Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/runtime/advancedThresholdPolicy.cpp
32285 views
1
/*
2
* Copyright (c) 2010, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "runtime/advancedThresholdPolicy.hpp"
27
#include "runtime/simpleThresholdPolicy.inline.hpp"
28
29
#ifdef TIERED
30
// Print an event.
31
void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
32
int bci, CompLevel level) {
33
tty->print(" rate=");
34
if (mh->prev_time() == 0) tty->print("n/a");
35
else tty->print("%f", mh->rate());
36
37
tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
38
threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
39
40
}
41
42
void AdvancedThresholdPolicy::initialize() {
43
// Turn on ergonomic compiler count selection
44
if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
45
FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
46
}
47
int count = CICompilerCount;
48
if (CICompilerCountPerCPU) {
49
// Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
50
int log_cpu = log2_int(os::active_processor_count());
51
int loglog_cpu = log2_int(MAX2(log_cpu, 1));
52
count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
53
}
54
55
set_c1_count(MAX2(count / 3, 1));
56
set_c2_count(MAX2(count - c1_count(), 1));
57
FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
58
59
// Some inlining tuning
60
#if defined(X86) || defined(AARCH64)
61
if (FLAG_IS_DEFAULT(InlineSmallCode)) {
62
FLAG_SET_DEFAULT(InlineSmallCode, 2000);
63
}
64
#endif
65
66
#ifdef SPARC
67
if (FLAG_IS_DEFAULT(InlineSmallCode)) {
68
FLAG_SET_DEFAULT(InlineSmallCode, 2500);
69
}
70
#endif
71
72
set_increase_threshold_at_ratio();
73
set_start_time(os::javaTimeMillis());
74
}
75
76
// update_rate() is called from select_task() while holding a compile queue lock.
77
void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
78
// Skip update if counters are absent.
79
// Can't allocate them since we are holding compile queue lock.
80
if (m->method_counters() == NULL) return;
81
82
if (is_old(m)) {
83
// We don't remove old methods from the queue,
84
// so we can just zero the rate.
85
m->set_rate(0);
86
return;
87
}
88
89
// We don't update the rate if we've just came out of a safepoint.
90
// delta_s is the time since last safepoint in milliseconds.
91
jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
92
jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
93
// How many events were there since the last time?
94
int event_count = m->invocation_count() + m->backedge_count();
95
int delta_e = event_count - m->prev_event_count();
96
97
// We should be running for at least 1ms.
98
if (delta_s >= TieredRateUpdateMinTime) {
99
// And we must've taken the previous point at least 1ms before.
100
if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
101
m->set_prev_time(t);
102
m->set_prev_event_count(event_count);
103
m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
104
} else {
105
if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
106
// If nothing happened for 25ms, zero the rate. Don't modify prev values.
107
m->set_rate(0);
108
}
109
}
110
}
111
}
112
113
// Check if this method has been stale from a given number of milliseconds.
114
// See select_task().
115
bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
116
jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
117
jlong delta_t = t - m->prev_time();
118
if (delta_t > timeout && delta_s > timeout) {
119
int event_count = m->invocation_count() + m->backedge_count();
120
int delta_e = event_count - m->prev_event_count();
121
// Return true if there were no events.
122
return delta_e == 0;
123
}
124
return false;
125
}
126
127
// We don't remove old methods from the compile queue even if they have
128
// very low activity. See select_task().
129
bool AdvancedThresholdPolicy::is_old(Method* method) {
130
return method->invocation_count() > 50000 || method->backedge_count() > 500000;
131
}
132
133
double AdvancedThresholdPolicy::weight(Method* method) {
134
return (double)(method->rate() + 1) *
135
(method->invocation_count() + 1) * (method->backedge_count() + 1);
136
}
137
138
// Apply heuristics and return true if x should be compiled before y
139
bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
140
if (x->highest_comp_level() > y->highest_comp_level()) {
141
// recompilation after deopt
142
return true;
143
} else
144
if (x->highest_comp_level() == y->highest_comp_level()) {
145
if (weight(x) > weight(y)) {
146
return true;
147
}
148
}
149
return false;
150
}
151
152
// Is method profiled enough?
153
bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
154
MethodData* mdo = method->method_data();
155
if (mdo != NULL) {
156
int i = mdo->invocation_count_delta();
157
int b = mdo->backedge_count_delta();
158
return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
159
}
160
return false;
161
}
162
163
// Called with the queue locked and with at least one element
164
CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
165
CompileTask *max_task = NULL;
166
Method* max_method = NULL;
167
jlong t = os::javaTimeMillis();
168
// Iterate through the queue and find a method with a maximum rate.
169
for (CompileTask* task = compile_queue->first(); task != NULL;) {
170
CompileTask* next_task = task->next();
171
Method* method = task->method();
172
update_rate(t, method);
173
if (max_task == NULL) {
174
max_task = task;
175
max_method = method;
176
} else {
177
// If a method has been stale for some time, remove it from the queue.
178
if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
179
if (PrintTieredEvents) {
180
print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
181
}
182
compile_queue->remove_and_mark_stale(task);
183
method->clear_queued_for_compilation();
184
task = next_task;
185
continue;
186
}
187
188
// Select a method with a higher rate
189
if (compare_methods(method, max_method)) {
190
max_task = task;
191
max_method = method;
192
}
193
}
194
task = next_task;
195
}
196
197
if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
198
&& is_method_profiled(max_method)) {
199
200
if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) {
201
if (PrintTieredEvents) {
202
print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
203
}
204
compile_queue->remove_and_mark_stale(max_task);
205
max_method->clear_queued_for_compilation();
206
return NULL;
207
}
208
209
max_task->set_comp_level(CompLevel_limited_profile);
210
if (PrintTieredEvents) {
211
print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
212
}
213
}
214
215
return max_task;
216
}
217
218
double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
219
double queue_size = CompileBroker::queue_size(level);
220
int comp_count = compiler_count(level);
221
double k = queue_size / (feedback_k * comp_count) + 1;
222
223
// Increase C1 compile threshold when the code cache is filled more
224
// than specified by IncreaseFirstTierCompileThresholdAt percentage.
225
// The main intention is to keep enough free space for C2 compiled code
226
// to achieve peak performance if the code cache is under stress.
227
if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization)) {
228
double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
229
if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
230
k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
231
}
232
}
233
return k;
234
}
235
236
// Call and loop predicates determine whether a transition to a higher
237
// compilation level should be performed (pointers to predicate functions
238
// are passed to common()).
239
// Tier?LoadFeedback is basically a coefficient that determines of
240
// how many methods per compiler thread can be in the queue before
241
// the threshold values double.
242
bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
243
switch(cur_level) {
244
case CompLevel_none:
245
case CompLevel_limited_profile: {
246
double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
247
return loop_predicate_helper<CompLevel_none>(i, b, k);
248
}
249
case CompLevel_full_profile: {
250
double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
251
return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
252
}
253
default:
254
return true;
255
}
256
}
257
258
bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
259
switch(cur_level) {
260
case CompLevel_none:
261
case CompLevel_limited_profile: {
262
double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
263
return call_predicate_helper<CompLevel_none>(i, b, k);
264
}
265
case CompLevel_full_profile: {
266
double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
267
return call_predicate_helper<CompLevel_full_profile>(i, b, k);
268
}
269
default:
270
return true;
271
}
272
}
273
274
// If a method is old enough and is still in the interpreter we would want to
275
// start profiling without waiting for the compiled method to arrive.
276
// We also take the load on compilers into the account.
277
bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
278
if (cur_level == CompLevel_none &&
279
CompileBroker::queue_size(CompLevel_full_optimization) <=
280
Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
281
int i = method->invocation_count();
282
int b = method->backedge_count();
283
double k = Tier0ProfilingStartPercentage / 100.0;
284
return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
285
}
286
return false;
287
}
288
289
// Inlining control: if we're compiling a profiled method with C1 and the callee
290
// is known to have OSRed in a C2 version, don't inline it.
291
bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
292
CompLevel comp_level = (CompLevel)env->comp_level();
293
if (comp_level == CompLevel_full_profile ||
294
comp_level == CompLevel_limited_profile) {
295
return callee->highest_osr_comp_level() == CompLevel_full_optimization;
296
}
297
return false;
298
}
299
300
// Create MDO if necessary.
301
void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
302
if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
303
if (mh->method_data() == NULL) {
304
Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
305
}
306
}
307
308
309
/*
310
* Method states:
311
* 0 - interpreter (CompLevel_none)
312
* 1 - pure C1 (CompLevel_simple)
313
* 2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
314
* 3 - C1 with full profiling (CompLevel_full_profile)
315
* 4 - C2 (CompLevel_full_optimization)
316
*
317
* Common state transition patterns:
318
* a. 0 -> 3 -> 4.
319
* The most common path. But note that even in this straightforward case
320
* profiling can start at level 0 and finish at level 3.
321
*
322
* b. 0 -> 2 -> 3 -> 4.
323
* This case occures when the load on C2 is deemed too high. So, instead of transitioning
324
* into state 3 directly and over-profiling while a method is in the C2 queue we transition to
325
* level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
326
*
327
* c. 0 -> (3->2) -> 4.
328
* In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
329
* to enable the profiling to fully occur at level 0. In this case we change the compilation level
330
* of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
331
* without full profiling while c2 is compiling.
332
*
333
* d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
334
* After a method was once compiled with C1 it can be identified as trivial and be compiled to
335
* level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
336
*
337
* e. 0 -> 4.
338
* This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
339
* or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
340
* the compiled version already exists).
341
*
342
* Note that since state 0 can be reached from any other state via deoptimization different loops
343
* are possible.
344
*
345
*/
346
347
// Common transition function. Given a predicate determines if a method should transition to another level.
348
CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
349
CompLevel next_level = cur_level;
350
int i = method->invocation_count();
351
int b = method->backedge_count();
352
353
if (is_trivial(method)) {
354
next_level = CompLevel_simple;
355
} else {
356
switch(cur_level) {
357
case CompLevel_none:
358
// If we were at full profile level, would we switch to full opt?
359
if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
360
next_level = CompLevel_full_optimization;
361
} else if ((this->*p)(i, b, cur_level)) {
362
// C1-generated fully profiled code is about 30% slower than the limited profile
363
// code that has only invocation and backedge counters. The observation is that
364
// if C2 queue is large enough we can spend too much time in the fully profiled code
365
// while waiting for C2 to pick the method from the queue. To alleviate this problem
366
// we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
367
// we choose to compile a limited profiled version and then recompile with full profiling
368
// when the load on C2 goes down.
369
if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
370
Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
371
next_level = CompLevel_limited_profile;
372
} else {
373
next_level = CompLevel_full_profile;
374
}
375
}
376
break;
377
case CompLevel_limited_profile:
378
if (is_method_profiled(method)) {
379
// Special case: we got here because this method was fully profiled in the interpreter.
380
next_level = CompLevel_full_optimization;
381
} else {
382
MethodData* mdo = method->method_data();
383
if (mdo != NULL) {
384
if (mdo->would_profile()) {
385
if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
386
Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
387
(this->*p)(i, b, cur_level))) {
388
next_level = CompLevel_full_profile;
389
}
390
} else {
391
next_level = CompLevel_full_optimization;
392
}
393
}
394
}
395
break;
396
case CompLevel_full_profile:
397
{
398
MethodData* mdo = method->method_data();
399
if (mdo != NULL) {
400
if (mdo->would_profile()) {
401
int mdo_i = mdo->invocation_count_delta();
402
int mdo_b = mdo->backedge_count_delta();
403
if ((this->*p)(mdo_i, mdo_b, cur_level)) {
404
next_level = CompLevel_full_optimization;
405
}
406
} else {
407
next_level = CompLevel_full_optimization;
408
}
409
}
410
}
411
break;
412
}
413
}
414
return MIN2(next_level, (CompLevel)TieredStopAtLevel);
415
}
416
417
// Determine if a method should be compiled with a normal entry point at a different level.
418
CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
419
CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
420
common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
421
CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
422
423
// If OSR method level is greater than the regular method level, the levels should be
424
// equalized by raising the regular method level in order to avoid OSRs during each
425
// invocation of the method.
426
if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
427
MethodData* mdo = method->method_data();
428
guarantee(mdo != NULL, "MDO should not be NULL");
429
if (mdo->invocation_count() >= 1) {
430
next_level = CompLevel_full_optimization;
431
}
432
} else {
433
next_level = MAX2(osr_level, next_level);
434
}
435
return next_level;
436
}
437
438
// Determine if we should do an OSR compilation of a given method.
439
CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
440
CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
441
if (cur_level == CompLevel_none) {
442
// If there is a live OSR method that means that we deopted to the interpreter
443
// for the transition.
444
CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
445
if (osr_level > CompLevel_none) {
446
return osr_level;
447
}
448
}
449
return next_level;
450
}
451
452
// Update the rate and submit compile
453
void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
454
int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
455
update_rate(os::javaTimeMillis(), mh());
456
CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
457
}
458
459
// Handle the invocation event.
460
void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
461
CompLevel level, nmethod* nm, JavaThread* thread) {
462
if (should_create_mdo(mh(), level)) {
463
create_mdo(mh, thread);
464
}
465
if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
466
CompLevel next_level = call_event(mh(), level);
467
if (next_level != level) {
468
compile(mh, InvocationEntryBci, next_level, thread);
469
}
470
}
471
}
472
473
// Handle the back branch event. Notice that we can compile the method
474
// with a regular entry from here.
475
void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
476
int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
477
if (should_create_mdo(mh(), level)) {
478
create_mdo(mh, thread);
479
}
480
// Check if MDO should be created for the inlined method
481
if (should_create_mdo(imh(), level)) {
482
create_mdo(imh, thread);
483
}
484
485
if (is_compilation_enabled()) {
486
CompLevel next_osr_level = loop_event(imh(), level);
487
CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
488
// At the very least compile the OSR version
489
if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
490
compile(imh, bci, next_osr_level, thread);
491
}
492
493
// Use loop event as an opportunity to also check if there's been
494
// enough calls.
495
CompLevel cur_level, next_level;
496
if (mh() != imh()) { // If there is an enclosing method
497
guarantee(nm != NULL, "Should have nmethod here");
498
cur_level = comp_level(mh());
499
next_level = call_event(mh(), cur_level);
500
501
if (max_osr_level == CompLevel_full_optimization) {
502
// The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
503
bool make_not_entrant = false;
504
if (nm->is_osr_method()) {
505
// This is an osr method, just make it not entrant and recompile later if needed
506
make_not_entrant = true;
507
} else {
508
if (next_level != CompLevel_full_optimization) {
509
// next_level is not full opt, so we need to recompile the
510
// enclosing method without the inlinee
511
cur_level = CompLevel_none;
512
make_not_entrant = true;
513
}
514
}
515
if (make_not_entrant) {
516
if (PrintTieredEvents) {
517
int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
518
print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
519
}
520
nm->make_not_entrant();
521
}
522
}
523
if (!CompileBroker::compilation_is_in_queue(mh)) {
524
// Fix up next_level if necessary to avoid deopts
525
if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
526
next_level = CompLevel_full_profile;
527
}
528
if (cur_level != next_level) {
529
compile(mh, InvocationEntryBci, next_level, thread);
530
}
531
}
532
} else {
533
cur_level = comp_level(imh());
534
next_level = call_event(imh(), cur_level);
535
if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
536
compile(imh, InvocationEntryBci, next_level, thread);
537
}
538
}
539
}
540
}
541
542
#endif // TIERED
543
544