Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/utilities/globalDefinitions.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "runtime/os.hpp"
27
#include "utilities/globalDefinitions.hpp"
28
#include "utilities/top.hpp"
29
30
// Basic error support
31
32
// Info for oops within a java object. Defaults are zero so
33
// things will break badly if incorrectly initialized.
34
int heapOopSize = 0;
35
int LogBytesPerHeapOop = 0;
36
int LogBitsPerHeapOop = 0;
37
int BytesPerHeapOop = 0;
38
int BitsPerHeapOop = 0;
39
40
// Object alignment, in units of HeapWords.
41
// Defaults are -1 so things will break badly if incorrectly initialized.
42
int MinObjAlignment = -1;
43
int MinObjAlignmentInBytes = -1;
44
int MinObjAlignmentInBytesMask = 0;
45
46
int LogMinObjAlignment = -1;
47
int LogMinObjAlignmentInBytes = -1;
48
49
// Oop encoding heap max
50
uint64_t OopEncodingHeapMax = 0;
51
52
void basic_fatal(const char* msg) {
53
fatal(msg);
54
}
55
56
// Something to help porters sleep at night
57
58
void basic_types_init() {
59
#ifdef ASSERT
60
#ifdef _LP64
61
assert(min_intx == (intx)CONST64(0x8000000000000000), "correct constant");
62
assert(max_intx == CONST64(0x7FFFFFFFFFFFFFFF), "correct constant");
63
assert(max_uintx == CONST64(0xFFFFFFFFFFFFFFFF), "correct constant");
64
assert( 8 == sizeof( intx), "wrong size for basic type");
65
assert( 8 == sizeof( jobject), "wrong size for basic type");
66
#else
67
assert(min_intx == (intx)0x80000000, "correct constant");
68
assert(max_intx == 0x7FFFFFFF, "correct constant");
69
assert(max_uintx == 0xFFFFFFFF, "correct constant");
70
assert( 4 == sizeof( intx), "wrong size for basic type");
71
assert( 4 == sizeof( jobject), "wrong size for basic type");
72
#endif
73
assert( (~max_juint) == 0, "max_juint has all its bits");
74
assert( (~max_uintx) == 0, "max_uintx has all its bits");
75
assert( (~max_julong) == 0, "max_julong has all its bits");
76
assert( 1 == sizeof( jbyte), "wrong size for basic type");
77
assert( 2 == sizeof( jchar), "wrong size for basic type");
78
assert( 2 == sizeof( jshort), "wrong size for basic type");
79
assert( 4 == sizeof( juint), "wrong size for basic type");
80
assert( 4 == sizeof( jint), "wrong size for basic type");
81
assert( 1 == sizeof( jboolean), "wrong size for basic type");
82
assert( 8 == sizeof( jlong), "wrong size for basic type");
83
assert( 4 == sizeof( jfloat), "wrong size for basic type");
84
assert( 8 == sizeof( jdouble), "wrong size for basic type");
85
assert( 1 == sizeof( u1), "wrong size for basic type");
86
assert( 2 == sizeof( u2), "wrong size for basic type");
87
assert( 4 == sizeof( u4), "wrong size for basic type");
88
89
int num_type_chars = 0;
90
for (int i = 0; i < 99; i++) {
91
if (type2char((BasicType)i) != 0) {
92
assert(char2type(type2char((BasicType)i)) == i, "proper inverses");
93
num_type_chars++;
94
}
95
}
96
assert(num_type_chars == 11, "must have tested the right number of mappings");
97
assert(char2type(0) == T_ILLEGAL, "correct illegality");
98
99
{
100
for (int i = T_BOOLEAN; i <= T_CONFLICT; i++) {
101
BasicType vt = (BasicType)i;
102
BasicType ft = type2field[vt];
103
switch (vt) {
104
// the following types might plausibly show up in memory layouts:
105
case T_BOOLEAN:
106
case T_BYTE:
107
case T_CHAR:
108
case T_SHORT:
109
case T_INT:
110
case T_FLOAT:
111
case T_DOUBLE:
112
case T_LONG:
113
case T_OBJECT:
114
case T_ADDRESS: // random raw pointer
115
case T_METADATA: // metadata pointer
116
case T_NARROWOOP: // compressed pointer
117
case T_NARROWKLASS: // compressed klass pointer
118
case T_CONFLICT: // might as well support a bottom type
119
case T_VOID: // padding or other unaddressed word
120
// layout type must map to itself
121
assert(vt == ft, "");
122
break;
123
default:
124
// non-layout type must map to a (different) layout type
125
assert(vt != ft, "");
126
assert(ft == type2field[ft], "");
127
}
128
// every type must map to same-sized layout type:
129
assert(type2size[vt] == type2size[ft], "");
130
}
131
}
132
// These are assumed, e.g., when filling HeapWords with juints.
133
assert(is_power_of_2(sizeof(juint)), "juint must be power of 2");
134
assert(is_power_of_2(HeapWordSize), "HeapWordSize must be power of 2");
135
assert((size_t)HeapWordSize >= sizeof(juint),
136
"HeapWord should be at least as large as juint");
137
assert(sizeof(NULL) == sizeof(char*), "NULL must be same size as pointer");
138
#endif
139
140
if( JavaPriority1_To_OSPriority != -1 )
141
os::java_to_os_priority[1] = JavaPriority1_To_OSPriority;
142
if( JavaPriority2_To_OSPriority != -1 )
143
os::java_to_os_priority[2] = JavaPriority2_To_OSPriority;
144
if( JavaPriority3_To_OSPriority != -1 )
145
os::java_to_os_priority[3] = JavaPriority3_To_OSPriority;
146
if( JavaPriority4_To_OSPriority != -1 )
147
os::java_to_os_priority[4] = JavaPriority4_To_OSPriority;
148
if( JavaPriority5_To_OSPriority != -1 )
149
os::java_to_os_priority[5] = JavaPriority5_To_OSPriority;
150
if( JavaPriority6_To_OSPriority != -1 )
151
os::java_to_os_priority[6] = JavaPriority6_To_OSPriority;
152
if( JavaPriority7_To_OSPriority != -1 )
153
os::java_to_os_priority[7] = JavaPriority7_To_OSPriority;
154
if( JavaPriority8_To_OSPriority != -1 )
155
os::java_to_os_priority[8] = JavaPriority8_To_OSPriority;
156
if( JavaPriority9_To_OSPriority != -1 )
157
os::java_to_os_priority[9] = JavaPriority9_To_OSPriority;
158
if(JavaPriority10_To_OSPriority != -1 )
159
os::java_to_os_priority[10] = JavaPriority10_To_OSPriority;
160
161
// Set the size of basic types here (after argument parsing but before
162
// stub generation).
163
if (UseCompressedOops) {
164
// Size info for oops within java objects is fixed
165
heapOopSize = jintSize;
166
LogBytesPerHeapOop = LogBytesPerInt;
167
LogBitsPerHeapOop = LogBitsPerInt;
168
BytesPerHeapOop = BytesPerInt;
169
BitsPerHeapOop = BitsPerInt;
170
} else {
171
heapOopSize = oopSize;
172
LogBytesPerHeapOop = LogBytesPerWord;
173
LogBitsPerHeapOop = LogBitsPerWord;
174
BytesPerHeapOop = BytesPerWord;
175
BitsPerHeapOop = BitsPerWord;
176
}
177
_type2aelembytes[T_OBJECT] = heapOopSize;
178
_type2aelembytes[T_ARRAY] = heapOopSize;
179
}
180
181
182
// Map BasicType to signature character
183
char type2char_tab[T_CONFLICT+1]={ 0, 0, 0, 0, 'Z', 'C', 'F', 'D', 'B', 'S', 'I', 'J', 'L', '[', 'V', 0, 0, 0, 0, 0};
184
185
// Map BasicType to Java type name
186
const char* type2name_tab[T_CONFLICT+1] = {
187
NULL, NULL, NULL, NULL,
188
"boolean",
189
"char",
190
"float",
191
"double",
192
"byte",
193
"short",
194
"int",
195
"long",
196
"object",
197
"array",
198
"void",
199
"*address*",
200
"*narrowoop*",
201
"*metadata*",
202
"*narrowklass*",
203
"*conflict*"
204
};
205
206
207
BasicType name2type(const char* name) {
208
for (int i = T_BOOLEAN; i <= T_VOID; i++) {
209
BasicType t = (BasicType)i;
210
if (type2name_tab[t] != NULL && 0 == strcmp(type2name_tab[t], name))
211
return t;
212
}
213
return T_ILLEGAL;
214
}
215
216
217
// Map BasicType to size in words
218
int type2size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, -1};
219
220
BasicType type2field[T_CONFLICT+1] = {
221
(BasicType)0, // 0,
222
(BasicType)0, // 1,
223
(BasicType)0, // 2,
224
(BasicType)0, // 3,
225
T_BOOLEAN, // T_BOOLEAN = 4,
226
T_CHAR, // T_CHAR = 5,
227
T_FLOAT, // T_FLOAT = 6,
228
T_DOUBLE, // T_DOUBLE = 7,
229
T_BYTE, // T_BYTE = 8,
230
T_SHORT, // T_SHORT = 9,
231
T_INT, // T_INT = 10,
232
T_LONG, // T_LONG = 11,
233
T_OBJECT, // T_OBJECT = 12,
234
T_OBJECT, // T_ARRAY = 13,
235
T_VOID, // T_VOID = 14,
236
T_ADDRESS, // T_ADDRESS = 15,
237
T_NARROWOOP, // T_NARROWOOP= 16,
238
T_METADATA, // T_METADATA = 17,
239
T_NARROWKLASS, // T_NARROWKLASS = 18,
240
T_CONFLICT // T_CONFLICT = 19,
241
};
242
243
244
BasicType type2wfield[T_CONFLICT+1] = {
245
(BasicType)0, // 0,
246
(BasicType)0, // 1,
247
(BasicType)0, // 2,
248
(BasicType)0, // 3,
249
T_INT, // T_BOOLEAN = 4,
250
T_INT, // T_CHAR = 5,
251
T_FLOAT, // T_FLOAT = 6,
252
T_DOUBLE, // T_DOUBLE = 7,
253
T_INT, // T_BYTE = 8,
254
T_INT, // T_SHORT = 9,
255
T_INT, // T_INT = 10,
256
T_LONG, // T_LONG = 11,
257
T_OBJECT, // T_OBJECT = 12,
258
T_OBJECT, // T_ARRAY = 13,
259
T_VOID, // T_VOID = 14,
260
T_ADDRESS, // T_ADDRESS = 15,
261
T_NARROWOOP, // T_NARROWOOP = 16,
262
T_METADATA, // T_METADATA = 17,
263
T_NARROWKLASS, // T_NARROWKLASS = 18,
264
T_CONFLICT // T_CONFLICT = 19,
265
};
266
267
268
int _type2aelembytes[T_CONFLICT+1] = {
269
0, // 0
270
0, // 1
271
0, // 2
272
0, // 3
273
T_BOOLEAN_aelem_bytes, // T_BOOLEAN = 4,
274
T_CHAR_aelem_bytes, // T_CHAR = 5,
275
T_FLOAT_aelem_bytes, // T_FLOAT = 6,
276
T_DOUBLE_aelem_bytes, // T_DOUBLE = 7,
277
T_BYTE_aelem_bytes, // T_BYTE = 8,
278
T_SHORT_aelem_bytes, // T_SHORT = 9,
279
T_INT_aelem_bytes, // T_INT = 10,
280
T_LONG_aelem_bytes, // T_LONG = 11,
281
T_OBJECT_aelem_bytes, // T_OBJECT = 12,
282
T_ARRAY_aelem_bytes, // T_ARRAY = 13,
283
0, // T_VOID = 14,
284
T_OBJECT_aelem_bytes, // T_ADDRESS = 15,
285
T_NARROWOOP_aelem_bytes, // T_NARROWOOP= 16,
286
T_OBJECT_aelem_bytes, // T_METADATA = 17,
287
T_NARROWKLASS_aelem_bytes, // T_NARROWKLASS= 18,
288
0 // T_CONFLICT = 19,
289
};
290
291
#ifdef ASSERT
292
int type2aelembytes(BasicType t, bool allow_address) {
293
assert(allow_address || t != T_ADDRESS, " ");
294
return _type2aelembytes[t];
295
}
296
#endif
297
298
// Support for 64-bit integer arithmetic
299
300
// The following code is mostly taken from JVM typedefs_md.h and system_md.c
301
302
static const jlong high_bit = (jlong)1 << (jlong)63;
303
static const jlong other_bits = ~high_bit;
304
305
jlong float2long(jfloat f) {
306
jlong tmp = (jlong) f;
307
if (tmp != high_bit) {
308
return tmp;
309
} else {
310
if (g_isnan((jdouble)f)) {
311
return 0;
312
}
313
if (f < 0) {
314
return high_bit;
315
} else {
316
return other_bits;
317
}
318
}
319
}
320
321
322
jlong double2long(jdouble f) {
323
jlong tmp = (jlong) f;
324
if (tmp != high_bit) {
325
return tmp;
326
} else {
327
if (g_isnan(f)) {
328
return 0;
329
}
330
if (f < 0) {
331
return high_bit;
332
} else {
333
return other_bits;
334
}
335
}
336
}
337
338
// least common multiple
339
size_t lcm(size_t a, size_t b) {
340
size_t cur, div, next;
341
342
cur = MAX2(a, b);
343
div = MIN2(a, b);
344
345
assert(div != 0, "lcm requires positive arguments");
346
347
348
while ((next = cur % div) != 0) {
349
cur = div; div = next;
350
}
351
352
353
julong result = julong(a) * b / div;
354
assert(result <= (size_t)max_uintx, "Integer overflow in lcm");
355
356
return size_t(result);
357
}
358
359
#ifndef PRODUCT
360
361
void GlobalDefinitions::test_globals() {
362
intptr_t page_sizes[] = { os::vm_page_size(), 4096, 8192, 65536, 2*1024*1024 };
363
const int num_page_sizes = sizeof(page_sizes) / sizeof(page_sizes[0]);
364
365
for (int i = 0; i < num_page_sizes; i++) {
366
intptr_t page_size = page_sizes[i];
367
368
address a_page = (address)(10*page_size);
369
370
// Check that address within page is returned as is
371
assert(clamp_address_in_page(a_page, a_page, page_size) == a_page, "incorrect");
372
assert(clamp_address_in_page(a_page + 128, a_page, page_size) == a_page + 128, "incorrect");
373
assert(clamp_address_in_page(a_page + page_size - 1, a_page, page_size) == a_page + page_size - 1, "incorrect");
374
375
// Check that address above page returns start of next page
376
assert(clamp_address_in_page(a_page + page_size, a_page, page_size) == a_page + page_size, "incorrect");
377
assert(clamp_address_in_page(a_page + page_size + 1, a_page, page_size) == a_page + page_size, "incorrect");
378
assert(clamp_address_in_page(a_page + page_size*5 + 1, a_page, page_size) == a_page + page_size, "incorrect");
379
380
// Check that address below page returns start of page
381
assert(clamp_address_in_page(a_page - 1, a_page, page_size) == a_page, "incorrect");
382
assert(clamp_address_in_page(a_page - 2*page_size - 1, a_page, page_size) == a_page, "incorrect");
383
assert(clamp_address_in_page(a_page - 5*page_size - 1, a_page, page_size) == a_page, "incorrect");
384
}
385
}
386
387
#define EXPECT_EQ(expected, actual) \
388
assert(expected == actual, "Test failed");
389
#define EXPECT_STREQ(expected, actual) \
390
assert(strcmp(expected, actual) == 0, "Test failed");
391
392
void GlobalDefinitions::test_proper_unit() {
393
EXPECT_EQ(0u, byte_size_in_proper_unit(0u));
394
EXPECT_STREQ("B", proper_unit_for_byte_size(0u));
395
396
EXPECT_EQ(1u, byte_size_in_proper_unit(1u));
397
EXPECT_STREQ("B", proper_unit_for_byte_size(1u));
398
399
EXPECT_EQ(1023u, byte_size_in_proper_unit(K - 1));
400
EXPECT_STREQ("B", proper_unit_for_byte_size(K - 1));
401
402
EXPECT_EQ(1024u, byte_size_in_proper_unit(K));
403
EXPECT_STREQ("B", proper_unit_for_byte_size(K));
404
405
EXPECT_EQ(1025u, byte_size_in_proper_unit(K + 1));
406
EXPECT_STREQ("B", proper_unit_for_byte_size(K + 1));
407
408
EXPECT_EQ(51200u, byte_size_in_proper_unit(50*K));
409
EXPECT_STREQ("B", proper_unit_for_byte_size(50*K));
410
411
EXPECT_EQ(1023u, byte_size_in_proper_unit(M - 1));
412
EXPECT_STREQ("K", proper_unit_for_byte_size(M - 1));
413
414
EXPECT_EQ(1024u, byte_size_in_proper_unit(M));
415
EXPECT_STREQ("K", proper_unit_for_byte_size(M));
416
417
EXPECT_EQ(1024u, byte_size_in_proper_unit(M + 1));
418
EXPECT_STREQ("K", proper_unit_for_byte_size(M + 1));
419
420
EXPECT_EQ(1025u, byte_size_in_proper_unit(M + K));
421
EXPECT_STREQ("K", proper_unit_for_byte_size(M + K));
422
423
EXPECT_EQ(51200u, byte_size_in_proper_unit(50*M));
424
EXPECT_STREQ("K", proper_unit_for_byte_size(50*M));
425
426
#ifdef _LP64
427
EXPECT_EQ(1023u, byte_size_in_proper_unit(G - 1));
428
EXPECT_STREQ("M", proper_unit_for_byte_size(G - 1));
429
430
EXPECT_EQ(1024u, byte_size_in_proper_unit(G));
431
EXPECT_STREQ("M", proper_unit_for_byte_size(G));
432
433
EXPECT_EQ(1024u, byte_size_in_proper_unit(G + 1));
434
EXPECT_STREQ("M", proper_unit_for_byte_size(G + 1));
435
436
EXPECT_EQ(1024u, byte_size_in_proper_unit(G + K));
437
EXPECT_STREQ("M", proper_unit_for_byte_size(G + K));
438
439
EXPECT_EQ(1025u, byte_size_in_proper_unit(G + M));
440
EXPECT_STREQ("M", proper_unit_for_byte_size(G + M));
441
442
EXPECT_EQ(51200u, byte_size_in_proper_unit(50*G));
443
EXPECT_STREQ("M", proper_unit_for_byte_size(50*G));
444
#endif
445
}
446
447
#undef EXPECT_EQ
448
#undef EXPECT_STREQ
449
450
#endif // PRODUCT
451
452