Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/java/lang/Float.java
38829 views
1
/*
2
* Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.lang;
27
28
import sun.misc.FloatingDecimal;
29
import sun.misc.FloatConsts;
30
import sun.misc.DoubleConsts;
31
32
/**
33
* The {@code Float} class wraps a value of primitive type
34
* {@code float} in an object. An object of type
35
* {@code Float} contains a single field whose type is
36
* {@code float}.
37
*
38
* <p>In addition, this class provides several methods for converting a
39
* {@code float} to a {@code String} and a
40
* {@code String} to a {@code float}, as well as other
41
* constants and methods useful when dealing with a
42
* {@code float}.
43
*
44
* @author Lee Boynton
45
* @author Arthur van Hoff
46
* @author Joseph D. Darcy
47
* @since JDK1.0
48
*/
49
public final class Float extends Number implements Comparable<Float> {
50
/**
51
* A constant holding the positive infinity of type
52
* {@code float}. It is equal to the value returned by
53
* {@code Float.intBitsToFloat(0x7f800000)}.
54
*/
55
public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
56
57
/**
58
* A constant holding the negative infinity of type
59
* {@code float}. It is equal to the value returned by
60
* {@code Float.intBitsToFloat(0xff800000)}.
61
*/
62
public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
63
64
/**
65
* A constant holding a Not-a-Number (NaN) value of type
66
* {@code float}. It is equivalent to the value returned by
67
* {@code Float.intBitsToFloat(0x7fc00000)}.
68
*/
69
public static final float NaN = 0.0f / 0.0f;
70
71
/**
72
* A constant holding the largest positive finite value of type
73
* {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
74
* It is equal to the hexadecimal floating-point literal
75
* {@code 0x1.fffffeP+127f} and also equal to
76
* {@code Float.intBitsToFloat(0x7f7fffff)}.
77
*/
78
public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
79
80
/**
81
* A constant holding the smallest positive normal value of type
82
* {@code float}, 2<sup>-126</sup>. It is equal to the
83
* hexadecimal floating-point literal {@code 0x1.0p-126f} and also
84
* equal to {@code Float.intBitsToFloat(0x00800000)}.
85
*
86
* @since 1.6
87
*/
88
public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
89
90
/**
91
* A constant holding the smallest positive nonzero value of type
92
* {@code float}, 2<sup>-149</sup>. It is equal to the
93
* hexadecimal floating-point literal {@code 0x0.000002P-126f}
94
* and also equal to {@code Float.intBitsToFloat(0x1)}.
95
*/
96
public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
97
98
/**
99
* Maximum exponent a finite {@code float} variable may have. It
100
* is equal to the value returned by {@code
101
* Math.getExponent(Float.MAX_VALUE)}.
102
*
103
* @since 1.6
104
*/
105
public static final int MAX_EXPONENT = 127;
106
107
/**
108
* Minimum exponent a normalized {@code float} variable may have.
109
* It is equal to the value returned by {@code
110
* Math.getExponent(Float.MIN_NORMAL)}.
111
*
112
* @since 1.6
113
*/
114
public static final int MIN_EXPONENT = -126;
115
116
/**
117
* The number of bits used to represent a {@code float} value.
118
*
119
* @since 1.5
120
*/
121
public static final int SIZE = 32;
122
123
/**
124
* The number of bytes used to represent a {@code float} value.
125
*
126
* @since 1.8
127
*/
128
public static final int BYTES = SIZE / Byte.SIZE;
129
130
/**
131
* The {@code Class} instance representing the primitive type
132
* {@code float}.
133
*
134
* @since JDK1.1
135
*/
136
@SuppressWarnings("unchecked")
137
public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");
138
139
/**
140
* Returns a string representation of the {@code float}
141
* argument. All characters mentioned below are ASCII characters.
142
* <ul>
143
* <li>If the argument is NaN, the result is the string
144
* "{@code NaN}".
145
* <li>Otherwise, the result is a string that represents the sign and
146
* magnitude (absolute value) of the argument. If the sign is
147
* negative, the first character of the result is
148
* '{@code -}' ({@code '\u005Cu002D'}); if the sign is
149
* positive, no sign character appears in the result. As for
150
* the magnitude <i>m</i>:
151
* <ul>
152
* <li>If <i>m</i> is infinity, it is represented by the characters
153
* {@code "Infinity"}; thus, positive infinity produces
154
* the result {@code "Infinity"} and negative infinity
155
* produces the result {@code "-Infinity"}.
156
* <li>If <i>m</i> is zero, it is represented by the characters
157
* {@code "0.0"}; thus, negative zero produces the result
158
* {@code "-0.0"} and positive zero produces the result
159
* {@code "0.0"}.
160
* <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
161
* less than 10<sup>7</sup>, then it is represented as the
162
* integer part of <i>m</i>, in decimal form with no leading
163
* zeroes, followed by '{@code .}'
164
* ({@code '\u005Cu002E'}), followed by one or more
165
* decimal digits representing the fractional part of
166
* <i>m</i>.
167
* <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
168
* equal to 10<sup>7</sup>, then it is represented in
169
* so-called "computerized scientific notation." Let <i>n</i>
170
* be the unique integer such that 10<sup><i>n</i> </sup>&le;
171
* <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
172
* be the mathematically exact quotient of <i>m</i> and
173
* 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
174
* The magnitude is then represented as the integer part of
175
* <i>a</i>, as a single decimal digit, followed by
176
* '{@code .}' ({@code '\u005Cu002E'}), followed by
177
* decimal digits representing the fractional part of
178
* <i>a</i>, followed by the letter '{@code E}'
179
* ({@code '\u005Cu0045'}), followed by a representation
180
* of <i>n</i> as a decimal integer, as produced by the
181
* method {@link java.lang.Integer#toString(int)}.
182
*
183
* </ul>
184
* </ul>
185
* How many digits must be printed for the fractional part of
186
* <i>m</i> or <i>a</i>? There must be at least one digit
187
* to represent the fractional part, and beyond that as many, but
188
* only as many, more digits as are needed to uniquely distinguish
189
* the argument value from adjacent values of type
190
* {@code float}. That is, suppose that <i>x</i> is the
191
* exact mathematical value represented by the decimal
192
* representation produced by this method for a finite nonzero
193
* argument <i>f</i>. Then <i>f</i> must be the {@code float}
194
* value nearest to <i>x</i>; or, if two {@code float} values are
195
* equally close to <i>x</i>, then <i>f</i> must be one of
196
* them and the least significant bit of the significand of
197
* <i>f</i> must be {@code 0}.
198
*
199
* <p>To create localized string representations of a floating-point
200
* value, use subclasses of {@link java.text.NumberFormat}.
201
*
202
* @param f the float to be converted.
203
* @return a string representation of the argument.
204
*/
205
public static String toString(float f) {
206
return FloatingDecimal.toJavaFormatString(f);
207
}
208
209
/**
210
* Returns a hexadecimal string representation of the
211
* {@code float} argument. All characters mentioned below are
212
* ASCII characters.
213
*
214
* <ul>
215
* <li>If the argument is NaN, the result is the string
216
* "{@code NaN}".
217
* <li>Otherwise, the result is a string that represents the sign and
218
* magnitude (absolute value) of the argument. If the sign is negative,
219
* the first character of the result is '{@code -}'
220
* ({@code '\u005Cu002D'}); if the sign is positive, no sign character
221
* appears in the result. As for the magnitude <i>m</i>:
222
*
223
* <ul>
224
* <li>If <i>m</i> is infinity, it is represented by the string
225
* {@code "Infinity"}; thus, positive infinity produces the
226
* result {@code "Infinity"} and negative infinity produces
227
* the result {@code "-Infinity"}.
228
*
229
* <li>If <i>m</i> is zero, it is represented by the string
230
* {@code "0x0.0p0"}; thus, negative zero produces the result
231
* {@code "-0x0.0p0"} and positive zero produces the result
232
* {@code "0x0.0p0"}.
233
*
234
* <li>If <i>m</i> is a {@code float} value with a
235
* normalized representation, substrings are used to represent the
236
* significand and exponent fields. The significand is
237
* represented by the characters {@code "0x1."}
238
* followed by a lowercase hexadecimal representation of the rest
239
* of the significand as a fraction. Trailing zeros in the
240
* hexadecimal representation are removed unless all the digits
241
* are zero, in which case a single zero is used. Next, the
242
* exponent is represented by {@code "p"} followed
243
* by a decimal string of the unbiased exponent as if produced by
244
* a call to {@link Integer#toString(int) Integer.toString} on the
245
* exponent value.
246
*
247
* <li>If <i>m</i> is a {@code float} value with a subnormal
248
* representation, the significand is represented by the
249
* characters {@code "0x0."} followed by a
250
* hexadecimal representation of the rest of the significand as a
251
* fraction. Trailing zeros in the hexadecimal representation are
252
* removed. Next, the exponent is represented by
253
* {@code "p-126"}. Note that there must be at
254
* least one nonzero digit in a subnormal significand.
255
*
256
* </ul>
257
*
258
* </ul>
259
*
260
* <table border>
261
* <caption>Examples</caption>
262
* <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
263
* <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
264
* <tr><td>{@code -1.0}</td> <td>{@code -0x1.0p0}</td>
265
* <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
266
* <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
267
* <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
268
* <tr><td>{@code 0.25}</td> <td>{@code 0x1.0p-2}</td>
269
* <tr><td>{@code Float.MAX_VALUE}</td>
270
* <td>{@code 0x1.fffffep127}</td>
271
* <tr><td>{@code Minimum Normal Value}</td>
272
* <td>{@code 0x1.0p-126}</td>
273
* <tr><td>{@code Maximum Subnormal Value}</td>
274
* <td>{@code 0x0.fffffep-126}</td>
275
* <tr><td>{@code Float.MIN_VALUE}</td>
276
* <td>{@code 0x0.000002p-126}</td>
277
* </table>
278
* @param f the {@code float} to be converted.
279
* @return a hex string representation of the argument.
280
* @since 1.5
281
* @author Joseph D. Darcy
282
*/
283
public static String toHexString(float f) {
284
if (Math.abs(f) < FloatConsts.MIN_NORMAL
285
&& f != 0.0f ) {// float subnormal
286
// Adjust exponent to create subnormal double, then
287
// replace subnormal double exponent with subnormal float
288
// exponent
289
String s = Double.toHexString(Math.scalb((double)f,
290
/* -1022+126 */
291
DoubleConsts.MIN_EXPONENT-
292
FloatConsts.MIN_EXPONENT));
293
return s.replaceFirst("p-1022$", "p-126");
294
}
295
else // double string will be the same as float string
296
return Double.toHexString(f);
297
}
298
299
/**
300
* Returns a {@code Float} object holding the
301
* {@code float} value represented by the argument string
302
* {@code s}.
303
*
304
* <p>If {@code s} is {@code null}, then a
305
* {@code NullPointerException} is thrown.
306
*
307
* <p>Leading and trailing whitespace characters in {@code s}
308
* are ignored. Whitespace is removed as if by the {@link
309
* String#trim} method; that is, both ASCII space and control
310
* characters are removed. The rest of {@code s} should
311
* constitute a <i>FloatValue</i> as described by the lexical
312
* syntax rules:
313
*
314
* <blockquote>
315
* <dl>
316
* <dt><i>FloatValue:</i>
317
* <dd><i>Sign<sub>opt</sub></i> {@code NaN}
318
* <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
319
* <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
320
* <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
321
* <dd><i>SignedInteger</i>
322
* </dl>
323
*
324
* <dl>
325
* <dt><i>HexFloatingPointLiteral</i>:
326
* <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
327
* </dl>
328
*
329
* <dl>
330
* <dt><i>HexSignificand:</i>
331
* <dd><i>HexNumeral</i>
332
* <dd><i>HexNumeral</i> {@code .}
333
* <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
334
* </i>{@code .}<i> HexDigits</i>
335
* <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
336
* </i>{@code .} <i>HexDigits</i>
337
* </dl>
338
*
339
* <dl>
340
* <dt><i>BinaryExponent:</i>
341
* <dd><i>BinaryExponentIndicator SignedInteger</i>
342
* </dl>
343
*
344
* <dl>
345
* <dt><i>BinaryExponentIndicator:</i>
346
* <dd>{@code p}
347
* <dd>{@code P}
348
* </dl>
349
*
350
* </blockquote>
351
*
352
* where <i>Sign</i>, <i>FloatingPointLiteral</i>,
353
* <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
354
* <i>FloatTypeSuffix</i> are as defined in the lexical structure
355
* sections of
356
* <cite>The Java&trade; Language Specification</cite>,
357
* except that underscores are not accepted between digits.
358
* If {@code s} does not have the form of
359
* a <i>FloatValue</i>, then a {@code NumberFormatException}
360
* is thrown. Otherwise, {@code s} is regarded as
361
* representing an exact decimal value in the usual
362
* "computerized scientific notation" or as an exact
363
* hexadecimal value; this exact numerical value is then
364
* conceptually converted to an "infinitely precise"
365
* binary value that is then rounded to type {@code float}
366
* by the usual round-to-nearest rule of IEEE 754 floating-point
367
* arithmetic, which includes preserving the sign of a zero
368
* value.
369
*
370
* Note that the round-to-nearest rule also implies overflow and
371
* underflow behaviour; if the exact value of {@code s} is large
372
* enough in magnitude (greater than or equal to ({@link
373
* #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
374
* rounding to {@code float} will result in an infinity and if the
375
* exact value of {@code s} is small enough in magnitude (less
376
* than or equal to {@link #MIN_VALUE}/2), rounding to float will
377
* result in a zero.
378
*
379
* Finally, after rounding a {@code Float} object representing
380
* this {@code float} value is returned.
381
*
382
* <p>To interpret localized string representations of a
383
* floating-point value, use subclasses of {@link
384
* java.text.NumberFormat}.
385
*
386
* <p>Note that trailing format specifiers, specifiers that
387
* determine the type of a floating-point literal
388
* ({@code 1.0f} is a {@code float} value;
389
* {@code 1.0d} is a {@code double} value), do
390
* <em>not</em> influence the results of this method. In other
391
* words, the numerical value of the input string is converted
392
* directly to the target floating-point type. In general, the
393
* two-step sequence of conversions, string to {@code double}
394
* followed by {@code double} to {@code float}, is
395
* <em>not</em> equivalent to converting a string directly to
396
* {@code float}. For example, if first converted to an
397
* intermediate {@code double} and then to
398
* {@code float}, the string<br>
399
* {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
400
* results in the {@code float} value
401
* {@code 1.0000002f}; if the string is converted directly to
402
* {@code float}, <code>1.000000<b>1</b>f</code> results.
403
*
404
* <p>To avoid calling this method on an invalid string and having
405
* a {@code NumberFormatException} be thrown, the documentation
406
* for {@link Double#valueOf Double.valueOf} lists a regular
407
* expression which can be used to screen the input.
408
*
409
* @param s the string to be parsed.
410
* @return a {@code Float} object holding the value
411
* represented by the {@code String} argument.
412
* @throws NumberFormatException if the string does not contain a
413
* parsable number.
414
*/
415
public static Float valueOf(String s) throws NumberFormatException {
416
return new Float(parseFloat(s));
417
}
418
419
/**
420
* Returns a {@code Float} instance representing the specified
421
* {@code float} value.
422
* If a new {@code Float} instance is not required, this method
423
* should generally be used in preference to the constructor
424
* {@link #Float(float)}, as this method is likely to yield
425
* significantly better space and time performance by caching
426
* frequently requested values.
427
*
428
* @param f a float value.
429
* @return a {@code Float} instance representing {@code f}.
430
* @since 1.5
431
*/
432
public static Float valueOf(float f) {
433
return new Float(f);
434
}
435
436
/**
437
* Returns a new {@code float} initialized to the value
438
* represented by the specified {@code String}, as performed
439
* by the {@code valueOf} method of class {@code Float}.
440
*
441
* @param s the string to be parsed.
442
* @return the {@code float} value represented by the string
443
* argument.
444
* @throws NullPointerException if the string is null
445
* @throws NumberFormatException if the string does not contain a
446
* parsable {@code float}.
447
* @see java.lang.Float#valueOf(String)
448
* @since 1.2
449
*/
450
public static float parseFloat(String s) throws NumberFormatException {
451
return FloatingDecimal.parseFloat(s);
452
}
453
454
/**
455
* Returns {@code true} if the specified number is a
456
* Not-a-Number (NaN) value, {@code false} otherwise.
457
*
458
* @param v the value to be tested.
459
* @return {@code true} if the argument is NaN;
460
* {@code false} otherwise.
461
*/
462
public static boolean isNaN(float v) {
463
return (v != v);
464
}
465
466
/**
467
* Returns {@code true} if the specified number is infinitely
468
* large in magnitude, {@code false} otherwise.
469
*
470
* @param v the value to be tested.
471
* @return {@code true} if the argument is positive infinity or
472
* negative infinity; {@code false} otherwise.
473
*/
474
public static boolean isInfinite(float v) {
475
return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
476
}
477
478
479
/**
480
* Returns {@code true} if the argument is a finite floating-point
481
* value; returns {@code false} otherwise (for NaN and infinity
482
* arguments).
483
*
484
* @param f the {@code float} value to be tested
485
* @return {@code true} if the argument is a finite
486
* floating-point value, {@code false} otherwise.
487
* @since 1.8
488
*/
489
public static boolean isFinite(float f) {
490
return Math.abs(f) <= FloatConsts.MAX_VALUE;
491
}
492
493
/**
494
* The value of the Float.
495
*
496
* @serial
497
*/
498
private final float value;
499
500
/**
501
* Constructs a newly allocated {@code Float} object that
502
* represents the primitive {@code float} argument.
503
*
504
* @param value the value to be represented by the {@code Float}.
505
*/
506
public Float(float value) {
507
this.value = value;
508
}
509
510
/**
511
* Constructs a newly allocated {@code Float} object that
512
* represents the argument converted to type {@code float}.
513
*
514
* @param value the value to be represented by the {@code Float}.
515
*/
516
public Float(double value) {
517
this.value = (float)value;
518
}
519
520
/**
521
* Constructs a newly allocated {@code Float} object that
522
* represents the floating-point value of type {@code float}
523
* represented by the string. The string is converted to a
524
* {@code float} value as if by the {@code valueOf} method.
525
*
526
* @param s a string to be converted to a {@code Float}.
527
* @throws NumberFormatException if the string does not contain a
528
* parsable number.
529
* @see java.lang.Float#valueOf(java.lang.String)
530
*/
531
public Float(String s) throws NumberFormatException {
532
value = parseFloat(s);
533
}
534
535
/**
536
* Returns {@code true} if this {@code Float} value is a
537
* Not-a-Number (NaN), {@code false} otherwise.
538
*
539
* @return {@code true} if the value represented by this object is
540
* NaN; {@code false} otherwise.
541
*/
542
public boolean isNaN() {
543
return isNaN(value);
544
}
545
546
/**
547
* Returns {@code true} if this {@code Float} value is
548
* infinitely large in magnitude, {@code false} otherwise.
549
*
550
* @return {@code true} if the value represented by this object is
551
* positive infinity or negative infinity;
552
* {@code false} otherwise.
553
*/
554
public boolean isInfinite() {
555
return isInfinite(value);
556
}
557
558
/**
559
* Returns a string representation of this {@code Float} object.
560
* The primitive {@code float} value represented by this object
561
* is converted to a {@code String} exactly as if by the method
562
* {@code toString} of one argument.
563
*
564
* @return a {@code String} representation of this object.
565
* @see java.lang.Float#toString(float)
566
*/
567
public String toString() {
568
return Float.toString(value);
569
}
570
571
/**
572
* Returns the value of this {@code Float} as a {@code byte} after
573
* a narrowing primitive conversion.
574
*
575
* @return the {@code float} value represented by this object
576
* converted to type {@code byte}
577
* @jls 5.1.3 Narrowing Primitive Conversions
578
*/
579
public byte byteValue() {
580
return (byte)value;
581
}
582
583
/**
584
* Returns the value of this {@code Float} as a {@code short}
585
* after a narrowing primitive conversion.
586
*
587
* @return the {@code float} value represented by this object
588
* converted to type {@code short}
589
* @jls 5.1.3 Narrowing Primitive Conversions
590
* @since JDK1.1
591
*/
592
public short shortValue() {
593
return (short)value;
594
}
595
596
/**
597
* Returns the value of this {@code Float} as an {@code int} after
598
* a narrowing primitive conversion.
599
*
600
* @return the {@code float} value represented by this object
601
* converted to type {@code int}
602
* @jls 5.1.3 Narrowing Primitive Conversions
603
*/
604
public int intValue() {
605
return (int)value;
606
}
607
608
/**
609
* Returns value of this {@code Float} as a {@code long} after a
610
* narrowing primitive conversion.
611
*
612
* @return the {@code float} value represented by this object
613
* converted to type {@code long}
614
* @jls 5.1.3 Narrowing Primitive Conversions
615
*/
616
public long longValue() {
617
return (long)value;
618
}
619
620
/**
621
* Returns the {@code float} value of this {@code Float} object.
622
*
623
* @return the {@code float} value represented by this object
624
*/
625
public float floatValue() {
626
return value;
627
}
628
629
/**
630
* Returns the value of this {@code Float} as a {@code double}
631
* after a widening primitive conversion.
632
*
633
* @return the {@code float} value represented by this
634
* object converted to type {@code double}
635
* @jls 5.1.2 Widening Primitive Conversions
636
*/
637
public double doubleValue() {
638
return (double)value;
639
}
640
641
/**
642
* Returns a hash code for this {@code Float} object. The
643
* result is the integer bit representation, exactly as produced
644
* by the method {@link #floatToIntBits(float)}, of the primitive
645
* {@code float} value represented by this {@code Float}
646
* object.
647
*
648
* @return a hash code value for this object.
649
*/
650
@Override
651
public int hashCode() {
652
return Float.hashCode(value);
653
}
654
655
/**
656
* Returns a hash code for a {@code float} value; compatible with
657
* {@code Float.hashCode()}.
658
*
659
* @param value the value to hash
660
* @return a hash code value for a {@code float} value.
661
* @since 1.8
662
*/
663
public static int hashCode(float value) {
664
return floatToIntBits(value);
665
}
666
667
/**
668
669
* Compares this object against the specified object. The result
670
* is {@code true} if and only if the argument is not
671
* {@code null} and is a {@code Float} object that
672
* represents a {@code float} with the same value as the
673
* {@code float} represented by this object. For this
674
* purpose, two {@code float} values are considered to be the
675
* same if and only if the method {@link #floatToIntBits(float)}
676
* returns the identical {@code int} value when applied to
677
* each.
678
*
679
* <p>Note that in most cases, for two instances of class
680
* {@code Float}, {@code f1} and {@code f2}, the value
681
* of {@code f1.equals(f2)} is {@code true} if and only if
682
*
683
* <blockquote><pre>
684
* f1.floatValue() == f2.floatValue()
685
* </pre></blockquote>
686
*
687
* <p>also has the value {@code true}. However, there are two exceptions:
688
* <ul>
689
* <li>If {@code f1} and {@code f2} both represent
690
* {@code Float.NaN}, then the {@code equals} method returns
691
* {@code true}, even though {@code Float.NaN==Float.NaN}
692
* has the value {@code false}.
693
* <li>If {@code f1} represents {@code +0.0f} while
694
* {@code f2} represents {@code -0.0f}, or vice
695
* versa, the {@code equal} test has the value
696
* {@code false}, even though {@code 0.0f==-0.0f}
697
* has the value {@code true}.
698
* </ul>
699
*
700
* This definition allows hash tables to operate properly.
701
*
702
* @param obj the object to be compared
703
* @return {@code true} if the objects are the same;
704
* {@code false} otherwise.
705
* @see java.lang.Float#floatToIntBits(float)
706
*/
707
public boolean equals(Object obj) {
708
return (obj instanceof Float)
709
&& (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
710
}
711
712
/**
713
* Returns a representation of the specified floating-point value
714
* according to the IEEE 754 floating-point "single format" bit
715
* layout.
716
*
717
* <p>Bit 31 (the bit that is selected by the mask
718
* {@code 0x80000000}) represents the sign of the floating-point
719
* number.
720
* Bits 30-23 (the bits that are selected by the mask
721
* {@code 0x7f800000}) represent the exponent.
722
* Bits 22-0 (the bits that are selected by the mask
723
* {@code 0x007fffff}) represent the significand (sometimes called
724
* the mantissa) of the floating-point number.
725
*
726
* <p>If the argument is positive infinity, the result is
727
* {@code 0x7f800000}.
728
*
729
* <p>If the argument is negative infinity, the result is
730
* {@code 0xff800000}.
731
*
732
* <p>If the argument is NaN, the result is {@code 0x7fc00000}.
733
*
734
* <p>In all cases, the result is an integer that, when given to the
735
* {@link #intBitsToFloat(int)} method, will produce a floating-point
736
* value the same as the argument to {@code floatToIntBits}
737
* (except all NaN values are collapsed to a single
738
* "canonical" NaN value).
739
*
740
* @param value a floating-point number.
741
* @return the bits that represent the floating-point number.
742
*/
743
public static int floatToIntBits(float value) {
744
int result = floatToRawIntBits(value);
745
// Check for NaN based on values of bit fields, maximum
746
// exponent and nonzero significand.
747
if ( ((result & FloatConsts.EXP_BIT_MASK) ==
748
FloatConsts.EXP_BIT_MASK) &&
749
(result & FloatConsts.SIGNIF_BIT_MASK) != 0)
750
result = 0x7fc00000;
751
return result;
752
}
753
754
/**
755
* Returns a representation of the specified floating-point value
756
* according to the IEEE 754 floating-point "single format" bit
757
* layout, preserving Not-a-Number (NaN) values.
758
*
759
* <p>Bit 31 (the bit that is selected by the mask
760
* {@code 0x80000000}) represents the sign of the floating-point
761
* number.
762
* Bits 30-23 (the bits that are selected by the mask
763
* {@code 0x7f800000}) represent the exponent.
764
* Bits 22-0 (the bits that are selected by the mask
765
* {@code 0x007fffff}) represent the significand (sometimes called
766
* the mantissa) of the floating-point number.
767
*
768
* <p>If the argument is positive infinity, the result is
769
* {@code 0x7f800000}.
770
*
771
* <p>If the argument is negative infinity, the result is
772
* {@code 0xff800000}.
773
*
774
* <p>If the argument is NaN, the result is the integer representing
775
* the actual NaN value. Unlike the {@code floatToIntBits}
776
* method, {@code floatToRawIntBits} does not collapse all the
777
* bit patterns encoding a NaN to a single "canonical"
778
* NaN value.
779
*
780
* <p>In all cases, the result is an integer that, when given to the
781
* {@link #intBitsToFloat(int)} method, will produce a
782
* floating-point value the same as the argument to
783
* {@code floatToRawIntBits}.
784
*
785
* @param value a floating-point number.
786
* @return the bits that represent the floating-point number.
787
* @since 1.3
788
*/
789
public static native int floatToRawIntBits(float value);
790
791
/**
792
* Returns the {@code float} value corresponding to a given
793
* bit representation.
794
* The argument is considered to be a representation of a
795
* floating-point value according to the IEEE 754 floating-point
796
* "single format" bit layout.
797
*
798
* <p>If the argument is {@code 0x7f800000}, the result is positive
799
* infinity.
800
*
801
* <p>If the argument is {@code 0xff800000}, the result is negative
802
* infinity.
803
*
804
* <p>If the argument is any value in the range
805
* {@code 0x7f800001} through {@code 0x7fffffff} or in
806
* the range {@code 0xff800001} through
807
* {@code 0xffffffff}, the result is a NaN. No IEEE 754
808
* floating-point operation provided by Java can distinguish
809
* between two NaN values of the same type with different bit
810
* patterns. Distinct values of NaN are only distinguishable by
811
* use of the {@code Float.floatToRawIntBits} method.
812
*
813
* <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
814
* values that can be computed from the argument:
815
*
816
* <blockquote><pre>{@code
817
* int s = ((bits >> 31) == 0) ? 1 : -1;
818
* int e = ((bits >> 23) & 0xff);
819
* int m = (e == 0) ?
820
* (bits & 0x7fffff) << 1 :
821
* (bits & 0x7fffff) | 0x800000;
822
* }</pre></blockquote>
823
*
824
* Then the floating-point result equals the value of the mathematical
825
* expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
826
*
827
* <p>Note that this method may not be able to return a
828
* {@code float} NaN with exactly same bit pattern as the
829
* {@code int} argument. IEEE 754 distinguishes between two
830
* kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The
831
* differences between the two kinds of NaN are generally not
832
* visible in Java. Arithmetic operations on signaling NaNs turn
833
* them into quiet NaNs with a different, but often similar, bit
834
* pattern. However, on some processors merely copying a
835
* signaling NaN also performs that conversion. In particular,
836
* copying a signaling NaN to return it to the calling method may
837
* perform this conversion. So {@code intBitsToFloat} may
838
* not be able to return a {@code float} with a signaling NaN
839
* bit pattern. Consequently, for some {@code int} values,
840
* {@code floatToRawIntBits(intBitsToFloat(start))} may
841
* <i>not</i> equal {@code start}. Moreover, which
842
* particular bit patterns represent signaling NaNs is platform
843
* dependent; although all NaN bit patterns, quiet or signaling,
844
* must be in the NaN range identified above.
845
*
846
* @param bits an integer.
847
* @return the {@code float} floating-point value with the same bit
848
* pattern.
849
*/
850
public static native float intBitsToFloat(int bits);
851
852
/**
853
* Compares two {@code Float} objects numerically. There are
854
* two ways in which comparisons performed by this method differ
855
* from those performed by the Java language numerical comparison
856
* operators ({@code <, <=, ==, >=, >}) when
857
* applied to primitive {@code float} values:
858
*
859
* <ul><li>
860
* {@code Float.NaN} is considered by this method to
861
* be equal to itself and greater than all other
862
* {@code float} values
863
* (including {@code Float.POSITIVE_INFINITY}).
864
* <li>
865
* {@code 0.0f} is considered by this method to be greater
866
* than {@code -0.0f}.
867
* </ul>
868
*
869
* This ensures that the <i>natural ordering</i> of {@code Float}
870
* objects imposed by this method is <i>consistent with equals</i>.
871
*
872
* @param anotherFloat the {@code Float} to be compared.
873
* @return the value {@code 0} if {@code anotherFloat} is
874
* numerically equal to this {@code Float}; a value
875
* less than {@code 0} if this {@code Float}
876
* is numerically less than {@code anotherFloat};
877
* and a value greater than {@code 0} if this
878
* {@code Float} is numerically greater than
879
* {@code anotherFloat}.
880
*
881
* @since 1.2
882
* @see Comparable#compareTo(Object)
883
*/
884
public int compareTo(Float anotherFloat) {
885
return Float.compare(value, anotherFloat.value);
886
}
887
888
/**
889
* Compares the two specified {@code float} values. The sign
890
* of the integer value returned is the same as that of the
891
* integer that would be returned by the call:
892
* <pre>
893
* new Float(f1).compareTo(new Float(f2))
894
* </pre>
895
*
896
* @param f1 the first {@code float} to compare.
897
* @param f2 the second {@code float} to compare.
898
* @return the value {@code 0} if {@code f1} is
899
* numerically equal to {@code f2}; a value less than
900
* {@code 0} if {@code f1} is numerically less than
901
* {@code f2}; and a value greater than {@code 0}
902
* if {@code f1} is numerically greater than
903
* {@code f2}.
904
* @since 1.4
905
*/
906
public static int compare(float f1, float f2) {
907
if (f1 < f2)
908
return -1; // Neither val is NaN, thisVal is smaller
909
if (f1 > f2)
910
return 1; // Neither val is NaN, thisVal is larger
911
912
// Cannot use floatToRawIntBits because of possibility of NaNs.
913
int thisBits = Float.floatToIntBits(f1);
914
int anotherBits = Float.floatToIntBits(f2);
915
916
return (thisBits == anotherBits ? 0 : // Values are equal
917
(thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
918
1)); // (0.0, -0.0) or (NaN, !NaN)
919
}
920
921
/**
922
* Adds two {@code float} values together as per the + operator.
923
*
924
* @param a the first operand
925
* @param b the second operand
926
* @return the sum of {@code a} and {@code b}
927
* @jls 4.2.4 Floating-Point Operations
928
* @see java.util.function.BinaryOperator
929
* @since 1.8
930
*/
931
public static float sum(float a, float b) {
932
return a + b;
933
}
934
935
/**
936
* Returns the greater of two {@code float} values
937
* as if by calling {@link Math#max(float, float) Math.max}.
938
*
939
* @param a the first operand
940
* @param b the second operand
941
* @return the greater of {@code a} and {@code b}
942
* @see java.util.function.BinaryOperator
943
* @since 1.8
944
*/
945
public static float max(float a, float b) {
946
return Math.max(a, b);
947
}
948
949
/**
950
* Returns the smaller of two {@code float} values
951
* as if by calling {@link Math#min(float, float) Math.min}.
952
*
953
* @param a the first operand
954
* @param b the second operand
955
* @return the smaller of {@code a} and {@code b}
956
* @see java.util.function.BinaryOperator
957
* @since 1.8
958
*/
959
public static float min(float a, float b) {
960
return Math.min(a, b);
961
}
962
963
/** use serialVersionUID from JDK 1.0.2 for interoperability */
964
private static final long serialVersionUID = -2671257302660747028L;
965
}
966
967