Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/utilities/globalDefinitions.hpp
32285 views
1
/*
2
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
26
#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
27
28
#ifndef __STDC_FORMAT_MACROS
29
#define __STDC_FORMAT_MACROS
30
#endif
31
32
#ifdef TARGET_COMPILER_gcc
33
# include "utilities/globalDefinitions_gcc.hpp"
34
#endif
35
#ifdef TARGET_COMPILER_visCPP
36
# include "utilities/globalDefinitions_visCPP.hpp"
37
#endif
38
#ifdef TARGET_COMPILER_sparcWorks
39
# include "utilities/globalDefinitions_sparcWorks.hpp"
40
#endif
41
#ifdef TARGET_COMPILER_xlc
42
# include "utilities/globalDefinitions_xlc.hpp"
43
#endif
44
45
// Defaults for macros that might be defined per compiler.
46
#ifndef NOINLINE
47
#define NOINLINE
48
#endif
49
#ifndef ALWAYSINLINE
50
#define ALWAYSINLINE inline
51
#endif
52
53
#ifndef PRAGMA_DIAG_PUSH
54
#define PRAGMA_DIAG_PUSH
55
#endif
56
#ifndef PRAGMA_DIAG_POP
57
#define PRAGMA_DIAG_POP
58
#endif
59
#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
60
#define PRAGMA_FORMAT_NONLITERAL_IGNORED
61
#endif
62
#ifndef PRAGMA_FORMAT_IGNORED
63
#define PRAGMA_FORMAT_IGNORED
64
#endif
65
#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
66
#define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
67
#endif
68
#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
69
#define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
70
#endif
71
#ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
72
#define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
73
#endif
74
#ifndef ATTRIBUTE_PRINTF
75
#define ATTRIBUTE_PRINTF(fmt, vargs)
76
#endif
77
78
79
#include "utilities/macros.hpp"
80
81
// This file holds all globally used constants & types, class (forward)
82
// declarations and a few frequently used utility functions.
83
84
//----------------------------------------------------------------------------------------------------
85
// Constants
86
87
const int LogBytesPerShort = 1;
88
const int LogBytesPerInt = 2;
89
#ifdef _LP64
90
const int LogBytesPerWord = 3;
91
#else
92
const int LogBytesPerWord = 2;
93
#endif
94
const int LogBytesPerLong = 3;
95
96
const int BytesPerShort = 1 << LogBytesPerShort;
97
const int BytesPerInt = 1 << LogBytesPerInt;
98
const int BytesPerWord = 1 << LogBytesPerWord;
99
const int BytesPerLong = 1 << LogBytesPerLong;
100
101
const int LogBitsPerByte = 3;
102
const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
103
const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
104
const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
105
const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
106
107
const int BitsPerByte = 1 << LogBitsPerByte;
108
const int BitsPerShort = 1 << LogBitsPerShort;
109
const int BitsPerInt = 1 << LogBitsPerInt;
110
const int BitsPerWord = 1 << LogBitsPerWord;
111
const int BitsPerLong = 1 << LogBitsPerLong;
112
113
const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
114
const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
115
116
const int WordsPerLong = 2; // Number of stack entries for longs
117
118
const int oopSize = sizeof(char*); // Full-width oop
119
extern int heapOopSize; // Oop within a java object
120
const int wordSize = sizeof(char*);
121
const int longSize = sizeof(jlong);
122
const int jintSize = sizeof(jint);
123
const int size_tSize = sizeof(size_t);
124
125
const int BytesPerOop = BytesPerWord; // Full-width oop
126
127
extern int LogBytesPerHeapOop; // Oop within a java object
128
extern int LogBitsPerHeapOop;
129
extern int BytesPerHeapOop;
130
extern int BitsPerHeapOop;
131
132
// Oop encoding heap max
133
extern uint64_t OopEncodingHeapMax;
134
135
const int BitsPerJavaInteger = 32;
136
const int BitsPerJavaLong = 64;
137
const int BitsPerSize_t = size_tSize * BitsPerByte;
138
139
// Size of a char[] needed to represent a jint as a string in decimal.
140
const int jintAsStringSize = 12;
141
142
// In fact this should be
143
// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
144
// see os::set_memory_serialize_page()
145
#ifdef _LP64
146
const int SerializePageShiftCount = 4;
147
#else
148
#if INCLUDE_JFR && INCLUDE_ALL_GCS
149
// JavaThread already has quite a few Shenandoah fields. Adding many JFR fields
150
// trips sizeof(JavaThread) > 1024. Need to adjust it here.
151
const int SerializePageShiftCount = 4;
152
#else
153
const int SerializePageShiftCount = 3;
154
#endif
155
#endif
156
157
// An opaque struct of heap-word width, so that HeapWord* can be a generic
158
// pointer into the heap. We require that object sizes be measured in
159
// units of heap words, so that that
160
// HeapWord* hw;
161
// hw += oop(hw)->foo();
162
// works, where foo is a method (like size or scavenge) that returns the
163
// object size.
164
class HeapWord {
165
friend class VMStructs;
166
private:
167
char* i;
168
#ifndef PRODUCT
169
public:
170
char* value() { return i; }
171
#endif
172
};
173
174
// Analogous opaque struct for metadata allocated from
175
// metaspaces.
176
class MetaWord {
177
friend class VMStructs;
178
private:
179
char* i;
180
};
181
182
// HeapWordSize must be 2^LogHeapWordSize.
183
const int HeapWordSize = sizeof(HeapWord);
184
#ifdef _LP64
185
const int LogHeapWordSize = 3;
186
#else
187
const int LogHeapWordSize = 2;
188
#endif
189
const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
190
const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
191
192
// The larger HeapWordSize for 64bit requires larger heaps
193
// for the same application running in 64bit. See bug 4967770.
194
// The minimum alignment to a heap word size is done. Other
195
// parts of the memory system may required additional alignment
196
// and are responsible for those alignments.
197
#ifdef _LP64
198
#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
199
#else
200
#define ScaleForWordSize(x) (x)
201
#endif
202
203
// The minimum number of native machine words necessary to contain "byte_size"
204
// bytes.
205
inline size_t heap_word_size(size_t byte_size) {
206
return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
207
}
208
209
210
const size_t K = 1024;
211
const size_t M = K*K;
212
const size_t G = M*K;
213
const size_t HWperKB = K / sizeof(HeapWord);
214
215
const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
216
const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
217
218
// Constants for converting from a base unit to milli-base units. For
219
// example from seconds to milliseconds and microseconds
220
221
const int MILLIUNITS = 1000; // milli units per base unit
222
const int MICROUNITS = 1000000; // micro units per base unit
223
const int NANOUNITS = 1000000000; // nano units per base unit
224
225
const jlong NANOSECS_PER_SEC = CONST64(1000000000);
226
const jint NANOSECS_PER_MILLISEC = 1000000;
227
228
// Proper units routines try to maintain at least three significant digits.
229
// In worst case, it would print five significant digits with lower prefix.
230
// G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
231
// and therefore we need to be careful.
232
233
inline const char* proper_unit_for_byte_size(size_t s) {
234
#ifdef _LP64
235
if (s >= 100*G) {
236
return "G";
237
}
238
#endif
239
if (s >= 100*M) {
240
return "M";
241
} else if (s >= 100*K) {
242
return "K";
243
} else {
244
return "B";
245
}
246
}
247
248
template <class T>
249
inline T byte_size_in_proper_unit(T s) {
250
#ifdef _LP64
251
if (s >= 100*G) {
252
return (T)(s/G);
253
}
254
#endif
255
if (s >= 100*M) {
256
return (T)(s/M);
257
} else if (s >= 100*K) {
258
return (T)(s/K);
259
} else {
260
return s;
261
}
262
}
263
264
//----------------------------------------------------------------------------------------------------
265
// VM type definitions
266
267
// intx and uintx are the 'extended' int and 'extended' unsigned int types;
268
// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
269
270
typedef intptr_t intx;
271
typedef uintptr_t uintx;
272
273
const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
274
const intx max_intx = (uintx)min_intx - 1;
275
const uintx max_uintx = (uintx)-1;
276
277
// Table of values:
278
// sizeof intx 4 8
279
// min_intx 0x80000000 0x8000000000000000
280
// max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
281
// max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
282
283
typedef unsigned int uint; NEEDS_CLEANUP
284
285
286
//----------------------------------------------------------------------------------------------------
287
// Java type definitions
288
289
// All kinds of 'plain' byte addresses
290
typedef signed char s_char;
291
typedef unsigned char u_char;
292
typedef u_char* address;
293
typedef uintptr_t address_word; // unsigned integer which will hold a pointer
294
// except for some implementations of a C++
295
// linkage pointer to function. Should never
296
// need one of those to be placed in this
297
// type anyway.
298
299
// Utility functions to "portably" (?) bit twiddle pointers
300
// Where portable means keep ANSI C++ compilers quiet
301
302
inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
303
inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
304
305
// Utility functions to "portably" make cast to/from function pointers.
306
307
inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
308
inline address_word castable_address(address x) { return address_word(x) ; }
309
inline address_word castable_address(void* x) { return address_word(x) ; }
310
311
// Pointer subtraction.
312
// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
313
// the range we might need to find differences from one end of the heap
314
// to the other.
315
// A typical use might be:
316
// if (pointer_delta(end(), top()) >= size) {
317
// // enough room for an object of size
318
// ...
319
// and then additions like
320
// ... top() + size ...
321
// are safe because we know that top() is at least size below end().
322
inline size_t pointer_delta(const void* left,
323
const void* right,
324
size_t element_size) {
325
return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
326
}
327
// A version specialized for HeapWord*'s.
328
inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
329
return pointer_delta(left, right, sizeof(HeapWord));
330
}
331
// A version specialized for MetaWord*'s.
332
inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
333
return pointer_delta(left, right, sizeof(MetaWord));
334
}
335
336
//
337
// ANSI C++ does not allow casting from one pointer type to a function pointer
338
// directly without at best a warning. This macro accomplishes it silently
339
// In every case that is present at this point the value be cast is a pointer
340
// to a C linkage function. In somecase the type used for the cast reflects
341
// that linkage and a picky compiler would not complain. In other cases because
342
// there is no convenient place to place a typedef with extern C linkage (i.e
343
// a platform dependent header file) it doesn't. At this point no compiler seems
344
// picky enough to catch these instances (which are few). It is possible that
345
// using templates could fix these for all cases. This use of templates is likely
346
// so far from the middle of the road that it is likely to be problematic in
347
// many C++ compilers.
348
//
349
#define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
350
#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
351
352
// Unsigned byte types for os and stream.hpp
353
354
// Unsigned one, two, four and eigth byte quantities used for describing
355
// the .class file format. See JVM book chapter 4.
356
357
typedef jubyte u1;
358
typedef jushort u2;
359
typedef juint u4;
360
typedef julong u8;
361
362
const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
363
const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
364
const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
365
const julong max_julong = (julong)-1; // 0xFF....FF largest julong
366
367
typedef jbyte s1;
368
typedef jshort s2;
369
typedef jint s4;
370
typedef jlong s8;
371
372
//----------------------------------------------------------------------------------------------------
373
// JVM spec restrictions
374
375
const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
376
377
// Default ProtectionDomainCacheSize values
378
379
const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
380
381
//----------------------------------------------------------------------------------------------------
382
// Default and minimum StringTableSize values
383
384
const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
385
const int minimumStringTableSize = 1009;
386
387
const int defaultSymbolTableSize = 20011;
388
const int minimumSymbolTableSize = 1009;
389
390
391
//----------------------------------------------------------------------------------------------------
392
// HotSwap - for JVMTI aka Class File Replacement and PopFrame
393
//
394
// Determines whether on-the-fly class replacement and frame popping are enabled.
395
396
#define HOTSWAP
397
398
//----------------------------------------------------------------------------------------------------
399
// Object alignment, in units of HeapWords.
400
//
401
// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
402
// reference fields can be naturally aligned.
403
404
extern int MinObjAlignment;
405
extern int MinObjAlignmentInBytes;
406
extern int MinObjAlignmentInBytesMask;
407
408
extern int LogMinObjAlignment;
409
extern int LogMinObjAlignmentInBytes;
410
411
const int LogKlassAlignmentInBytes = 3;
412
const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
413
const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
414
const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
415
416
// Klass encoding metaspace max size
417
const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
418
419
// Machine dependent stuff
420
421
#if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
422
// Include Restricted Transactional Memory lock eliding optimization
423
#define INCLUDE_RTM_OPT 1
424
#define RTM_OPT_ONLY(code) code
425
#else
426
#define INCLUDE_RTM_OPT 0
427
#define RTM_OPT_ONLY(code)
428
#endif
429
// States of Restricted Transactional Memory usage.
430
enum RTMState {
431
NoRTM = 0x2, // Don't use RTM
432
UseRTM = 0x1, // Use RTM
433
ProfileRTM = 0x0 // Use RTM with abort ratio calculation
434
};
435
436
// The maximum size of the code cache. Can be overridden by targets.
437
#define CODE_CACHE_SIZE_LIMIT (2*G)
438
// Allow targets to reduce the default size of the code cache.
439
#define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
440
441
#ifdef TARGET_ARCH_x86
442
# include "globalDefinitions_x86.hpp"
443
#endif
444
#ifdef TARGET_ARCH_aarch32
445
# include "globalDefinitions_aarch32.hpp"
446
#endif
447
#ifdef TARGET_ARCH_aarch64
448
# include "globalDefinitions_aarch64.hpp"
449
#endif
450
#ifdef TARGET_ARCH_sparc
451
# include "globalDefinitions_sparc.hpp"
452
#endif
453
#ifdef TARGET_ARCH_zero
454
# include "globalDefinitions_zero.hpp"
455
#endif
456
#ifdef TARGET_ARCH_arm
457
# include "globalDefinitions_arm.hpp"
458
#endif
459
#ifdef TARGET_ARCH_ppc
460
# include "globalDefinitions_ppc.hpp"
461
#endif
462
463
/*
464
* If a platform does not support native stack walking
465
* the platform specific globalDefinitions (above)
466
* can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
467
*/
468
#ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
469
#define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
470
#endif
471
472
// To assure the IRIW property on processors that are not multiple copy
473
// atomic, sync instructions must be issued between volatile reads to
474
// assure their ordering, instead of after volatile stores.
475
// (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
476
// by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
477
#ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
478
const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
479
#else
480
const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
481
#endif
482
483
// The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
484
// Note: this value must be a power of 2
485
486
#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
487
488
// Signed variants of alignment helpers. There are two versions of each, a macro
489
// for use in places like enum definitions that require compile-time constant
490
// expressions and a function for all other places so as to get type checking.
491
492
#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
493
494
inline bool is_size_aligned(size_t size, size_t alignment) {
495
return align_size_up_(size, alignment) == size;
496
}
497
498
inline bool is_ptr_aligned(void* ptr, size_t alignment) {
499
return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
500
}
501
502
inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
503
return align_size_up_(size, alignment);
504
}
505
506
#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
507
508
inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
509
return align_size_down_(size, alignment);
510
}
511
512
#define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
513
514
inline void* align_ptr_up(void* ptr, size_t alignment) {
515
return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
516
}
517
518
inline void* align_ptr_down(void* ptr, size_t alignment) {
519
return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
520
}
521
522
// Align objects by rounding up their size, in HeapWord units.
523
524
#define align_object_size_(size) align_size_up_(size, MinObjAlignment)
525
526
inline intptr_t align_object_size(intptr_t size) {
527
return align_size_up(size, MinObjAlignment);
528
}
529
530
inline bool is_object_aligned(intptr_t addr) {
531
return addr == align_object_size(addr);
532
}
533
534
// Pad out certain offsets to jlong alignment, in HeapWord units.
535
536
inline intptr_t align_object_offset(intptr_t offset) {
537
return align_size_up(offset, HeapWordsPerLong);
538
}
539
540
inline void* align_pointer_up(const void* addr, size_t size) {
541
return (void*) align_size_up_((uintptr_t)addr, size);
542
}
543
544
// Align down with a lower bound. If the aligning results in 0, return 'alignment'.
545
546
inline size_t align_size_down_bounded(size_t size, size_t alignment) {
547
size_t aligned_size = align_size_down_(size, alignment);
548
return aligned_size > 0 ? aligned_size : alignment;
549
}
550
551
// Clamp an address to be within a specific page
552
// 1. If addr is on the page it is returned as is
553
// 2. If addr is above the page_address the start of the *next* page will be returned
554
// 3. Otherwise, if addr is below the page_address the start of the page will be returned
555
inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
556
if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
557
// address is in the specified page, just return it as is
558
return addr;
559
} else if (addr > page_address) {
560
// address is above specified page, return start of next page
561
return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
562
} else {
563
// address is below specified page, return start of page
564
return (address)align_size_down(intptr_t(page_address), page_size);
565
}
566
}
567
568
569
// The expected size in bytes of a cache line, used to pad data structures.
570
#define DEFAULT_CACHE_LINE_SIZE 64
571
572
573
//----------------------------------------------------------------------------------------------------
574
// Utility macros for compilers
575
// used to silence compiler warnings
576
577
#define Unused_Variable(var) var
578
579
580
//----------------------------------------------------------------------------------------------------
581
// Miscellaneous
582
583
// 6302670 Eliminate Hotspot __fabsf dependency
584
// All fabs() callers should call this function instead, which will implicitly
585
// convert the operand to double, avoiding a dependency on __fabsf which
586
// doesn't exist in early versions of Solaris 8.
587
inline double fabsd(double value) {
588
return fabs(value);
589
}
590
591
//----------------------------------------------------------------------------------------------------
592
// Special casts
593
// Cast floats into same-size integers and vice-versa w/o changing bit-pattern
594
typedef union {
595
jfloat f;
596
jint i;
597
} FloatIntConv;
598
599
typedef union {
600
jdouble d;
601
jlong l;
602
julong ul;
603
} DoubleLongConv;
604
605
inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
606
inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
607
608
inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
609
inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
610
inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
611
612
inline jint low (jlong value) { return jint(value); }
613
inline jint high(jlong value) { return jint(value >> 32); }
614
615
// the fancy casts are a hopefully portable way
616
// to do unsigned 32 to 64 bit type conversion
617
inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
618
*value |= (jlong)(julong)(juint)low; }
619
620
inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
621
*value |= (jlong)high << 32; }
622
623
inline jlong jlong_from(jint h, jint l) {
624
jlong result = 0; // initialization to avoid warning
625
set_high(&result, h);
626
set_low(&result, l);
627
return result;
628
}
629
630
union jlong_accessor {
631
jint words[2];
632
jlong long_value;
633
};
634
635
void basic_types_init(); // cannot define here; uses assert
636
637
638
// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
639
enum BasicType {
640
T_BOOLEAN = 4,
641
T_CHAR = 5,
642
T_FLOAT = 6,
643
T_DOUBLE = 7,
644
T_BYTE = 8,
645
T_SHORT = 9,
646
T_INT = 10,
647
T_LONG = 11,
648
T_OBJECT = 12,
649
T_ARRAY = 13,
650
T_VOID = 14,
651
T_ADDRESS = 15,
652
T_NARROWOOP = 16,
653
T_METADATA = 17,
654
T_NARROWKLASS = 18,
655
T_CONFLICT = 19, // for stack value type with conflicting contents
656
T_ILLEGAL = 99
657
};
658
659
inline bool is_java_primitive(BasicType t) {
660
return T_BOOLEAN <= t && t <= T_LONG;
661
}
662
663
inline bool is_subword_type(BasicType t) {
664
// these guys are processed exactly like T_INT in calling sequences:
665
return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
666
}
667
668
inline bool is_signed_subword_type(BasicType t) {
669
return (t == T_BYTE || t == T_SHORT);
670
}
671
672
inline bool is_reference_type(BasicType t) {
673
return (t == T_OBJECT || t == T_ARRAY);
674
}
675
676
// Convert a char from a classfile signature to a BasicType
677
inline BasicType char2type(char c) {
678
switch( c ) {
679
case 'B': return T_BYTE;
680
case 'C': return T_CHAR;
681
case 'D': return T_DOUBLE;
682
case 'F': return T_FLOAT;
683
case 'I': return T_INT;
684
case 'J': return T_LONG;
685
case 'S': return T_SHORT;
686
case 'Z': return T_BOOLEAN;
687
case 'V': return T_VOID;
688
case 'L': return T_OBJECT;
689
case '[': return T_ARRAY;
690
}
691
return T_ILLEGAL;
692
}
693
694
extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
695
inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
696
extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
697
extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
698
inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
699
extern BasicType name2type(const char* name);
700
701
// Auxilary math routines
702
// least common multiple
703
extern size_t lcm(size_t a, size_t b);
704
705
706
// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
707
enum BasicTypeSize {
708
T_BOOLEAN_size = 1,
709
T_CHAR_size = 1,
710
T_FLOAT_size = 1,
711
T_DOUBLE_size = 2,
712
T_BYTE_size = 1,
713
T_SHORT_size = 1,
714
T_INT_size = 1,
715
T_LONG_size = 2,
716
T_OBJECT_size = 1,
717
T_ARRAY_size = 1,
718
T_NARROWOOP_size = 1,
719
T_NARROWKLASS_size = 1,
720
T_VOID_size = 0
721
};
722
723
724
// maps a BasicType to its instance field storage type:
725
// all sub-word integral types are widened to T_INT
726
extern BasicType type2field[T_CONFLICT+1];
727
extern BasicType type2wfield[T_CONFLICT+1];
728
729
730
// size in bytes
731
enum ArrayElementSize {
732
T_BOOLEAN_aelem_bytes = 1,
733
T_CHAR_aelem_bytes = 2,
734
T_FLOAT_aelem_bytes = 4,
735
T_DOUBLE_aelem_bytes = 8,
736
T_BYTE_aelem_bytes = 1,
737
T_SHORT_aelem_bytes = 2,
738
T_INT_aelem_bytes = 4,
739
T_LONG_aelem_bytes = 8,
740
#ifdef _LP64
741
T_OBJECT_aelem_bytes = 8,
742
T_ARRAY_aelem_bytes = 8,
743
#else
744
T_OBJECT_aelem_bytes = 4,
745
T_ARRAY_aelem_bytes = 4,
746
#endif
747
T_NARROWOOP_aelem_bytes = 4,
748
T_NARROWKLASS_aelem_bytes = 4,
749
T_VOID_aelem_bytes = 0
750
};
751
752
extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
753
#ifdef ASSERT
754
extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
755
#else
756
inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
757
#endif
758
759
760
// JavaValue serves as a container for arbitrary Java values.
761
762
class JavaValue {
763
764
public:
765
typedef union JavaCallValue {
766
jfloat f;
767
jdouble d;
768
jint i;
769
jlong l;
770
jobject h;
771
} JavaCallValue;
772
773
private:
774
BasicType _type;
775
JavaCallValue _value;
776
777
public:
778
JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
779
780
JavaValue(jfloat value) {
781
_type = T_FLOAT;
782
_value.f = value;
783
}
784
785
JavaValue(jdouble value) {
786
_type = T_DOUBLE;
787
_value.d = value;
788
}
789
790
jfloat get_jfloat() const { return _value.f; }
791
jdouble get_jdouble() const { return _value.d; }
792
jint get_jint() const { return _value.i; }
793
jlong get_jlong() const { return _value.l; }
794
jobject get_jobject() const { return _value.h; }
795
JavaCallValue* get_value_addr() { return &_value; }
796
BasicType get_type() const { return _type; }
797
798
void set_jfloat(jfloat f) { _value.f = f;}
799
void set_jdouble(jdouble d) { _value.d = d;}
800
void set_jint(jint i) { _value.i = i;}
801
void set_jlong(jlong l) { _value.l = l;}
802
void set_jobject(jobject h) { _value.h = h;}
803
void set_type(BasicType t) { _type = t; }
804
805
jboolean get_jboolean() const { return (jboolean) (_value.i);}
806
jbyte get_jbyte() const { return (jbyte) (_value.i);}
807
jchar get_jchar() const { return (jchar) (_value.i);}
808
jshort get_jshort() const { return (jshort) (_value.i);}
809
810
};
811
812
813
#define STACK_BIAS 0
814
// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
815
// in order to extend the reach of the stack pointer.
816
#if defined(SPARC) && defined(_LP64)
817
#undef STACK_BIAS
818
#define STACK_BIAS 0x7ff
819
#endif
820
821
822
// TosState describes the top-of-stack state before and after the execution of
823
// a bytecode or method. The top-of-stack value may be cached in one or more CPU
824
// registers. The TosState corresponds to the 'machine represention' of this cached
825
// value. There's 4 states corresponding to the JAVA types int, long, float & double
826
// as well as a 5th state in case the top-of-stack value is actually on the top
827
// of stack (in memory) and thus not cached. The atos state corresponds to the itos
828
// state when it comes to machine representation but is used separately for (oop)
829
// type specific operations (e.g. verification code).
830
831
enum TosState { // describes the tos cache contents
832
btos = 0, // byte, bool tos cached
833
ztos = 1, // byte, bool tos cached
834
ctos = 2, // char tos cached
835
stos = 3, // short tos cached
836
itos = 4, // int tos cached
837
ltos = 5, // long tos cached
838
ftos = 6, // float tos cached
839
dtos = 7, // double tos cached
840
atos = 8, // object cached
841
vtos = 9, // tos not cached
842
number_of_states,
843
ilgl // illegal state: should not occur
844
};
845
846
847
inline TosState as_TosState(BasicType type) {
848
switch (type) {
849
case T_BYTE : return btos;
850
case T_BOOLEAN: return ztos;
851
case T_CHAR : return ctos;
852
case T_SHORT : return stos;
853
case T_INT : return itos;
854
case T_LONG : return ltos;
855
case T_FLOAT : return ftos;
856
case T_DOUBLE : return dtos;
857
case T_VOID : return vtos;
858
case T_ARRAY : // fall through
859
case T_OBJECT : return atos;
860
}
861
return ilgl;
862
}
863
864
inline BasicType as_BasicType(TosState state) {
865
switch (state) {
866
case btos : return T_BYTE;
867
case ztos : return T_BOOLEAN;
868
case ctos : return T_CHAR;
869
case stos : return T_SHORT;
870
case itos : return T_INT;
871
case ltos : return T_LONG;
872
case ftos : return T_FLOAT;
873
case dtos : return T_DOUBLE;
874
case atos : return T_OBJECT;
875
case vtos : return T_VOID;
876
}
877
return T_ILLEGAL;
878
}
879
880
881
// Helper function to convert BasicType info into TosState
882
// Note: Cannot define here as it uses global constant at the time being.
883
TosState as_TosState(BasicType type);
884
885
886
// JavaThreadState keeps track of which part of the code a thread is executing in. This
887
// information is needed by the safepoint code.
888
//
889
// There are 4 essential states:
890
//
891
// _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
892
// _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
893
// _thread_in_vm : Executing in the vm
894
// _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
895
//
896
// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
897
// a transition from one state to another. These extra states makes it possible for the safepoint code to
898
// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
899
//
900
// Given a state, the xxx_trans state can always be found by adding 1.
901
//
902
enum JavaThreadState {
903
_thread_uninitialized = 0, // should never happen (missing initialization)
904
_thread_new = 2, // just starting up, i.e., in process of being initialized
905
_thread_new_trans = 3, // corresponding transition state (not used, included for completness)
906
_thread_in_native = 4, // running in native code
907
_thread_in_native_trans = 5, // corresponding transition state
908
_thread_in_vm = 6, // running in VM
909
_thread_in_vm_trans = 7, // corresponding transition state
910
_thread_in_Java = 8, // running in Java or in stub code
911
_thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
912
_thread_blocked = 10, // blocked in vm
913
_thread_blocked_trans = 11, // corresponding transition state
914
_thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
915
};
916
917
918
// Handy constants for deciding which compiler mode to use.
919
enum MethodCompilation {
920
InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
921
InvalidOSREntryBci = -2
922
};
923
924
// Enumeration to distinguish tiers of compilation
925
enum CompLevel {
926
CompLevel_any = -1,
927
CompLevel_all = -1,
928
CompLevel_none = 0, // Interpreter
929
CompLevel_simple = 1, // C1
930
CompLevel_limited_profile = 2, // C1, invocation & backedge counters
931
CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
932
CompLevel_full_optimization = 4, // C2 or Shark
933
934
#if defined(COMPILER2) || defined(SHARK)
935
CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
936
#elif defined(COMPILER1)
937
CompLevel_highest_tier = CompLevel_simple, // pure C1
938
#else
939
CompLevel_highest_tier = CompLevel_none,
940
#endif
941
942
#if defined(TIERED)
943
CompLevel_initial_compile = CompLevel_full_profile // tiered
944
#elif defined(COMPILER1)
945
CompLevel_initial_compile = CompLevel_simple // pure C1
946
#elif defined(COMPILER2) || defined(SHARK)
947
CompLevel_initial_compile = CompLevel_full_optimization // pure C2
948
#else
949
CompLevel_initial_compile = CompLevel_none
950
#endif
951
};
952
953
inline bool is_c1_compile(int comp_level) {
954
return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
955
}
956
957
inline bool is_c2_compile(int comp_level) {
958
return comp_level == CompLevel_full_optimization;
959
}
960
961
inline bool is_highest_tier_compile(int comp_level) {
962
return comp_level == CompLevel_highest_tier;
963
}
964
965
inline bool is_compile(int comp_level) {
966
return is_c1_compile(comp_level) || is_c2_compile(comp_level);
967
}
968
969
//----------------------------------------------------------------------------------------------------
970
// 'Forward' declarations of frequently used classes
971
// (in order to reduce interface dependencies & reduce
972
// number of unnecessary compilations after changes)
973
974
class symbolTable;
975
class ClassFileStream;
976
977
class Event;
978
979
class Thread;
980
class VMThread;
981
class JavaThread;
982
class Threads;
983
984
class VM_Operation;
985
class VMOperationQueue;
986
987
class CodeBlob;
988
class nmethod;
989
class OSRAdapter;
990
class I2CAdapter;
991
class C2IAdapter;
992
class CompiledIC;
993
class relocInfo;
994
class ScopeDesc;
995
class PcDesc;
996
997
class Recompiler;
998
class Recompilee;
999
class RecompilationPolicy;
1000
class RFrame;
1001
class CompiledRFrame;
1002
class InterpretedRFrame;
1003
1004
class frame;
1005
1006
class vframe;
1007
class javaVFrame;
1008
class interpretedVFrame;
1009
class compiledVFrame;
1010
class deoptimizedVFrame;
1011
class externalVFrame;
1012
class entryVFrame;
1013
1014
class RegisterMap;
1015
1016
class Mutex;
1017
class Monitor;
1018
class BasicLock;
1019
class BasicObjectLock;
1020
1021
class PeriodicTask;
1022
1023
class JavaCallWrapper;
1024
1025
class oopDesc;
1026
class metaDataOopDesc;
1027
1028
class NativeCall;
1029
1030
class zone;
1031
1032
class StubQueue;
1033
1034
class outputStream;
1035
1036
class ResourceArea;
1037
1038
class DebugInformationRecorder;
1039
class ScopeValue;
1040
class CompressedStream;
1041
class DebugInfoReadStream;
1042
class DebugInfoWriteStream;
1043
class LocationValue;
1044
class ConstantValue;
1045
class IllegalValue;
1046
1047
class PrivilegedElement;
1048
class MonitorArray;
1049
1050
class MonitorInfo;
1051
1052
class OffsetClosure;
1053
class OopMapCache;
1054
class InterpreterOopMap;
1055
class OopMapCacheEntry;
1056
class OSThread;
1057
1058
typedef int (*OSThreadStartFunc)(void*);
1059
1060
class Space;
1061
1062
class JavaValue;
1063
class methodHandle;
1064
class JavaCallArguments;
1065
1066
// Basic support for errors (general debug facilities not defined at this point fo the include phase)
1067
1068
extern void basic_fatal(const char* msg);
1069
1070
1071
//----------------------------------------------------------------------------------------------------
1072
// Special constants for debugging
1073
1074
const jint badInt = -3; // generic "bad int" value
1075
const intptr_t badAddressVal = -2; // generic "bad address" value
1076
const intptr_t badOopVal = -1; // generic "bad oop" value
1077
const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1078
const int badStackSegVal = 0xCA; // value used to zap stack segments
1079
const int badHandleValue = 0xBC; // value used to zap vm handle area
1080
const int badResourceValue = 0xAB; // value used to zap resource area
1081
const int freeBlockPad = 0xBA; // value used to pad freed blocks.
1082
const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
1083
const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1084
const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
1085
const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
1086
const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
1087
const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
1088
1089
1090
// (These must be implemented as #defines because C++ compilers are
1091
// not obligated to inline non-integral constants!)
1092
#define badAddress ((address)::badAddressVal)
1093
#define badOop (cast_to_oop(::badOopVal))
1094
#define badHeapWord (::badHeapWordVal)
1095
#define badJNIHandle (cast_to_oop(::badJNIHandleVal))
1096
1097
// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1098
#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1099
1100
//----------------------------------------------------------------------------------------------------
1101
// Utility functions for bitfield manipulations
1102
1103
const intptr_t AllBits = ~0; // all bits set in a word
1104
const intptr_t NoBits = 0; // no bits set in a word
1105
const jlong NoLongBits = 0; // no bits set in a long
1106
const intptr_t OneBit = 1; // only right_most bit set in a word
1107
1108
// get a word with the n.th or the right-most or left-most n bits set
1109
// (note: #define used only so that they can be used in enum constant definitions)
1110
#define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
1111
#define right_n_bits(n) (nth_bit(n) - 1)
1112
#define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1113
1114
// bit-operations using a mask m
1115
inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
1116
inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
1117
inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
1118
inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
1119
inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1120
1121
// bit-operations using the n.th bit
1122
inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
1123
inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1124
inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1125
1126
// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1127
inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1128
return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1129
}
1130
1131
1132
//----------------------------------------------------------------------------------------------------
1133
// Utility functions for integers
1134
1135
// Avoid use of global min/max macros which may cause unwanted double
1136
// evaluation of arguments.
1137
#ifdef max
1138
#undef max
1139
#endif
1140
1141
#ifdef min
1142
#undef min
1143
#endif
1144
1145
#define max(a,b) Do_not_use_max_use_MAX2_instead
1146
#define min(a,b) Do_not_use_min_use_MIN2_instead
1147
1148
// It is necessary to use templates here. Having normal overloaded
1149
// functions does not work because it is necessary to provide both 32-
1150
// and 64-bit overloaded functions, which does not work, and having
1151
// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1152
// will be even more error-prone than macros.
1153
template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
1154
template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
1155
template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
1156
template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
1157
template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1158
template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1159
1160
template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
1161
1162
// true if x is a power of 2, false otherwise
1163
inline bool is_power_of_2(intptr_t x) {
1164
return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1165
}
1166
1167
// long version of is_power_of_2
1168
inline bool is_power_of_2_long(jlong x) {
1169
return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1170
}
1171
1172
//* largest i such that 2^i <= x
1173
// A negative value of 'x' will return '31'
1174
inline int log2_intptr(uintptr_t x) {
1175
int i = -1;
1176
uintptr_t p = 1;
1177
while (p != 0 && p <= x) {
1178
// p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1179
i++; p *= 2;
1180
}
1181
// p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1182
// (if p = 0 then overflow occurred and i = 31)
1183
return i;
1184
}
1185
1186
//* largest i such that 2^i <= x
1187
inline int log2_long(julong x) {
1188
int i = -1;
1189
julong p = 1;
1190
while (p != 0 && p <= x) {
1191
// p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1192
i++; p *= 2;
1193
}
1194
// p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1195
// (if p = 0 then overflow occurred and i = 63)
1196
return i;
1197
}
1198
1199
inline int log2_intptr(intptr_t x) {
1200
return log2_intptr((uintptr_t)x);
1201
}
1202
1203
inline int log2_int(int x) {
1204
return log2_intptr((uintptr_t)x);
1205
}
1206
1207
inline int log2_jint(jint x) {
1208
return log2_intptr((uintptr_t)x);
1209
}
1210
1211
inline int log2_uint(uint x) {
1212
return log2_intptr((uintptr_t)x);
1213
}
1214
1215
// A negative value of 'x' will return '63'
1216
inline int log2_jlong(jlong x) {
1217
return log2_long((julong)x);
1218
}
1219
1220
//* the argument must be exactly a power of 2
1221
inline int exact_log2(intptr_t x) {
1222
#ifdef ASSERT
1223
if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1224
#endif
1225
return log2_intptr(x);
1226
}
1227
1228
//* the argument must be exactly a power of 2
1229
inline int exact_log2_long(jlong x) {
1230
#ifdef ASSERT
1231
if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1232
#endif
1233
return log2_long(x);
1234
}
1235
1236
1237
// returns integer round-up to the nearest multiple of s (s must be a power of two)
1238
inline intptr_t round_to(intptr_t x, uintx s) {
1239
#ifdef ASSERT
1240
if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1241
#endif
1242
const uintx m = s - 1;
1243
return mask_bits(x + m, ~m);
1244
}
1245
1246
// returns integer round-down to the nearest multiple of s (s must be a power of two)
1247
inline intptr_t round_down(intptr_t x, uintx s) {
1248
#ifdef ASSERT
1249
if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1250
#endif
1251
const uintx m = s - 1;
1252
return mask_bits(x, ~m);
1253
}
1254
1255
1256
inline bool is_odd (intx x) { return x & 1; }
1257
inline bool is_even(intx x) { return !is_odd(x); }
1258
1259
// abs methods which cannot overflow and so are well-defined across
1260
// the entire domain of integer types.
1261
static inline unsigned int uabs(unsigned int n) {
1262
union {
1263
unsigned int result;
1264
int value;
1265
};
1266
result = n;
1267
if (value < 0) result = 0-result;
1268
return result;
1269
}
1270
static inline julong uabs(julong n) {
1271
union {
1272
julong result;
1273
jlong value;
1274
};
1275
result = n;
1276
if (value < 0) result = 0-result;
1277
return result;
1278
}
1279
static inline julong uabs(jlong n) { return uabs((julong)n); }
1280
static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1281
1282
// "to" should be greater than "from."
1283
inline intx byte_size(void* from, void* to) {
1284
return (address)to - (address)from;
1285
}
1286
1287
//----------------------------------------------------------------------------------------------------
1288
// Avoid non-portable casts with these routines (DEPRECATED)
1289
1290
// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1291
// Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1292
1293
// Given sequence of four bytes, build into a 32-bit word
1294
// following the conventions used in class files.
1295
// On the 386, this could be realized with a simple address cast.
1296
//
1297
1298
// This routine takes eight bytes:
1299
inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1300
return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
1301
| (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
1302
| (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
1303
| (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
1304
| (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
1305
| (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
1306
| (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
1307
| (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
1308
}
1309
1310
// This routine takes four bytes:
1311
inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1312
return (( u4(c1) << 24 ) & 0xff000000)
1313
| (( u4(c2) << 16 ) & 0x00ff0000)
1314
| (( u4(c3) << 8 ) & 0x0000ff00)
1315
| (( u4(c4) << 0 ) & 0x000000ff);
1316
}
1317
1318
// And this one works if the four bytes are contiguous in memory:
1319
inline u4 build_u4_from( u1* p ) {
1320
return build_u4_from( p[0], p[1], p[2], p[3] );
1321
}
1322
1323
// Ditto for two-byte ints:
1324
inline u2 build_u2_from( u1 c1, u1 c2 ) {
1325
return u2((( u2(c1) << 8 ) & 0xff00)
1326
| (( u2(c2) << 0 ) & 0x00ff));
1327
}
1328
1329
// And this one works if the two bytes are contiguous in memory:
1330
inline u2 build_u2_from( u1* p ) {
1331
return build_u2_from( p[0], p[1] );
1332
}
1333
1334
// Ditto for floats:
1335
inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1336
u4 u = build_u4_from( c1, c2, c3, c4 );
1337
return *(jfloat*)&u;
1338
}
1339
1340
inline jfloat build_float_from( u1* p ) {
1341
u4 u = build_u4_from( p );
1342
return *(jfloat*)&u;
1343
}
1344
1345
1346
// now (64-bit) longs
1347
1348
inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1349
return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
1350
| (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
1351
| (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
1352
| (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
1353
| (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
1354
| (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
1355
| (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
1356
| (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
1357
}
1358
1359
inline jlong build_long_from( u1* p ) {
1360
return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1361
}
1362
1363
1364
// Doubles, too!
1365
inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1366
jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1367
return *(jdouble*)&u;
1368
}
1369
1370
inline jdouble build_double_from( u1* p ) {
1371
jlong u = build_long_from( p );
1372
return *(jdouble*)&u;
1373
}
1374
1375
1376
// Portable routines to go the other way:
1377
1378
inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1379
c1 = u1(x >> 8);
1380
c2 = u1(x);
1381
}
1382
1383
inline void explode_short_to( u2 x, u1* p ) {
1384
explode_short_to( x, p[0], p[1]);
1385
}
1386
1387
inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1388
c1 = u1(x >> 24);
1389
c2 = u1(x >> 16);
1390
c3 = u1(x >> 8);
1391
c4 = u1(x);
1392
}
1393
1394
inline void explode_int_to( u4 x, u1* p ) {
1395
explode_int_to( x, p[0], p[1], p[2], p[3]);
1396
}
1397
1398
1399
// Pack and extract shorts to/from ints:
1400
1401
inline int extract_low_short_from_int(jint x) {
1402
return x & 0xffff;
1403
}
1404
1405
inline int extract_high_short_from_int(jint x) {
1406
return (x >> 16) & 0xffff;
1407
}
1408
1409
inline int build_int_from_shorts( jushort low, jushort high ) {
1410
return ((int)((unsigned int)high << 16) | (unsigned int)low);
1411
}
1412
1413
// Convert pointer to intptr_t, for use in printing pointers.
1414
inline intptr_t p2i(const void * p) {
1415
return (intptr_t) p;
1416
}
1417
1418
// Printf-style formatters for fixed- and variable-width types as pointers and
1419
// integers. These are derived from the definitions in inttypes.h. If the platform
1420
// doesn't provide appropriate definitions, they should be provided in
1421
// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1422
1423
#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1424
1425
// Format 32-bit quantities.
1426
#define INT32_FORMAT "%" PRId32
1427
#define UINT32_FORMAT "%" PRIu32
1428
#define INT32_FORMAT_W(width) "%" #width PRId32
1429
#define UINT32_FORMAT_W(width) "%" #width PRIu32
1430
1431
#define PTR32_FORMAT "0x%08" PRIx32
1432
1433
// Format 64-bit quantities.
1434
#define INT64_FORMAT "%" PRId64
1435
#define UINT64_FORMAT "%" PRIu64
1436
#define UINT64_FORMAT_X "%" PRIx64
1437
#define INT64_FORMAT_W(width) "%" #width PRId64
1438
#define UINT64_FORMAT_W(width) "%" #width PRIu64
1439
#define UINT64_FORMAT_X_W(width) "%" #width PRIx64
1440
1441
#define PTR64_FORMAT "0x%016" PRIx64
1442
1443
// Format jlong, if necessary
1444
#ifndef JLONG_FORMAT
1445
#define JLONG_FORMAT INT64_FORMAT
1446
#endif
1447
#ifndef JULONG_FORMAT
1448
#define JULONG_FORMAT UINT64_FORMAT
1449
#endif
1450
1451
// Format pointers which change size between 32- and 64-bit.
1452
#ifdef _LP64
1453
#define INTPTR_FORMAT "0x%016" PRIxPTR
1454
#define PTR_FORMAT "0x%016" PRIxPTR
1455
#else // !_LP64
1456
#define INTPTR_FORMAT "0x%08" PRIxPTR
1457
#define PTR_FORMAT "0x%08" PRIxPTR
1458
#endif // _LP64
1459
1460
#define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
1461
1462
#define SSIZE_FORMAT "%" PRIdPTR
1463
#define SIZE_FORMAT "%" PRIuPTR
1464
#define SIZE_FORMAT_HEX "0x%" PRIxPTR
1465
#define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1466
#define SIZE_FORMAT_W(width) "%" #width PRIuPTR
1467
#define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1468
1469
#define INTX_FORMAT "%" PRIdPTR
1470
#define UINTX_FORMAT "%" PRIuPTR
1471
#define INTX_FORMAT_W(width) "%" #width PRIdPTR
1472
#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1473
1474
1475
// Enable zap-a-lot if in debug version.
1476
1477
# ifdef ASSERT
1478
# ifdef COMPILER2
1479
# define ENABLE_ZAP_DEAD_LOCALS
1480
#endif /* COMPILER2 */
1481
# endif /* ASSERT */
1482
1483
#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1484
1485
//----------------------------------------------------------------------------------------------------
1486
// Sum and product which can never overflow: they wrap, just like the
1487
// Java operations. Note that we don't intend these to be used for
1488
// general-purpose arithmetic: their purpose is to emulate Java
1489
// operations.
1490
1491
// The goal of this code to avoid undefined or implementation-defined
1492
// behaviour. The use of an lvalue to reference cast is explicitly
1493
// permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para
1494
// 15 in C++03]
1495
#define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \
1496
inline TYPE NAME (TYPE in1, TYPE in2) { \
1497
UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1498
ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \
1499
return reinterpret_cast<TYPE&>(ures); \
1500
}
1501
1502
JAVA_INTEGER_OP(+, java_add, jint, juint)
1503
JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1504
JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1505
JAVA_INTEGER_OP(+, java_add, jlong, julong)
1506
JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1507
JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1508
1509
#undef JAVA_INTEGER_OP
1510
1511
// Dereference vptr
1512
// All C++ compilers that we know of have the vtbl pointer in the first
1513
// word. If there are exceptions, this function needs to be made compiler
1514
// specific.
1515
static inline void* dereference_vptr(const void* addr) {
1516
return *(void**)addr;
1517
}
1518
1519
#ifndef PRODUCT
1520
1521
// For unit testing only
1522
class GlobalDefinitions {
1523
public:
1524
static void test_globals();
1525
static void test_proper_unit();
1526
};
1527
1528
#endif // PRODUCT
1529
1530
#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
1531
1532