Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/com/sun/beans/util/Cache.java
38923 views
1
/*
2
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
package com.sun.beans.util;
26
27
import java.lang.ref.ReferenceQueue;
28
import java.lang.ref.SoftReference;
29
import java.lang.ref.WeakReference;
30
import java.util.Objects;
31
32
/**
33
* Hash table based implementation of the cache,
34
* which allows to use weak or soft references for keys and values.
35
* An entry in a {@code Cache} will automatically be removed
36
* when its key or value is no longer in ordinary use.
37
*
38
* @author Sergey Malenkov
39
* @since 1.8
40
*/
41
public abstract class Cache<K,V> {
42
private static final int MAXIMUM_CAPACITY = 1 << 30; // maximum capacity MUST be a power of two <= 1<<30
43
44
private final boolean identity; // defines whether the identity comparison is used
45
private final Kind keyKind; // a reference kind for the cache keys
46
private final Kind valueKind; // a reference kind for the cache values
47
48
private final ReferenceQueue<Object> queue = new ReferenceQueue<>(); // queue for references to remove
49
50
private volatile CacheEntry<K,V>[] table = newTable(1 << 3); // table's length MUST be a power of two
51
private int threshold = 6; // the next size value at which to resize
52
private int size; // the number of key-value mappings contained in this map
53
54
/**
55
* Creates a corresponding value for the specified key.
56
*
57
* @param key a key that can be used to create a value
58
* @return a corresponding value for the specified key
59
*/
60
public abstract V create(K key);
61
62
/**
63
* Constructs an empty {@code Cache}.
64
* The default initial capacity is 8.
65
* The default load factor is 0.75.
66
*
67
* @param keyKind a reference kind for keys
68
* @param valueKind a reference kind for values
69
*
70
* @throws NullPointerException if {@code keyKind} or {@code valueKind} are {@code null}
71
*/
72
public Cache(Kind keyKind, Kind valueKind) {
73
this(keyKind, valueKind, false);
74
}
75
76
/**
77
* Constructs an empty {@code Cache}
78
* with the specified comparison method.
79
* The default initial capacity is 8.
80
* The default load factor is 0.75.
81
*
82
* @param keyKind a reference kind for keys
83
* @param valueKind a reference kind for values
84
* @param identity defines whether reference-equality
85
* is used in place of object-equality
86
*
87
* @throws NullPointerException if {@code keyKind} or {@code valueKind} are {@code null}
88
*/
89
public Cache(Kind keyKind, Kind valueKind, boolean identity) {
90
Objects.requireNonNull(keyKind, "keyKind");
91
Objects.requireNonNull(valueKind, "valueKind");
92
this.keyKind = keyKind;
93
this.valueKind = valueKind;
94
this.identity = identity;
95
}
96
97
/**
98
* Returns the value to which the specified key is mapped,
99
* or {@code null} if there is no mapping for the key.
100
*
101
* @param key the key whose cached value is to be returned
102
* @return a value to which the specified key is mapped,
103
* or {@code null} if there is no mapping for {@code key}
104
*
105
* @throws NullPointerException if {@code key} is {@code null}
106
* or corresponding value is {@code null}
107
*/
108
public final V get(K key) {
109
Objects.requireNonNull(key, "key");
110
removeStaleEntries();
111
int hash = hash(key);
112
// unsynchronized search improves performance
113
// the null value does not mean that there are no needed entry
114
CacheEntry<K,V>[] table = this.table; // unsynchronized access
115
V current = getEntryValue(key, hash, table[index(hash, table)]);
116
if (current != null) {
117
return current;
118
}
119
synchronized (this.queue) {
120
// synchronized search improves stability
121
// we must create and add new value if there are no needed entry
122
current = getEntryValue(key, hash, this.table[index(hash, this.table)]);
123
if (current != null) {
124
return current;
125
}
126
V value = create(key);
127
Objects.requireNonNull(value, "value");
128
int index = index(hash, this.table);
129
this.table[index] = new CacheEntry<>(hash, key, value, this.table[index]);
130
if (++this.size >= this.threshold) {
131
if (this.table.length == MAXIMUM_CAPACITY) {
132
this.threshold = Integer.MAX_VALUE;
133
} else {
134
removeStaleEntries();
135
table = newTable(this.table.length << 1);
136
transfer(this.table, table);
137
// If ignoring null elements and processing ref queue caused massive
138
// shrinkage, then restore old table. This should be rare, but avoids
139
// unbounded expansion of garbage-filled tables.
140
if (this.size >= this.threshold / 2) {
141
this.table = table;
142
this.threshold <<= 1;
143
} else {
144
transfer(table, this.table);
145
}
146
removeStaleEntries();
147
}
148
}
149
return value;
150
}
151
}
152
153
/**
154
* Removes the cached value that corresponds to the specified key.
155
*
156
* @param key the key whose mapping is to be removed from this cache
157
*/
158
public final void remove(K key) {
159
if (key != null) {
160
synchronized (this.queue) {
161
removeStaleEntries();
162
int hash = hash(key);
163
int index = index(hash, this.table);
164
CacheEntry<K,V> prev = this.table[index];
165
CacheEntry<K,V> entry = prev;
166
while (entry != null) {
167
CacheEntry<K,V> next = entry.next;
168
if (entry.matches(hash, key)) {
169
if (entry == prev) {
170
this.table[index] = next;
171
} else {
172
prev.next = next;
173
}
174
entry.unlink();
175
break;
176
}
177
prev = entry;
178
entry = next;
179
}
180
}
181
}
182
}
183
184
/**
185
* Removes all of the mappings from this cache.
186
* It will be empty after this call returns.
187
*/
188
public final void clear() {
189
synchronized (this.queue) {
190
int index = this.table.length;
191
while (0 < index--) {
192
CacheEntry<K,V> entry = this.table[index];
193
while (entry != null) {
194
CacheEntry<K,V> next = entry.next;
195
entry.unlink();
196
entry = next;
197
}
198
this.table[index] = null;
199
}
200
while (null != this.queue.poll()) {
201
// Clear out the reference queue.
202
}
203
}
204
}
205
206
/**
207
* Retrieves object hash code and applies a supplemental hash function
208
* to the result hash, which defends against poor quality hash functions.
209
* This is critical because {@code Cache} uses power-of-two length hash tables,
210
* that otherwise encounter collisions for hashCodes that do not differ
211
* in lower bits.
212
*
213
* @param key the object which hash code is to be calculated
214
* @return a hash code value for the specified object
215
*/
216
private int hash(Object key) {
217
if (this.identity) {
218
int hash = System.identityHashCode(key);
219
return (hash << 1) - (hash << 8);
220
}
221
int hash = key.hashCode();
222
// This function ensures that hashCodes that differ only by
223
// constant multiples at each bit position have a bounded
224
// number of collisions (approximately 8 at default load factor).
225
hash ^= (hash >>> 20) ^ (hash >>> 12);
226
return hash ^ (hash >>> 7) ^ (hash >>> 4);
227
}
228
229
/**
230
* Returns index of the specified hash code in the given table.
231
* Note that the table size must be a power of two.
232
*
233
* @param hash the hash code
234
* @param table the table
235
* @return an index of the specified hash code in the given table
236
*/
237
private static int index(int hash, Object[] table) {
238
return hash & (table.length - 1);
239
}
240
241
/**
242
* Creates a new array for the cache entries.
243
*
244
* @param size requested capacity MUST be a power of two
245
* @return a new array for the cache entries
246
*/
247
@SuppressWarnings("unchecked")
248
private CacheEntry<K,V>[] newTable(int size) {
249
return (CacheEntry<K,V>[]) new CacheEntry[size];
250
}
251
252
private V getEntryValue(K key, int hash, CacheEntry<K,V> entry) {
253
while (entry != null) {
254
if (entry.matches(hash, key)) {
255
return entry.value.getReferent();
256
}
257
entry = entry.next;
258
}
259
return null;
260
}
261
262
private void removeStaleEntries() {
263
Object reference = this.queue.poll();
264
if (reference != null) {
265
synchronized (this.queue) {
266
do {
267
if (reference instanceof Ref) {
268
Ref ref = (Ref) reference;
269
@SuppressWarnings("unchecked")
270
CacheEntry<K,V> owner = (CacheEntry<K,V>) ref.getOwner();
271
if (owner != null) {
272
int index = index(owner.hash, this.table);
273
CacheEntry<K,V> prev = this.table[index];
274
CacheEntry<K,V> entry = prev;
275
while (entry != null) {
276
CacheEntry<K,V> next = entry.next;
277
if (entry == owner) {
278
if (entry == prev) {
279
this.table[index] = next;
280
} else {
281
prev.next = next;
282
}
283
entry.unlink();
284
break;
285
}
286
prev = entry;
287
entry = next;
288
}
289
}
290
}
291
reference = this.queue.poll();
292
}
293
while (reference != null);
294
}
295
}
296
}
297
298
private void transfer(CacheEntry<K,V>[] oldTable, CacheEntry<K,V>[] newTable) {
299
int oldIndex = oldTable.length;
300
while (0 < oldIndex--) {
301
CacheEntry<K,V> entry = oldTable[oldIndex];
302
oldTable[oldIndex] = null;
303
while (entry != null) {
304
CacheEntry<K,V> next = entry.next;
305
if (entry.key.isStale() || entry.value.isStale()) {
306
entry.unlink();
307
} else {
308
int newIndex = index(entry.hash, newTable);
309
entry.next = newTable[newIndex];
310
newTable[newIndex] = entry;
311
}
312
entry = next;
313
}
314
}
315
}
316
317
/**
318
* Represents a cache entry (key-value pair).
319
*/
320
private final class CacheEntry<K,V> {
321
private final int hash;
322
private final Ref<K> key;
323
private final Ref<V> value;
324
private volatile CacheEntry<K,V> next;
325
326
/**
327
* Constructs an entry for the cache.
328
*
329
* @param hash the hash code calculated for the entry key
330
* @param key the entry key
331
* @param value the initial value of the entry
332
* @param next the next entry in a chain
333
*/
334
private CacheEntry(int hash, K key, V value, CacheEntry<K,V> next) {
335
this.hash = hash;
336
this.key = Cache.this.keyKind.create(this, key, Cache.this.queue);
337
this.value = Cache.this.valueKind.create(this, value, Cache.this.queue);
338
this.next = next;
339
}
340
341
/**
342
* Determines whether the entry has the given key with the given hash code.
343
*
344
* @param hash an expected hash code
345
* @param object an object to be compared with the entry key
346
* @return {@code true} if the entry has the given key with the given hash code;
347
* {@code false} otherwise
348
*/
349
private boolean matches(int hash, Object object) {
350
if (this.hash != hash) {
351
return false;
352
}
353
Object key = this.key.getReferent();
354
return (key == object) || !Cache.this.identity && (key != null) && key.equals(object);
355
}
356
357
/**
358
* Marks the entry as actually removed from the cache.
359
*/
360
private void unlink() {
361
this.next = null;
362
this.key.removeOwner();
363
this.value.removeOwner();
364
Cache.this.size--;
365
}
366
}
367
368
/**
369
* Basic interface for references.
370
* It defines the operations common for the all kind of references.
371
*
372
* @param <T> the type of object to refer
373
*/
374
private static interface Ref<T> {
375
/**
376
* Returns the object that possesses information about the reference.
377
*
378
* @return the owner of the reference or {@code null} if the owner is unknown
379
*/
380
Object getOwner();
381
382
/**
383
* Returns the object to refer.
384
*
385
* @return the referred object or {@code null} if it was collected
386
*/
387
T getReferent();
388
389
/**
390
* Determines whether the referred object was taken by the garbage collector or not.
391
*
392
* @return {@code true} if the referred object was collected
393
*/
394
boolean isStale();
395
396
/**
397
* Marks this reference as removed from the cache.
398
*/
399
void removeOwner();
400
}
401
402
/**
403
* Represents a reference kind.
404
*/
405
public static enum Kind {
406
STRONG {
407
<T> Ref<T> create(Object owner, T value, ReferenceQueue<? super T> queue) {
408
return new Strong<>(owner, value);
409
}
410
},
411
SOFT {
412
<T> Ref<T> create(Object owner, T referent, ReferenceQueue<? super T> queue) {
413
return (referent == null)
414
? new Strong<>(owner, referent)
415
: new Soft<>(owner, referent, queue);
416
}
417
},
418
WEAK {
419
<T> Ref<T> create(Object owner, T referent, ReferenceQueue<? super T> queue) {
420
return (referent == null)
421
? new Strong<>(owner, referent)
422
: new Weak<>(owner, referent, queue);
423
}
424
};
425
426
/**
427
* Creates a reference to the specified object.
428
*
429
* @param <T> the type of object to refer
430
* @param owner the owner of the reference, if needed
431
* @param referent the object to refer
432
* @param queue the queue to register the reference with,
433
* or {@code null} if registration is not required
434
* @return the reference to the specified object
435
*/
436
abstract <T> Ref<T> create(Object owner, T referent, ReferenceQueue<? super T> queue);
437
438
/**
439
* This is an implementation of the {@link Cache.Ref} interface
440
* that uses the strong references that prevent their referents
441
* from being made finalizable, finalized, and then reclaimed.
442
*
443
* @param <T> the type of object to refer
444
*/
445
private static final class Strong<T> implements Ref<T> {
446
private Object owner;
447
private final T referent;
448
449
/**
450
* Creates a strong reference to the specified object.
451
*
452
* @param owner the owner of the reference, if needed
453
* @param referent the non-null object to refer
454
*/
455
private Strong(Object owner, T referent) {
456
this.owner = owner;
457
this.referent = referent;
458
}
459
460
/**
461
* Returns the object that possesses information about the reference.
462
*
463
* @return the owner of the reference or {@code null} if the owner is unknown
464
*/
465
public Object getOwner() {
466
return this.owner;
467
}
468
469
/**
470
* Returns the object to refer.
471
*
472
* @return the referred object
473
*/
474
public T getReferent() {
475
return this.referent;
476
}
477
478
/**
479
* Determines whether the referred object was taken by the garbage collector or not.
480
*
481
* @return {@code true} if the referred object was collected
482
*/
483
public boolean isStale() {
484
return false;
485
}
486
487
/**
488
* Marks this reference as removed from the cache.
489
*/
490
public void removeOwner() {
491
this.owner = null;
492
}
493
}
494
495
/**
496
* This is an implementation of the {@link Cache.Ref} interface
497
* that uses the soft references that are cleared at the discretion
498
* of the garbage collector in response to a memory request.
499
*
500
* @param <T> the type of object to refer
501
* @see java.lang.ref.SoftReference
502
*/
503
private static final class Soft<T> extends SoftReference<T> implements Ref<T> {
504
private Object owner;
505
506
/**
507
* Creates a soft reference to the specified object.
508
*
509
* @param owner the owner of the reference, if needed
510
* @param referent the non-null object to refer
511
* @param queue the queue to register the reference with,
512
* or {@code null} if registration is not required
513
*/
514
private Soft(Object owner, T referent, ReferenceQueue<? super T> queue) {
515
super(referent, queue);
516
this.owner = owner;
517
}
518
519
/**
520
* Returns the object that possesses information about the reference.
521
*
522
* @return the owner of the reference or {@code null} if the owner is unknown
523
*/
524
public Object getOwner() {
525
return this.owner;
526
}
527
528
/**
529
* Returns the object to refer.
530
*
531
* @return the referred object or {@code null} if it was collected
532
*/
533
public T getReferent() {
534
return get();
535
}
536
537
/**
538
* Determines whether the referred object was taken by the garbage collector or not.
539
*
540
* @return {@code true} if the referred object was collected
541
*/
542
public boolean isStale() {
543
return null == get();
544
}
545
546
/**
547
* Marks this reference as removed from the cache.
548
*/
549
public void removeOwner() {
550
this.owner = null;
551
}
552
}
553
554
/**
555
* This is an implementation of the {@link Cache.Ref} interface
556
* that uses the weak references that do not prevent their referents
557
* from being made finalizable, finalized, and then reclaimed.
558
*
559
* @param <T> the type of object to refer
560
* @see java.lang.ref.WeakReference
561
*/
562
private static final class Weak<T> extends WeakReference<T> implements Ref<T> {
563
private Object owner;
564
565
/**
566
* Creates a weak reference to the specified object.
567
*
568
* @param owner the owner of the reference, if needed
569
* @param referent the non-null object to refer
570
* @param queue the queue to register the reference with,
571
* or {@code null} if registration is not required
572
*/
573
private Weak(Object owner, T referent, ReferenceQueue<? super T> queue) {
574
super(referent, queue);
575
this.owner = owner;
576
}
577
578
/**
579
* Returns the object that possesses information about the reference.
580
*
581
* @return the owner of the reference or {@code null} if the owner is unknown
582
*/
583
public Object getOwner() {
584
return this.owner;
585
}
586
587
/**
588
* Returns the object to refer.
589
*
590
* @return the referred object or {@code null} if it was collected
591
*/
592
public T getReferent() {
593
return get();
594
}
595
596
/**
597
* Determines whether the referred object was taken by the garbage collector or not.
598
*
599
* @return {@code true} if the referred object was collected
600
*/
601
public boolean isStale() {
602
return null == get();
603
}
604
605
/**
606
* Marks this reference as removed from the cache.
607
*/
608
public void removeOwner() {
609
this.owner = null;
610
}
611
}
612
}
613
}
614
615