Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/utilities/bitMap.inline.hpp
32285 views
1
/*
2
* Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_UTILITIES_BITMAP_INLINE_HPP
26
#define SHARE_VM_UTILITIES_BITMAP_INLINE_HPP
27
28
#include "runtime/atomic.inline.hpp"
29
#include "utilities/bitMap.hpp"
30
31
#ifdef ASSERT
32
inline void BitMap::verify_index(idx_t index) const {
33
assert(index < _size, "BitMap index out of bounds");
34
}
35
36
inline void BitMap::verify_range(idx_t beg_index, idx_t end_index) const {
37
assert(beg_index <= end_index, "BitMap range error");
38
// Note that [0,0) and [size,size) are both valid ranges.
39
if (end_index != _size) verify_index(end_index);
40
}
41
#endif // #ifdef ASSERT
42
43
inline void BitMap::set_bit(idx_t bit) {
44
verify_index(bit);
45
*word_addr(bit) |= bit_mask(bit);
46
}
47
48
inline void BitMap::clear_bit(idx_t bit) {
49
verify_index(bit);
50
*word_addr(bit) &= ~bit_mask(bit);
51
}
52
53
inline bool BitMap::par_set_bit(idx_t bit) {
54
verify_index(bit);
55
volatile bm_word_t* const addr = word_addr(bit);
56
const bm_word_t mask = bit_mask(bit);
57
bm_word_t old_val = *addr;
58
59
do {
60
const bm_word_t new_val = old_val | mask;
61
if (new_val == old_val) {
62
return false; // Someone else beat us to it.
63
}
64
const bm_word_t cur_val = (bm_word_t) Atomic::cmpxchg_ptr((void*) new_val,
65
(volatile void*) addr,
66
(void*) old_val);
67
if (cur_val == old_val) {
68
return true; // Success.
69
}
70
old_val = cur_val; // The value changed, try again.
71
} while (true);
72
}
73
74
inline bool BitMap::par_clear_bit(idx_t bit) {
75
verify_index(bit);
76
volatile bm_word_t* const addr = word_addr(bit);
77
const bm_word_t mask = ~bit_mask(bit);
78
bm_word_t old_val = *addr;
79
80
do {
81
const bm_word_t new_val = old_val & mask;
82
if (new_val == old_val) {
83
return false; // Someone else beat us to it.
84
}
85
const bm_word_t cur_val = (bm_word_t) Atomic::cmpxchg_ptr((void*) new_val,
86
(volatile void*) addr,
87
(void*) old_val);
88
if (cur_val == old_val) {
89
return true; // Success.
90
}
91
old_val = cur_val; // The value changed, try again.
92
} while (true);
93
}
94
95
inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
96
if (hint == small_range && end - beg == 1) {
97
set_bit(beg);
98
} else {
99
if (hint == large_range) {
100
set_large_range(beg, end);
101
} else {
102
set_range(beg, end);
103
}
104
}
105
}
106
107
inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
108
if (hint == small_range && end - beg == 1) {
109
clear_bit(beg);
110
} else {
111
if (hint == large_range) {
112
clear_large_range(beg, end);
113
} else {
114
clear_range(beg, end);
115
}
116
}
117
}
118
119
inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
120
if (hint == small_range && end - beg == 1) {
121
par_at_put(beg, true);
122
} else {
123
if (hint == large_range) {
124
par_at_put_large_range(beg, end, true);
125
} else {
126
par_at_put_range(beg, end, true);
127
}
128
}
129
}
130
131
inline void BitMap::set_range_of_words(idx_t beg, idx_t end) {
132
bm_word_t* map = _map;
133
for (idx_t i = beg; i < end; ++i) map[i] = ~(uintptr_t)0;
134
}
135
136
137
inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) {
138
bm_word_t* map = _map;
139
for (idx_t i = beg; i < end; ++i) map[i] = 0;
140
}
141
142
143
inline void BitMap::clear() {
144
clear_range_of_words(0, size_in_words());
145
}
146
147
148
inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
149
if (hint == small_range && end - beg == 1) {
150
par_at_put(beg, false);
151
} else {
152
if (hint == large_range) {
153
par_at_put_large_range(beg, end, false);
154
} else {
155
par_at_put_range(beg, end, false);
156
}
157
}
158
}
159
160
inline BitMap::idx_t
161
BitMap::get_next_one_offset_inline(idx_t l_offset, idx_t r_offset) const {
162
assert(l_offset <= size(), "BitMap index out of bounds");
163
assert(r_offset <= size(), "BitMap index out of bounds");
164
assert(l_offset <= r_offset, "l_offset > r_offset ?");
165
166
if (l_offset == r_offset) {
167
return l_offset;
168
}
169
idx_t index = word_index(l_offset);
170
idx_t r_index = word_index(r_offset-1) + 1;
171
idx_t res_offset = l_offset;
172
173
// check bits including and to the _left_ of offset's position
174
idx_t pos = bit_in_word(res_offset);
175
idx_t res = map(index) >> pos;
176
if (res != (uintptr_t)NoBits) {
177
// find the position of the 1-bit
178
for (; !(res & 1); res_offset++) {
179
res = res >> 1;
180
}
181
182
#ifdef ASSERT
183
// In the following assert, if r_offset is not bitamp word aligned,
184
// checking that res_offset is strictly less than r_offset is too
185
// strong and will trip the assert.
186
//
187
// Consider the case where l_offset is bit 15 and r_offset is bit 17
188
// of the same map word, and where bits [15:16:17:18] == [00:00:00:01].
189
// All the bits in the range [l_offset:r_offset) are 0.
190
// The loop that calculates res_offset, above, would yield the offset
191
// of bit 18 because it's in the same map word as l_offset and there
192
// is a set bit in that map word above l_offset (i.e. res != NoBits).
193
//
194
// In this case, however, we can assert is that res_offset is strictly
195
// less than size() since we know that there is at least one set bit
196
// at an offset above, but in the same map word as, r_offset.
197
// Otherwise, if r_offset is word aligned then it will not be in the
198
// same map word as l_offset (unless it equals l_offset). So either
199
// there won't be a set bit between l_offset and the end of it's map
200
// word (i.e. res == NoBits), or res_offset will be less than r_offset.
201
202
idx_t limit = is_word_aligned(r_offset) ? r_offset : size();
203
assert(res_offset >= l_offset && res_offset < limit, "just checking");
204
#endif // ASSERT
205
return MIN2(res_offset, r_offset);
206
}
207
// skip over all word length 0-bit runs
208
for (index++; index < r_index; index++) {
209
res = map(index);
210
if (res != (uintptr_t)NoBits) {
211
// found a 1, return the offset
212
for (res_offset = bit_index(index); !(res & 1); res_offset++) {
213
res = res >> 1;
214
}
215
assert(res & 1, "tautology; see loop condition");
216
assert(res_offset >= l_offset, "just checking");
217
return MIN2(res_offset, r_offset);
218
}
219
}
220
return r_offset;
221
}
222
223
inline BitMap::idx_t
224
BitMap::get_next_zero_offset_inline(idx_t l_offset, idx_t r_offset) const {
225
assert(l_offset <= size(), "BitMap index out of bounds");
226
assert(r_offset <= size(), "BitMap index out of bounds");
227
assert(l_offset <= r_offset, "l_offset > r_offset ?");
228
229
if (l_offset == r_offset) {
230
return l_offset;
231
}
232
idx_t index = word_index(l_offset);
233
idx_t r_index = word_index(r_offset-1) + 1;
234
idx_t res_offset = l_offset;
235
236
// check bits including and to the _left_ of offset's position
237
idx_t pos = res_offset & (BitsPerWord - 1);
238
idx_t res = (map(index) >> pos) | left_n_bits((int)pos);
239
240
if (res != (uintptr_t)AllBits) {
241
// find the position of the 0-bit
242
for (; res & 1; res_offset++) {
243
res = res >> 1;
244
}
245
assert(res_offset >= l_offset, "just checking");
246
return MIN2(res_offset, r_offset);
247
}
248
// skip over all word length 1-bit runs
249
for (index++; index < r_index; index++) {
250
res = map(index);
251
if (res != (uintptr_t)AllBits) {
252
// found a 0, return the offset
253
for (res_offset = index << LogBitsPerWord; res & 1;
254
res_offset++) {
255
res = res >> 1;
256
}
257
assert(!(res & 1), "tautology; see loop condition");
258
assert(res_offset >= l_offset, "just checking");
259
return MIN2(res_offset, r_offset);
260
}
261
}
262
return r_offset;
263
}
264
265
inline BitMap::idx_t
266
BitMap::get_next_one_offset_inline_aligned_right(idx_t l_offset,
267
idx_t r_offset) const
268
{
269
verify_range(l_offset, r_offset);
270
assert(bit_in_word(r_offset) == 0, "r_offset not word-aligned");
271
272
if (l_offset == r_offset) {
273
return l_offset;
274
}
275
idx_t index = word_index(l_offset);
276
idx_t r_index = word_index(r_offset);
277
idx_t res_offset = l_offset;
278
279
// check bits including and to the _left_ of offset's position
280
idx_t res = map(index) >> bit_in_word(res_offset);
281
if (res != (uintptr_t)NoBits) {
282
// find the position of the 1-bit
283
for (; !(res & 1); res_offset++) {
284
res = res >> 1;
285
}
286
assert(res_offset >= l_offset &&
287
res_offset < r_offset, "just checking");
288
return res_offset;
289
}
290
// skip over all word length 0-bit runs
291
for (index++; index < r_index; index++) {
292
res = map(index);
293
if (res != (uintptr_t)NoBits) {
294
// found a 1, return the offset
295
for (res_offset = bit_index(index); !(res & 1); res_offset++) {
296
res = res >> 1;
297
}
298
assert(res & 1, "tautology; see loop condition");
299
assert(res_offset >= l_offset && res_offset < r_offset, "just checking");
300
return res_offset;
301
}
302
}
303
return r_offset;
304
}
305
306
307
// Returns a bit mask for a range of bits [beg, end) within a single word. Each
308
// bit in the mask is 0 if the bit is in the range, 1 if not in the range. The
309
// returned mask can be used directly to clear the range, or inverted to set the
310
// range. Note: end must not be 0.
311
inline BitMap::bm_word_t
312
BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const {
313
assert(end != 0, "does not work when end == 0");
314
assert(beg == end || word_index(beg) == word_index(end - 1),
315
"must be a single-word range");
316
bm_word_t mask = bit_mask(beg) - 1; // low (right) bits
317
if (bit_in_word(end) != 0) {
318
mask |= ~(bit_mask(end) - 1); // high (left) bits
319
}
320
return mask;
321
}
322
323
inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) {
324
assert(beg <= end, "underflow");
325
memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(uintptr_t));
326
}
327
328
inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) {
329
assert(beg <= end, "underflow");
330
memset(_map + beg, 0, (end - beg) * sizeof(uintptr_t));
331
}
332
333
inline BitMap::idx_t BitMap::word_index_round_up(idx_t bit) const {
334
idx_t bit_rounded_up = bit + (BitsPerWord - 1);
335
// Check for integer arithmetic overflow.
336
return bit_rounded_up > bit ? word_index(bit_rounded_up) : size_in_words();
337
}
338
339
inline BitMap::idx_t BitMap::get_next_one_offset(idx_t l_offset,
340
idx_t r_offset) const {
341
return get_next_one_offset_inline(l_offset, r_offset);
342
}
343
344
inline BitMap::idx_t BitMap::get_next_zero_offset(idx_t l_offset,
345
idx_t r_offset) const {
346
return get_next_zero_offset_inline(l_offset, r_offset);
347
}
348
349
inline void BitMap2D::clear() {
350
_map.clear();
351
}
352
353
#endif // SHARE_VM_UTILITIES_BITMAP_INLINE_HPP
354
355