Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/java/lang/Double.java
38829 views
1
/*
2
* Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.lang;
27
28
import sun.misc.FloatingDecimal;
29
import sun.misc.FpUtils;
30
import sun.misc.DoubleConsts;
31
32
/**
33
* The {@code Double} class wraps a value of the primitive type
34
* {@code double} in an object. An object of type
35
* {@code Double} contains a single field whose type is
36
* {@code double}.
37
*
38
* <p>In addition, this class provides several methods for converting a
39
* {@code double} to a {@code String} and a
40
* {@code String} to a {@code double}, as well as other
41
* constants and methods useful when dealing with a
42
* {@code double}.
43
*
44
* @author Lee Boynton
45
* @author Arthur van Hoff
46
* @author Joseph D. Darcy
47
* @since JDK1.0
48
*/
49
public final class Double extends Number implements Comparable<Double> {
50
/**
51
* A constant holding the positive infinity of type
52
* {@code double}. It is equal to the value returned by
53
* {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
54
*/
55
public static final double POSITIVE_INFINITY = 1.0 / 0.0;
56
57
/**
58
* A constant holding the negative infinity of type
59
* {@code double}. It is equal to the value returned by
60
* {@code Double.longBitsToDouble(0xfff0000000000000L)}.
61
*/
62
public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
63
64
/**
65
* A constant holding a Not-a-Number (NaN) value of type
66
* {@code double}. It is equivalent to the value returned by
67
* {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
68
*/
69
public static final double NaN = 0.0d / 0.0;
70
71
/**
72
* A constant holding the largest positive finite value of type
73
* {@code double},
74
* (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>. It is equal to
75
* the hexadecimal floating-point literal
76
* {@code 0x1.fffffffffffffP+1023} and also equal to
77
* {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
78
*/
79
public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
80
81
/**
82
* A constant holding the smallest positive normal value of type
83
* {@code double}, 2<sup>-1022</sup>. It is equal to the
84
* hexadecimal floating-point literal {@code 0x1.0p-1022} and also
85
* equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
86
*
87
* @since 1.6
88
*/
89
public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
90
91
/**
92
* A constant holding the smallest positive nonzero value of type
93
* {@code double}, 2<sup>-1074</sup>. It is equal to the
94
* hexadecimal floating-point literal
95
* {@code 0x0.0000000000001P-1022} and also equal to
96
* {@code Double.longBitsToDouble(0x1L)}.
97
*/
98
public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
99
100
/**
101
* Maximum exponent a finite {@code double} variable may have.
102
* It is equal to the value returned by
103
* {@code Math.getExponent(Double.MAX_VALUE)}.
104
*
105
* @since 1.6
106
*/
107
public static final int MAX_EXPONENT = 1023;
108
109
/**
110
* Minimum exponent a normalized {@code double} variable may
111
* have. It is equal to the value returned by
112
* {@code Math.getExponent(Double.MIN_NORMAL)}.
113
*
114
* @since 1.6
115
*/
116
public static final int MIN_EXPONENT = -1022;
117
118
/**
119
* The number of bits used to represent a {@code double} value.
120
*
121
* @since 1.5
122
*/
123
public static final int SIZE = 64;
124
125
/**
126
* The number of bytes used to represent a {@code double} value.
127
*
128
* @since 1.8
129
*/
130
public static final int BYTES = SIZE / Byte.SIZE;
131
132
/**
133
* The {@code Class} instance representing the primitive type
134
* {@code double}.
135
*
136
* @since JDK1.1
137
*/
138
@SuppressWarnings("unchecked")
139
public static final Class<Double> TYPE = (Class<Double>) Class.getPrimitiveClass("double");
140
141
/**
142
* Returns a string representation of the {@code double}
143
* argument. All characters mentioned below are ASCII characters.
144
* <ul>
145
* <li>If the argument is NaN, the result is the string
146
* "{@code NaN}".
147
* <li>Otherwise, the result is a string that represents the sign and
148
* magnitude (absolute value) of the argument. If the sign is negative,
149
* the first character of the result is '{@code -}'
150
* ({@code '\u005Cu002D'}); if the sign is positive, no sign character
151
* appears in the result. As for the magnitude <i>m</i>:
152
* <ul>
153
* <li>If <i>m</i> is infinity, it is represented by the characters
154
* {@code "Infinity"}; thus, positive infinity produces the result
155
* {@code "Infinity"} and negative infinity produces the result
156
* {@code "-Infinity"}.
157
*
158
* <li>If <i>m</i> is zero, it is represented by the characters
159
* {@code "0.0"}; thus, negative zero produces the result
160
* {@code "-0.0"} and positive zero produces the result
161
* {@code "0.0"}.
162
*
163
* <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
164
* than 10<sup>7</sup>, then it is represented as the integer part of
165
* <i>m</i>, in decimal form with no leading zeroes, followed by
166
* '{@code .}' ({@code '\u005Cu002E'}), followed by one or
167
* more decimal digits representing the fractional part of <i>m</i>.
168
*
169
* <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
170
* equal to 10<sup>7</sup>, then it is represented in so-called
171
* "computerized scientific notation." Let <i>n</i> be the unique
172
* integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
173
* 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
174
* mathematically exact quotient of <i>m</i> and
175
* 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
176
* magnitude is then represented as the integer part of <i>a</i>,
177
* as a single decimal digit, followed by '{@code .}'
178
* ({@code '\u005Cu002E'}), followed by decimal digits
179
* representing the fractional part of <i>a</i>, followed by the
180
* letter '{@code E}' ({@code '\u005Cu0045'}), followed
181
* by a representation of <i>n</i> as a decimal integer, as
182
* produced by the method {@link Integer#toString(int)}.
183
* </ul>
184
* </ul>
185
* How many digits must be printed for the fractional part of
186
* <i>m</i> or <i>a</i>? There must be at least one digit to represent
187
* the fractional part, and beyond that as many, but only as many, more
188
* digits as are needed to uniquely distinguish the argument value from
189
* adjacent values of type {@code double}. That is, suppose that
190
* <i>x</i> is the exact mathematical value represented by the decimal
191
* representation produced by this method for a finite nonzero argument
192
* <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
193
* to <i>x</i>; or if two {@code double} values are equally close
194
* to <i>x</i>, then <i>d</i> must be one of them and the least
195
* significant bit of the significand of <i>d</i> must be {@code 0}.
196
*
197
* <p>To create localized string representations of a floating-point
198
* value, use subclasses of {@link java.text.NumberFormat}.
199
*
200
* @param d the {@code double} to be converted.
201
* @return a string representation of the argument.
202
*/
203
public static String toString(double d) {
204
return FloatingDecimal.toJavaFormatString(d);
205
}
206
207
/**
208
* Returns a hexadecimal string representation of the
209
* {@code double} argument. All characters mentioned below
210
* are ASCII characters.
211
*
212
* <ul>
213
* <li>If the argument is NaN, the result is the string
214
* "{@code NaN}".
215
* <li>Otherwise, the result is a string that represents the sign
216
* and magnitude of the argument. If the sign is negative, the
217
* first character of the result is '{@code -}'
218
* ({@code '\u005Cu002D'}); if the sign is positive, no sign
219
* character appears in the result. As for the magnitude <i>m</i>:
220
*
221
* <ul>
222
* <li>If <i>m</i> is infinity, it is represented by the string
223
* {@code "Infinity"}; thus, positive infinity produces the
224
* result {@code "Infinity"} and negative infinity produces
225
* the result {@code "-Infinity"}.
226
*
227
* <li>If <i>m</i> is zero, it is represented by the string
228
* {@code "0x0.0p0"}; thus, negative zero produces the result
229
* {@code "-0x0.0p0"} and positive zero produces the result
230
* {@code "0x0.0p0"}.
231
*
232
* <li>If <i>m</i> is a {@code double} value with a
233
* normalized representation, substrings are used to represent the
234
* significand and exponent fields. The significand is
235
* represented by the characters {@code "0x1."}
236
* followed by a lowercase hexadecimal representation of the rest
237
* of the significand as a fraction. Trailing zeros in the
238
* hexadecimal representation are removed unless all the digits
239
* are zero, in which case a single zero is used. Next, the
240
* exponent is represented by {@code "p"} followed
241
* by a decimal string of the unbiased exponent as if produced by
242
* a call to {@link Integer#toString(int) Integer.toString} on the
243
* exponent value.
244
*
245
* <li>If <i>m</i> is a {@code double} value with a subnormal
246
* representation, the significand is represented by the
247
* characters {@code "0x0."} followed by a
248
* hexadecimal representation of the rest of the significand as a
249
* fraction. Trailing zeros in the hexadecimal representation are
250
* removed. Next, the exponent is represented by
251
* {@code "p-1022"}. Note that there must be at
252
* least one nonzero digit in a subnormal significand.
253
*
254
* </ul>
255
*
256
* </ul>
257
*
258
* <table border>
259
* <caption>Examples</caption>
260
* <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
261
* <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
262
* <tr><td>{@code -1.0}</td> <td>{@code -0x1.0p0}</td>
263
* <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
264
* <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
265
* <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
266
* <tr><td>{@code 0.25}</td> <td>{@code 0x1.0p-2}</td>
267
* <tr><td>{@code Double.MAX_VALUE}</td>
268
* <td>{@code 0x1.fffffffffffffp1023}</td>
269
* <tr><td>{@code Minimum Normal Value}</td>
270
* <td>{@code 0x1.0p-1022}</td>
271
* <tr><td>{@code Maximum Subnormal Value}</td>
272
* <td>{@code 0x0.fffffffffffffp-1022}</td>
273
* <tr><td>{@code Double.MIN_VALUE}</td>
274
* <td>{@code 0x0.0000000000001p-1022}</td>
275
* </table>
276
* @param d the {@code double} to be converted.
277
* @return a hex string representation of the argument.
278
* @since 1.5
279
* @author Joseph D. Darcy
280
*/
281
public static String toHexString(double d) {
282
/*
283
* Modeled after the "a" conversion specifier in C99, section
284
* 7.19.6.1; however, the output of this method is more
285
* tightly specified.
286
*/
287
if (!isFinite(d) )
288
// For infinity and NaN, use the decimal output.
289
return Double.toString(d);
290
else {
291
// Initialized to maximum size of output.
292
StringBuilder answer = new StringBuilder(24);
293
294
if (Math.copySign(1.0, d) == -1.0) // value is negative,
295
answer.append("-"); // so append sign info
296
297
answer.append("0x");
298
299
d = Math.abs(d);
300
301
if(d == 0.0) {
302
answer.append("0.0p0");
303
} else {
304
boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
305
306
// Isolate significand bits and OR in a high-order bit
307
// so that the string representation has a known
308
// length.
309
long signifBits = (Double.doubleToLongBits(d)
310
& DoubleConsts.SIGNIF_BIT_MASK) |
311
0x1000000000000000L;
312
313
// Subnormal values have a 0 implicit bit; normal
314
// values have a 1 implicit bit.
315
answer.append(subnormal ? "0." : "1.");
316
317
// Isolate the low-order 13 digits of the hex
318
// representation. If all the digits are zero,
319
// replace with a single 0; otherwise, remove all
320
// trailing zeros.
321
String signif = Long.toHexString(signifBits).substring(3,16);
322
answer.append(signif.equals("0000000000000") ? // 13 zeros
323
"0":
324
signif.replaceFirst("0{1,12}$", ""));
325
326
answer.append('p');
327
// If the value is subnormal, use the E_min exponent
328
// value for double; otherwise, extract and report d's
329
// exponent (the representation of a subnormal uses
330
// E_min -1).
331
answer.append(subnormal ?
332
DoubleConsts.MIN_EXPONENT:
333
Math.getExponent(d));
334
}
335
return answer.toString();
336
}
337
}
338
339
/**
340
* Returns a {@code Double} object holding the
341
* {@code double} value represented by the argument string
342
* {@code s}.
343
*
344
* <p>If {@code s} is {@code null}, then a
345
* {@code NullPointerException} is thrown.
346
*
347
* <p>Leading and trailing whitespace characters in {@code s}
348
* are ignored. Whitespace is removed as if by the {@link
349
* String#trim} method; that is, both ASCII space and control
350
* characters are removed. The rest of {@code s} should
351
* constitute a <i>FloatValue</i> as described by the lexical
352
* syntax rules:
353
*
354
* <blockquote>
355
* <dl>
356
* <dt><i>FloatValue:</i>
357
* <dd><i>Sign<sub>opt</sub></i> {@code NaN}
358
* <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
359
* <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
360
* <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
361
* <dd><i>SignedInteger</i>
362
* </dl>
363
*
364
* <dl>
365
* <dt><i>HexFloatingPointLiteral</i>:
366
* <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
367
* </dl>
368
*
369
* <dl>
370
* <dt><i>HexSignificand:</i>
371
* <dd><i>HexNumeral</i>
372
* <dd><i>HexNumeral</i> {@code .}
373
* <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
374
* </i>{@code .}<i> HexDigits</i>
375
* <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
376
* </i>{@code .} <i>HexDigits</i>
377
* </dl>
378
*
379
* <dl>
380
* <dt><i>BinaryExponent:</i>
381
* <dd><i>BinaryExponentIndicator SignedInteger</i>
382
* </dl>
383
*
384
* <dl>
385
* <dt><i>BinaryExponentIndicator:</i>
386
* <dd>{@code p}
387
* <dd>{@code P}
388
* </dl>
389
*
390
* </blockquote>
391
*
392
* where <i>Sign</i>, <i>FloatingPointLiteral</i>,
393
* <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
394
* <i>FloatTypeSuffix</i> are as defined in the lexical structure
395
* sections of
396
* <cite>The Java&trade; Language Specification</cite>,
397
* except that underscores are not accepted between digits.
398
* If {@code s} does not have the form of
399
* a <i>FloatValue</i>, then a {@code NumberFormatException}
400
* is thrown. Otherwise, {@code s} is regarded as
401
* representing an exact decimal value in the usual
402
* "computerized scientific notation" or as an exact
403
* hexadecimal value; this exact numerical value is then
404
* conceptually converted to an "infinitely precise"
405
* binary value that is then rounded to type {@code double}
406
* by the usual round-to-nearest rule of IEEE 754 floating-point
407
* arithmetic, which includes preserving the sign of a zero
408
* value.
409
*
410
* Note that the round-to-nearest rule also implies overflow and
411
* underflow behaviour; if the exact value of {@code s} is large
412
* enough in magnitude (greater than or equal to ({@link
413
* #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
414
* rounding to {@code double} will result in an infinity and if the
415
* exact value of {@code s} is small enough in magnitude (less
416
* than or equal to {@link #MIN_VALUE}/2), rounding to float will
417
* result in a zero.
418
*
419
* Finally, after rounding a {@code Double} object representing
420
* this {@code double} value is returned.
421
*
422
* <p> To interpret localized string representations of a
423
* floating-point value, use subclasses of {@link
424
* java.text.NumberFormat}.
425
*
426
* <p>Note that trailing format specifiers, specifiers that
427
* determine the type of a floating-point literal
428
* ({@code 1.0f} is a {@code float} value;
429
* {@code 1.0d} is a {@code double} value), do
430
* <em>not</em> influence the results of this method. In other
431
* words, the numerical value of the input string is converted
432
* directly to the target floating-point type. The two-step
433
* sequence of conversions, string to {@code float} followed
434
* by {@code float} to {@code double}, is <em>not</em>
435
* equivalent to converting a string directly to
436
* {@code double}. For example, the {@code float}
437
* literal {@code 0.1f} is equal to the {@code double}
438
* value {@code 0.10000000149011612}; the {@code float}
439
* literal {@code 0.1f} represents a different numerical
440
* value than the {@code double} literal
441
* {@code 0.1}. (The numerical value 0.1 cannot be exactly
442
* represented in a binary floating-point number.)
443
*
444
* <p>To avoid calling this method on an invalid string and having
445
* a {@code NumberFormatException} be thrown, the regular
446
* expression below can be used to screen the input string:
447
*
448
* <pre>{@code
449
* final String Digits = "(\\p{Digit}+)";
450
* final String HexDigits = "(\\p{XDigit}+)";
451
* // an exponent is 'e' or 'E' followed by an optionally
452
* // signed decimal integer.
453
* final String Exp = "[eE][+-]?"+Digits;
454
* final String fpRegex =
455
* ("[\\x00-\\x20]*"+ // Optional leading "whitespace"
456
* "[+-]?(" + // Optional sign character
457
* "NaN|" + // "NaN" string
458
* "Infinity|" + // "Infinity" string
459
*
460
* // A decimal floating-point string representing a finite positive
461
* // number without a leading sign has at most five basic pieces:
462
* // Digits . Digits ExponentPart FloatTypeSuffix
463
* //
464
* // Since this method allows integer-only strings as input
465
* // in addition to strings of floating-point literals, the
466
* // two sub-patterns below are simplifications of the grammar
467
* // productions from section 3.10.2 of
468
* // The Java Language Specification.
469
*
470
* // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
471
* "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
472
*
473
* // . Digits ExponentPart_opt FloatTypeSuffix_opt
474
* "(\\.("+Digits+")("+Exp+")?)|"+
475
*
476
* // Hexadecimal strings
477
* "((" +
478
* // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
479
* "(0[xX]" + HexDigits + "(\\.)?)|" +
480
*
481
* // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
482
* "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
483
*
484
* ")[pP][+-]?" + Digits + "))" +
485
* "[fFdD]?))" +
486
* "[\\x00-\\x20]*");// Optional trailing "whitespace"
487
*
488
* if (Pattern.matches(fpRegex, myString))
489
* Double.valueOf(myString); // Will not throw NumberFormatException
490
* else {
491
* // Perform suitable alternative action
492
* }
493
* }</pre>
494
*
495
* @param s the string to be parsed.
496
* @return a {@code Double} object holding the value
497
* represented by the {@code String} argument.
498
* @throws NumberFormatException if the string does not contain a
499
* parsable number.
500
*/
501
public static Double valueOf(String s) throws NumberFormatException {
502
return new Double(parseDouble(s));
503
}
504
505
/**
506
* Returns a {@code Double} instance representing the specified
507
* {@code double} value.
508
* If a new {@code Double} instance is not required, this method
509
* should generally be used in preference to the constructor
510
* {@link #Double(double)}, as this method is likely to yield
511
* significantly better space and time performance by caching
512
* frequently requested values.
513
*
514
* @param d a double value.
515
* @return a {@code Double} instance representing {@code d}.
516
* @since 1.5
517
*/
518
public static Double valueOf(double d) {
519
return new Double(d);
520
}
521
522
/**
523
* Returns a new {@code double} initialized to the value
524
* represented by the specified {@code String}, as performed
525
* by the {@code valueOf} method of class
526
* {@code Double}.
527
*
528
* @param s the string to be parsed.
529
* @return the {@code double} value represented by the string
530
* argument.
531
* @throws NullPointerException if the string is null
532
* @throws NumberFormatException if the string does not contain
533
* a parsable {@code double}.
534
* @see java.lang.Double#valueOf(String)
535
* @since 1.2
536
*/
537
public static double parseDouble(String s) throws NumberFormatException {
538
return FloatingDecimal.parseDouble(s);
539
}
540
541
/**
542
* Returns {@code true} if the specified number is a
543
* Not-a-Number (NaN) value, {@code false} otherwise.
544
*
545
* @param v the value to be tested.
546
* @return {@code true} if the value of the argument is NaN;
547
* {@code false} otherwise.
548
*/
549
public static boolean isNaN(double v) {
550
return (v != v);
551
}
552
553
/**
554
* Returns {@code true} if the specified number is infinitely
555
* large in magnitude, {@code false} otherwise.
556
*
557
* @param v the value to be tested.
558
* @return {@code true} if the value of the argument is positive
559
* infinity or negative infinity; {@code false} otherwise.
560
*/
561
public static boolean isInfinite(double v) {
562
return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
563
}
564
565
/**
566
* Returns {@code true} if the argument is a finite floating-point
567
* value; returns {@code false} otherwise (for NaN and infinity
568
* arguments).
569
*
570
* @param d the {@code double} value to be tested
571
* @return {@code true} if the argument is a finite
572
* floating-point value, {@code false} otherwise.
573
* @since 1.8
574
*/
575
public static boolean isFinite(double d) {
576
return Math.abs(d) <= DoubleConsts.MAX_VALUE;
577
}
578
579
/**
580
* The value of the Double.
581
*
582
* @serial
583
*/
584
private final double value;
585
586
/**
587
* Constructs a newly allocated {@code Double} object that
588
* represents the primitive {@code double} argument.
589
*
590
* @param value the value to be represented by the {@code Double}.
591
*/
592
public Double(double value) {
593
this.value = value;
594
}
595
596
/**
597
* Constructs a newly allocated {@code Double} object that
598
* represents the floating-point value of type {@code double}
599
* represented by the string. The string is converted to a
600
* {@code double} value as if by the {@code valueOf} method.
601
*
602
* @param s a string to be converted to a {@code Double}.
603
* @throws NumberFormatException if the string does not contain a
604
* parsable number.
605
* @see java.lang.Double#valueOf(java.lang.String)
606
*/
607
public Double(String s) throws NumberFormatException {
608
value = parseDouble(s);
609
}
610
611
/**
612
* Returns {@code true} if this {@code Double} value is
613
* a Not-a-Number (NaN), {@code false} otherwise.
614
*
615
* @return {@code true} if the value represented by this object is
616
* NaN; {@code false} otherwise.
617
*/
618
public boolean isNaN() {
619
return isNaN(value);
620
}
621
622
/**
623
* Returns {@code true} if this {@code Double} value is
624
* infinitely large in magnitude, {@code false} otherwise.
625
*
626
* @return {@code true} if the value represented by this object is
627
* positive infinity or negative infinity;
628
* {@code false} otherwise.
629
*/
630
public boolean isInfinite() {
631
return isInfinite(value);
632
}
633
634
/**
635
* Returns a string representation of this {@code Double} object.
636
* The primitive {@code double} value represented by this
637
* object is converted to a string exactly as if by the method
638
* {@code toString} of one argument.
639
*
640
* @return a {@code String} representation of this object.
641
* @see java.lang.Double#toString(double)
642
*/
643
public String toString() {
644
return toString(value);
645
}
646
647
/**
648
* Returns the value of this {@code Double} as a {@code byte}
649
* after a narrowing primitive conversion.
650
*
651
* @return the {@code double} value represented by this object
652
* converted to type {@code byte}
653
* @jls 5.1.3 Narrowing Primitive Conversions
654
* @since JDK1.1
655
*/
656
public byte byteValue() {
657
return (byte)value;
658
}
659
660
/**
661
* Returns the value of this {@code Double} as a {@code short}
662
* after a narrowing primitive conversion.
663
*
664
* @return the {@code double} value represented by this object
665
* converted to type {@code short}
666
* @jls 5.1.3 Narrowing Primitive Conversions
667
* @since JDK1.1
668
*/
669
public short shortValue() {
670
return (short)value;
671
}
672
673
/**
674
* Returns the value of this {@code Double} as an {@code int}
675
* after a narrowing primitive conversion.
676
* @jls 5.1.3 Narrowing Primitive Conversions
677
*
678
* @return the {@code double} value represented by this object
679
* converted to type {@code int}
680
*/
681
public int intValue() {
682
return (int)value;
683
}
684
685
/**
686
* Returns the value of this {@code Double} as a {@code long}
687
* after a narrowing primitive conversion.
688
*
689
* @return the {@code double} value represented by this object
690
* converted to type {@code long}
691
* @jls 5.1.3 Narrowing Primitive Conversions
692
*/
693
public long longValue() {
694
return (long)value;
695
}
696
697
/**
698
* Returns the value of this {@code Double} as a {@code float}
699
* after a narrowing primitive conversion.
700
*
701
* @return the {@code double} value represented by this object
702
* converted to type {@code float}
703
* @jls 5.1.3 Narrowing Primitive Conversions
704
* @since JDK1.0
705
*/
706
public float floatValue() {
707
return (float)value;
708
}
709
710
/**
711
* Returns the {@code double} value of this {@code Double} object.
712
*
713
* @return the {@code double} value represented by this object
714
*/
715
public double doubleValue() {
716
return value;
717
}
718
719
/**
720
* Returns a hash code for this {@code Double} object. The
721
* result is the exclusive OR of the two halves of the
722
* {@code long} integer bit representation, exactly as
723
* produced by the method {@link #doubleToLongBits(double)}, of
724
* the primitive {@code double} value represented by this
725
* {@code Double} object. That is, the hash code is the value
726
* of the expression:
727
*
728
* <blockquote>
729
* {@code (int)(v^(v>>>32))}
730
* </blockquote>
731
*
732
* where {@code v} is defined by:
733
*
734
* <blockquote>
735
* {@code long v = Double.doubleToLongBits(this.doubleValue());}
736
* </blockquote>
737
*
738
* @return a {@code hash code} value for this object.
739
*/
740
@Override
741
public int hashCode() {
742
return Double.hashCode(value);
743
}
744
745
/**
746
* Returns a hash code for a {@code double} value; compatible with
747
* {@code Double.hashCode()}.
748
*
749
* @param value the value to hash
750
* @return a hash code value for a {@code double} value.
751
* @since 1.8
752
*/
753
public static int hashCode(double value) {
754
long bits = doubleToLongBits(value);
755
return (int)(bits ^ (bits >>> 32));
756
}
757
758
/**
759
* Compares this object against the specified object. The result
760
* is {@code true} if and only if the argument is not
761
* {@code null} and is a {@code Double} object that
762
* represents a {@code double} that has the same value as the
763
* {@code double} represented by this object. For this
764
* purpose, two {@code double} values are considered to be
765
* the same if and only if the method {@link
766
* #doubleToLongBits(double)} returns the identical
767
* {@code long} value when applied to each.
768
*
769
* <p>Note that in most cases, for two instances of class
770
* {@code Double}, {@code d1} and {@code d2}, the
771
* value of {@code d1.equals(d2)} is {@code true} if and
772
* only if
773
*
774
* <blockquote>
775
* {@code d1.doubleValue() == d2.doubleValue()}
776
* </blockquote>
777
*
778
* <p>also has the value {@code true}. However, there are two
779
* exceptions:
780
* <ul>
781
* <li>If {@code d1} and {@code d2} both represent
782
* {@code Double.NaN}, then the {@code equals} method
783
* returns {@code true}, even though
784
* {@code Double.NaN==Double.NaN} has the value
785
* {@code false}.
786
* <li>If {@code d1} represents {@code +0.0} while
787
* {@code d2} represents {@code -0.0}, or vice versa,
788
* the {@code equal} test has the value {@code false},
789
* even though {@code +0.0==-0.0} has the value {@code true}.
790
* </ul>
791
* This definition allows hash tables to operate properly.
792
* @param obj the object to compare with.
793
* @return {@code true} if the objects are the same;
794
* {@code false} otherwise.
795
* @see java.lang.Double#doubleToLongBits(double)
796
*/
797
public boolean equals(Object obj) {
798
return (obj instanceof Double)
799
&& (doubleToLongBits(((Double)obj).value) ==
800
doubleToLongBits(value));
801
}
802
803
/**
804
* Returns a representation of the specified floating-point value
805
* according to the IEEE 754 floating-point "double
806
* format" bit layout.
807
*
808
* <p>Bit 63 (the bit that is selected by the mask
809
* {@code 0x8000000000000000L}) represents the sign of the
810
* floating-point number. Bits
811
* 62-52 (the bits that are selected by the mask
812
* {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
813
* (the bits that are selected by the mask
814
* {@code 0x000fffffffffffffL}) represent the significand
815
* (sometimes called the mantissa) of the floating-point number.
816
*
817
* <p>If the argument is positive infinity, the result is
818
* {@code 0x7ff0000000000000L}.
819
*
820
* <p>If the argument is negative infinity, the result is
821
* {@code 0xfff0000000000000L}.
822
*
823
* <p>If the argument is NaN, the result is
824
* {@code 0x7ff8000000000000L}.
825
*
826
* <p>In all cases, the result is a {@code long} integer that, when
827
* given to the {@link #longBitsToDouble(long)} method, will produce a
828
* floating-point value the same as the argument to
829
* {@code doubleToLongBits} (except all NaN values are
830
* collapsed to a single "canonical" NaN value).
831
*
832
* @param value a {@code double} precision floating-point number.
833
* @return the bits that represent the floating-point number.
834
*/
835
public static long doubleToLongBits(double value) {
836
long result = doubleToRawLongBits(value);
837
// Check for NaN based on values of bit fields, maximum
838
// exponent and nonzero significand.
839
if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
840
DoubleConsts.EXP_BIT_MASK) &&
841
(result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
842
result = 0x7ff8000000000000L;
843
return result;
844
}
845
846
/**
847
* Returns a representation of the specified floating-point value
848
* according to the IEEE 754 floating-point "double
849
* format" bit layout, preserving Not-a-Number (NaN) values.
850
*
851
* <p>Bit 63 (the bit that is selected by the mask
852
* {@code 0x8000000000000000L}) represents the sign of the
853
* floating-point number. Bits
854
* 62-52 (the bits that are selected by the mask
855
* {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
856
* (the bits that are selected by the mask
857
* {@code 0x000fffffffffffffL}) represent the significand
858
* (sometimes called the mantissa) of the floating-point number.
859
*
860
* <p>If the argument is positive infinity, the result is
861
* {@code 0x7ff0000000000000L}.
862
*
863
* <p>If the argument is negative infinity, the result is
864
* {@code 0xfff0000000000000L}.
865
*
866
* <p>If the argument is NaN, the result is the {@code long}
867
* integer representing the actual NaN value. Unlike the
868
* {@code doubleToLongBits} method,
869
* {@code doubleToRawLongBits} does not collapse all the bit
870
* patterns encoding a NaN to a single "canonical" NaN
871
* value.
872
*
873
* <p>In all cases, the result is a {@code long} integer that,
874
* when given to the {@link #longBitsToDouble(long)} method, will
875
* produce a floating-point value the same as the argument to
876
* {@code doubleToRawLongBits}.
877
*
878
* @param value a {@code double} precision floating-point number.
879
* @return the bits that represent the floating-point number.
880
* @since 1.3
881
*/
882
public static native long doubleToRawLongBits(double value);
883
884
/**
885
* Returns the {@code double} value corresponding to a given
886
* bit representation.
887
* The argument is considered to be a representation of a
888
* floating-point value according to the IEEE 754 floating-point
889
* "double format" bit layout.
890
*
891
* <p>If the argument is {@code 0x7ff0000000000000L}, the result
892
* is positive infinity.
893
*
894
* <p>If the argument is {@code 0xfff0000000000000L}, the result
895
* is negative infinity.
896
*
897
* <p>If the argument is any value in the range
898
* {@code 0x7ff0000000000001L} through
899
* {@code 0x7fffffffffffffffL} or in the range
900
* {@code 0xfff0000000000001L} through
901
* {@code 0xffffffffffffffffL}, the result is a NaN. No IEEE
902
* 754 floating-point operation provided by Java can distinguish
903
* between two NaN values of the same type with different bit
904
* patterns. Distinct values of NaN are only distinguishable by
905
* use of the {@code Double.doubleToRawLongBits} method.
906
*
907
* <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
908
* values that can be computed from the argument:
909
*
910
* <blockquote><pre>{@code
911
* int s = ((bits >> 63) == 0) ? 1 : -1;
912
* int e = (int)((bits >> 52) & 0x7ffL);
913
* long m = (e == 0) ?
914
* (bits & 0xfffffffffffffL) << 1 :
915
* (bits & 0xfffffffffffffL) | 0x10000000000000L;
916
* }</pre></blockquote>
917
*
918
* Then the floating-point result equals the value of the mathematical
919
* expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
920
*
921
* <p>Note that this method may not be able to return a
922
* {@code double} NaN with exactly same bit pattern as the
923
* {@code long} argument. IEEE 754 distinguishes between two
924
* kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The
925
* differences between the two kinds of NaN are generally not
926
* visible in Java. Arithmetic operations on signaling NaNs turn
927
* them into quiet NaNs with a different, but often similar, bit
928
* pattern. However, on some processors merely copying a
929
* signaling NaN also performs that conversion. In particular,
930
* copying a signaling NaN to return it to the calling method
931
* may perform this conversion. So {@code longBitsToDouble}
932
* may not be able to return a {@code double} with a
933
* signaling NaN bit pattern. Consequently, for some
934
* {@code long} values,
935
* {@code doubleToRawLongBits(longBitsToDouble(start))} may
936
* <i>not</i> equal {@code start}. Moreover, which
937
* particular bit patterns represent signaling NaNs is platform
938
* dependent; although all NaN bit patterns, quiet or signaling,
939
* must be in the NaN range identified above.
940
*
941
* @param bits any {@code long} integer.
942
* @return the {@code double} floating-point value with the same
943
* bit pattern.
944
*/
945
public static native double longBitsToDouble(long bits);
946
947
/**
948
* Compares two {@code Double} objects numerically. There
949
* are two ways in which comparisons performed by this method
950
* differ from those performed by the Java language numerical
951
* comparison operators ({@code <, <=, ==, >=, >})
952
* when applied to primitive {@code double} values:
953
* <ul><li>
954
* {@code Double.NaN} is considered by this method
955
* to be equal to itself and greater than all other
956
* {@code double} values (including
957
* {@code Double.POSITIVE_INFINITY}).
958
* <li>
959
* {@code 0.0d} is considered by this method to be greater
960
* than {@code -0.0d}.
961
* </ul>
962
* This ensures that the <i>natural ordering</i> of
963
* {@code Double} objects imposed by this method is <i>consistent
964
* with equals</i>.
965
*
966
* @param anotherDouble the {@code Double} to be compared.
967
* @return the value {@code 0} if {@code anotherDouble} is
968
* numerically equal to this {@code Double}; a value
969
* less than {@code 0} if this {@code Double}
970
* is numerically less than {@code anotherDouble};
971
* and a value greater than {@code 0} if this
972
* {@code Double} is numerically greater than
973
* {@code anotherDouble}.
974
*
975
* @since 1.2
976
*/
977
public int compareTo(Double anotherDouble) {
978
return Double.compare(value, anotherDouble.value);
979
}
980
981
/**
982
* Compares the two specified {@code double} values. The sign
983
* of the integer value returned is the same as that of the
984
* integer that would be returned by the call:
985
* <pre>
986
* new Double(d1).compareTo(new Double(d2))
987
* </pre>
988
*
989
* @param d1 the first {@code double} to compare
990
* @param d2 the second {@code double} to compare
991
* @return the value {@code 0} if {@code d1} is
992
* numerically equal to {@code d2}; a value less than
993
* {@code 0} if {@code d1} is numerically less than
994
* {@code d2}; and a value greater than {@code 0}
995
* if {@code d1} is numerically greater than
996
* {@code d2}.
997
* @since 1.4
998
*/
999
public static int compare(double d1, double d2) {
1000
if (d1 < d2)
1001
return -1; // Neither val is NaN, thisVal is smaller
1002
if (d1 > d2)
1003
return 1; // Neither val is NaN, thisVal is larger
1004
1005
// Cannot use doubleToRawLongBits because of possibility of NaNs.
1006
long thisBits = Double.doubleToLongBits(d1);
1007
long anotherBits = Double.doubleToLongBits(d2);
1008
1009
return (thisBits == anotherBits ? 0 : // Values are equal
1010
(thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1011
1)); // (0.0, -0.0) or (NaN, !NaN)
1012
}
1013
1014
/**
1015
* Adds two {@code double} values together as per the + operator.
1016
*
1017
* @param a the first operand
1018
* @param b the second operand
1019
* @return the sum of {@code a} and {@code b}
1020
* @jls 4.2.4 Floating-Point Operations
1021
* @see java.util.function.BinaryOperator
1022
* @since 1.8
1023
*/
1024
public static double sum(double a, double b) {
1025
return a + b;
1026
}
1027
1028
/**
1029
* Returns the greater of two {@code double} values
1030
* as if by calling {@link Math#max(double, double) Math.max}.
1031
*
1032
* @param a the first operand
1033
* @param b the second operand
1034
* @return the greater of {@code a} and {@code b}
1035
* @see java.util.function.BinaryOperator
1036
* @since 1.8
1037
*/
1038
public static double max(double a, double b) {
1039
return Math.max(a, b);
1040
}
1041
1042
/**
1043
* Returns the smaller of two {@code double} values
1044
* as if by calling {@link Math#min(double, double) Math.min}.
1045
*
1046
* @param a the first operand
1047
* @param b the second operand
1048
* @return the smaller of {@code a} and {@code b}.
1049
* @see java.util.function.BinaryOperator
1050
* @since 1.8
1051
*/
1052
public static double min(double a, double b) {
1053
return Math.min(a, b);
1054
}
1055
1056
/** use serialVersionUID from JDK 1.0.2 for interoperability */
1057
private static final long serialVersionUID = -9172774392245257468L;
1058
}
1059
1060