064
}
1065
1066
return fixup;
1067
}
1068
1069
//--------------------------catch_cleanup_intra_block--------------------------
1070
// Fix all input edges in use that reference "def". The use is in the same
1071
// block as the def and both have been cloned in each successor block.
1072
static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1073
1074
// Both the use and def have been cloned. For each successor block,
1075
// get the clone of the use, and make its input the clone of the def
1076
// found in that block.
1077
1078
uint use_idx = blk->find_node(use);
1079
uint offset_idx = use_idx - beg;
1080
for( uint k = 0; k < blk->_num_succs; k++ ) {
1081
// Get clone in each successor block
1082
Block *sb = blk->_succs[k];
1083
Node *clone = sb->get_node(offset_idx+1);
1084
assert( clone->Opcode() == use->Opcode(), "" );
1085
1086
// Make use-clone reference the def-clone
1087
catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1088
}
1089
}
1090
1091
//------------------------------catch_cleanup_inter_block---------------------
1092
// Fix all input edges in use that reference "def". The use is in a different
1093
// block than the def.
1094
void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1095
if( !use_blk ) return; // Can happen if the use is a precedence edge
1096
1097
Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1098
catch_cleanup_fix_all_inputs(use, def, new_def);
1099
}
1100
1101
//------------------------------call_catch_cleanup-----------------------------
1102
// If we inserted any instructions between a Call and his CatchNode,
1103
// clone the instructions on all paths below the Catch.
1104
void PhaseCFG::call_catch_cleanup(Block* block) {
1105
1106
// End of region to clone
1107
uint end = block->end_idx();
1108
if( !block->get_node(end)->is_Catch() ) return;
1109
// Start of region to clone
1110
uint beg = end;
1111
while(!block->get_node(beg-1)->is_MachProj() ||
1112
!block->get_node(beg-1)->in(0)->is_MachCall() ) {
1113
beg--;
1114
assert(beg > 0,"Catch cleanup walking beyond block boundary");
1115
}
1116
// Range of inserted instructions is [beg, end)
1117
if( beg == end ) return;
1118
1119
// Clone along all Catch output paths. Clone area between the 'beg' and
1120
// 'end' indices.
1121
for( uint i = 0; i < block->_num_succs; i++ ) {
1122
Block *sb = block->_succs[i];
1123
// Clone the entire area; ignoring the edge fixup for now.
1124
for( uint j = end; j > beg; j-- ) {
1125
Node *clone = block->get_node(j-1)->clone();
1126
sb->insert_node(clone, 1);
1127
map_node_to_block(clone, sb);
1128
if (clone->needs_anti_dependence_check()) {
1129
insert_anti_dependences(sb, clone);
1130
}
1131
}
1132
}
1133
1134
1135
// Fixup edges. Check the def-use info per cloned Node
1136
for(uint i2 = beg; i2 < end; i2++ ) {
1137
uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1138
Node *n = block->get_node(i2); // Node that got cloned
1139
// Need DU safe iterator because of edge manipulation in calls.
1140
Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1141
for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1142
out->push(n->fast_out(j1));
1143
}
1144
uint max = out->size();
1145
for (uint j = 0; j < max; j++) {// For all users
1146
Node *use = out->pop();
1147
Block *buse = get_block_for_node(use);
1148
if( use->is_Phi() ) {
1149
for( uint k = 1; k < use->req(); k++ )
1150
if( use->in(k) == n ) {
1151
Block* b = get_block_for_node(buse->pred(k));
1152
Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1153
use->set_req(k, fixup);
1154
}
1155
} else {
1156
if (block == buse) {
1157
catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1158
} else {
1159
catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1160
}
1161
}
1162
} // End for all users
1163
1164
} // End of for all Nodes in cloned area
1165
1166
// Remove the now-dead cloned ops
1167
for(uint i3 = beg; i3 < end; i3++ ) {
1168
block->get_node(beg)->disconnect_inputs(NULL, C);
1169
block->remove_node(beg);
1170
}
1171
1172
// If the successor blocks have a CreateEx node, move it back to the top
1173
for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1174
Block *sb = block->_succs[i4];
1175
uint new_cnt = end - beg;
1176
// Remove any newly created, but dead, nodes.
1177
for( uint j = new_cnt; j > 0; j-- ) {
1178
Node *n = sb->get_node(j);
1179
if (n->outcnt() == 0 &&
1180
(!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1181
n->disconnect_inputs(NULL, C);
1182
sb->remove_node(j);
1183
new_cnt--;
1184
}
1185
}
1186
// If any newly created nodes remain, move the CreateEx node to the top
1187
if (new_cnt > 0) {
1188
Node *cex = sb->get_node(1+new_cnt);
1189
if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1190
sb->remove_node(1+new_cnt);
1191
sb->insert_node(cex, 1);
1192
}
1193
}
1194
}
1195
}
1196
1197