Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/java/math/MutableBigInteger.java
38829 views
1
/*
2
* Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.math;
27
28
/**
29
* A class used to represent multiprecision integers that makes efficient
30
* use of allocated space by allowing a number to occupy only part of
31
* an array so that the arrays do not have to be reallocated as often.
32
* When performing an operation with many iterations the array used to
33
* hold a number is only reallocated when necessary and does not have to
34
* be the same size as the number it represents. A mutable number allows
35
* calculations to occur on the same number without having to create
36
* a new number for every step of the calculation as occurs with
37
* BigIntegers.
38
*
39
* @see BigInteger
40
* @author Michael McCloskey
41
* @author Timothy Buktu
42
* @since 1.3
43
*/
44
45
import static java.math.BigDecimal.INFLATED;
46
import static java.math.BigInteger.LONG_MASK;
47
import java.util.Arrays;
48
49
class MutableBigInteger {
50
/**
51
* Holds the magnitude of this MutableBigInteger in big endian order.
52
* The magnitude may start at an offset into the value array, and it may
53
* end before the length of the value array.
54
*/
55
int[] value;
56
57
/**
58
* The number of ints of the value array that are currently used
59
* to hold the magnitude of this MutableBigInteger. The magnitude starts
60
* at an offset and offset + intLen may be less than value.length.
61
*/
62
int intLen;
63
64
/**
65
* The offset into the value array where the magnitude of this
66
* MutableBigInteger begins.
67
*/
68
int offset = 0;
69
70
// Constants
71
/**
72
* MutableBigInteger with one element value array with the value 1. Used by
73
* BigDecimal divideAndRound to increment the quotient. Use this constant
74
* only when the method is not going to modify this object.
75
*/
76
static final MutableBigInteger ONE = new MutableBigInteger(1);
77
78
/**
79
* The minimum {@code intLen} for cancelling powers of two before
80
* dividing.
81
* If the number of ints is less than this threshold,
82
* {@code divideKnuth} does not eliminate common powers of two from
83
* the dividend and divisor.
84
*/
85
static final int KNUTH_POW2_THRESH_LEN = 6;
86
87
/**
88
* The minimum number of trailing zero ints for cancelling powers of two
89
* before dividing.
90
* If the dividend and divisor don't share at least this many zero ints
91
* at the end, {@code divideKnuth} does not eliminate common powers
92
* of two from the dividend and divisor.
93
*/
94
static final int KNUTH_POW2_THRESH_ZEROS = 3;
95
96
// Constructors
97
98
/**
99
* The default constructor. An empty MutableBigInteger is created with
100
* a one word capacity.
101
*/
102
MutableBigInteger() {
103
value = new int[1];
104
intLen = 0;
105
}
106
107
/**
108
* Construct a new MutableBigInteger with a magnitude specified by
109
* the int val.
110
*/
111
MutableBigInteger(int val) {
112
value = new int[1];
113
intLen = 1;
114
value[0] = val;
115
}
116
117
/**
118
* Construct a new MutableBigInteger with the specified value array
119
* up to the length of the array supplied.
120
*/
121
MutableBigInteger(int[] val) {
122
value = val;
123
intLen = val.length;
124
}
125
126
/**
127
* Construct a new MutableBigInteger with a magnitude equal to the
128
* specified BigInteger.
129
*/
130
MutableBigInteger(BigInteger b) {
131
intLen = b.mag.length;
132
value = Arrays.copyOf(b.mag, intLen);
133
}
134
135
/**
136
* Construct a new MutableBigInteger with a magnitude equal to the
137
* specified MutableBigInteger.
138
*/
139
MutableBigInteger(MutableBigInteger val) {
140
intLen = val.intLen;
141
value = Arrays.copyOfRange(val.value, val.offset, val.offset + intLen);
142
}
143
144
/**
145
* Makes this number an {@code n}-int number all of whose bits are ones.
146
* Used by Burnikel-Ziegler division.
147
* @param n number of ints in the {@code value} array
148
* @return a number equal to {@code ((1<<(32*n)))-1}
149
*/
150
private void ones(int n) {
151
if (n > value.length)
152
value = new int[n];
153
Arrays.fill(value, -1);
154
offset = 0;
155
intLen = n;
156
}
157
158
/**
159
* Internal helper method to return the magnitude array. The caller is not
160
* supposed to modify the returned array.
161
*/
162
private int[] getMagnitudeArray() {
163
if (offset > 0 || value.length != intLen)
164
return Arrays.copyOfRange(value, offset, offset + intLen);
165
return value;
166
}
167
168
/**
169
* Convert this MutableBigInteger to a long value. The caller has to make
170
* sure this MutableBigInteger can be fit into long.
171
*/
172
private long toLong() {
173
assert (intLen <= 2) : "this MutableBigInteger exceeds the range of long";
174
if (intLen == 0)
175
return 0;
176
long d = value[offset] & LONG_MASK;
177
return (intLen == 2) ? d << 32 | (value[offset + 1] & LONG_MASK) : d;
178
}
179
180
/**
181
* Convert this MutableBigInteger to a BigInteger object.
182
*/
183
BigInteger toBigInteger(int sign) {
184
if (intLen == 0 || sign == 0)
185
return BigInteger.ZERO;
186
return new BigInteger(getMagnitudeArray(), sign);
187
}
188
189
/**
190
* Converts this number to a nonnegative {@code BigInteger}.
191
*/
192
BigInteger toBigInteger() {
193
normalize();
194
return toBigInteger(isZero() ? 0 : 1);
195
}
196
197
/**
198
* Convert this MutableBigInteger to BigDecimal object with the specified sign
199
* and scale.
200
*/
201
BigDecimal toBigDecimal(int sign, int scale) {
202
if (intLen == 0 || sign == 0)
203
return BigDecimal.zeroValueOf(scale);
204
int[] mag = getMagnitudeArray();
205
int len = mag.length;
206
int d = mag[0];
207
// If this MutableBigInteger can't be fit into long, we need to
208
// make a BigInteger object for the resultant BigDecimal object.
209
if (len > 2 || (d < 0 && len == 2))
210
return new BigDecimal(new BigInteger(mag, sign), INFLATED, scale, 0);
211
long v = (len == 2) ?
212
((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
213
d & LONG_MASK;
214
return BigDecimal.valueOf(sign == -1 ? -v : v, scale);
215
}
216
217
/**
218
* This is for internal use in converting from a MutableBigInteger
219
* object into a long value given a specified sign.
220
* returns INFLATED if value is not fit into long
221
*/
222
long toCompactValue(int sign) {
223
if (intLen == 0 || sign == 0)
224
return 0L;
225
int[] mag = getMagnitudeArray();
226
int len = mag.length;
227
int d = mag[0];
228
// If this MutableBigInteger can not be fitted into long, we need to
229
// make a BigInteger object for the resultant BigDecimal object.
230
if (len > 2 || (d < 0 && len == 2))
231
return INFLATED;
232
long v = (len == 2) ?
233
((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
234
d & LONG_MASK;
235
return sign == -1 ? -v : v;
236
}
237
238
/**
239
* Clear out a MutableBigInteger for reuse.
240
*/
241
void clear() {
242
offset = intLen = 0;
243
for (int index=0, n=value.length; index < n; index++)
244
value[index] = 0;
245
}
246
247
/**
248
* Set a MutableBigInteger to zero, removing its offset.
249
*/
250
void reset() {
251
offset = intLen = 0;
252
}
253
254
/**
255
* Compare the magnitude of two MutableBigIntegers. Returns -1, 0 or 1
256
* as this MutableBigInteger is numerically less than, equal to, or
257
* greater than <tt>b</tt>.
258
*/
259
final int compare(MutableBigInteger b) {
260
int blen = b.intLen;
261
if (intLen < blen)
262
return -1;
263
if (intLen > blen)
264
return 1;
265
266
// Add Integer.MIN_VALUE to make the comparison act as unsigned integer
267
// comparison.
268
int[] bval = b.value;
269
for (int i = offset, j = b.offset; i < intLen + offset; i++, j++) {
270
int b1 = value[i] + 0x80000000;
271
int b2 = bval[j] + 0x80000000;
272
if (b1 < b2)
273
return -1;
274
if (b1 > b2)
275
return 1;
276
}
277
return 0;
278
}
279
280
/**
281
* Returns a value equal to what {@code b.leftShift(32*ints); return compare(b);}
282
* would return, but doesn't change the value of {@code b}.
283
*/
284
private int compareShifted(MutableBigInteger b, int ints) {
285
int blen = b.intLen;
286
int alen = intLen - ints;
287
if (alen < blen)
288
return -1;
289
if (alen > blen)
290
return 1;
291
292
// Add Integer.MIN_VALUE to make the comparison act as unsigned integer
293
// comparison.
294
int[] bval = b.value;
295
for (int i = offset, j = b.offset; i < alen + offset; i++, j++) {
296
int b1 = value[i] + 0x80000000;
297
int b2 = bval[j] + 0x80000000;
298
if (b1 < b2)
299
return -1;
300
if (b1 > b2)
301
return 1;
302
}
303
return 0;
304
}
305
306
/**
307
* Compare this against half of a MutableBigInteger object (Needed for
308
* remainder tests).
309
* Assumes no leading unnecessary zeros, which holds for results
310
* from divide().
311
*/
312
final int compareHalf(MutableBigInteger b) {
313
int blen = b.intLen;
314
int len = intLen;
315
if (len <= 0)
316
return blen <= 0 ? 0 : -1;
317
if (len > blen)
318
return 1;
319
if (len < blen - 1)
320
return -1;
321
int[] bval = b.value;
322
int bstart = 0;
323
int carry = 0;
324
// Only 2 cases left:len == blen or len == blen - 1
325
if (len != blen) { // len == blen - 1
326
if (bval[bstart] == 1) {
327
++bstart;
328
carry = 0x80000000;
329
} else
330
return -1;
331
}
332
// compare values with right-shifted values of b,
333
// carrying shifted-out bits across words
334
int[] val = value;
335
for (int i = offset, j = bstart; i < len + offset;) {
336
int bv = bval[j++];
337
long hb = ((bv >>> 1) + carry) & LONG_MASK;
338
long v = val[i++] & LONG_MASK;
339
if (v != hb)
340
return v < hb ? -1 : 1;
341
carry = (bv & 1) << 31; // carray will be either 0x80000000 or 0
342
}
343
return carry == 0 ? 0 : -1;
344
}
345
346
/**
347
* Return the index of the lowest set bit in this MutableBigInteger. If the
348
* magnitude of this MutableBigInteger is zero, -1 is returned.
349
*/
350
private final int getLowestSetBit() {
351
if (intLen == 0)
352
return -1;
353
int j, b;
354
for (j=intLen-1; (j > 0) && (value[j+offset] == 0); j--)
355
;
356
b = value[j+offset];
357
if (b == 0)
358
return -1;
359
return ((intLen-1-j)<<5) + Integer.numberOfTrailingZeros(b);
360
}
361
362
/**
363
* Return the int in use in this MutableBigInteger at the specified
364
* index. This method is not used because it is not inlined on all
365
* platforms.
366
*/
367
private final int getInt(int index) {
368
return value[offset+index];
369
}
370
371
/**
372
* Return a long which is equal to the unsigned value of the int in
373
* use in this MutableBigInteger at the specified index. This method is
374
* not used because it is not inlined on all platforms.
375
*/
376
private final long getLong(int index) {
377
return value[offset+index] & LONG_MASK;
378
}
379
380
/**
381
* Ensure that the MutableBigInteger is in normal form, specifically
382
* making sure that there are no leading zeros, and that if the
383
* magnitude is zero, then intLen is zero.
384
*/
385
final void normalize() {
386
if (intLen == 0) {
387
offset = 0;
388
return;
389
}
390
391
int index = offset;
392
if (value[index] != 0)
393
return;
394
395
int indexBound = index+intLen;
396
do {
397
index++;
398
} while(index < indexBound && value[index] == 0);
399
400
int numZeros = index - offset;
401
intLen -= numZeros;
402
offset = (intLen == 0 ? 0 : offset+numZeros);
403
}
404
405
/**
406
* If this MutableBigInteger cannot hold len words, increase the size
407
* of the value array to len words.
408
*/
409
private final void ensureCapacity(int len) {
410
if (value.length < len) {
411
value = new int[len];
412
offset = 0;
413
intLen = len;
414
}
415
}
416
417
/**
418
* Convert this MutableBigInteger into an int array with no leading
419
* zeros, of a length that is equal to this MutableBigInteger's intLen.
420
*/
421
int[] toIntArray() {
422
int[] result = new int[intLen];
423
for(int i=0; i < intLen; i++)
424
result[i] = value[offset+i];
425
return result;
426
}
427
428
/**
429
* Sets the int at index+offset in this MutableBigInteger to val.
430
* This does not get inlined on all platforms so it is not used
431
* as often as originally intended.
432
*/
433
void setInt(int index, int val) {
434
value[offset + index] = val;
435
}
436
437
/**
438
* Sets this MutableBigInteger's value array to the specified array.
439
* The intLen is set to the specified length.
440
*/
441
void setValue(int[] val, int length) {
442
value = val;
443
intLen = length;
444
offset = 0;
445
}
446
447
/**
448
* Sets this MutableBigInteger's value array to a copy of the specified
449
* array. The intLen is set to the length of the new array.
450
*/
451
void copyValue(MutableBigInteger src) {
452
int len = src.intLen;
453
if (value.length < len)
454
value = new int[len];
455
System.arraycopy(src.value, src.offset, value, 0, len);
456
intLen = len;
457
offset = 0;
458
}
459
460
/**
461
* Sets this MutableBigInteger's value array to a copy of the specified
462
* array. The intLen is set to the length of the specified array.
463
*/
464
void copyValue(int[] val) {
465
int len = val.length;
466
if (value.length < len)
467
value = new int[len];
468
System.arraycopy(val, 0, value, 0, len);
469
intLen = len;
470
offset = 0;
471
}
472
473
/**
474
* Returns true iff this MutableBigInteger has a value of one.
475
*/
476
boolean isOne() {
477
return (intLen == 1) && (value[offset] == 1);
478
}
479
480
/**
481
* Returns true iff this MutableBigInteger has a value of zero.
482
*/
483
boolean isZero() {
484
return (intLen == 0);
485
}
486
487
/**
488
* Returns true iff this MutableBigInteger is even.
489
*/
490
boolean isEven() {
491
return (intLen == 0) || ((value[offset + intLen - 1] & 1) == 0);
492
}
493
494
/**
495
* Returns true iff this MutableBigInteger is odd.
496
*/
497
boolean isOdd() {
498
return isZero() ? false : ((value[offset + intLen - 1] & 1) == 1);
499
}
500
501
/**
502
* Returns true iff this MutableBigInteger is in normal form. A
503
* MutableBigInteger is in normal form if it has no leading zeros
504
* after the offset, and intLen + offset <= value.length.
505
*/
506
boolean isNormal() {
507
if (intLen + offset > value.length)
508
return false;
509
if (intLen == 0)
510
return true;
511
return (value[offset] != 0);
512
}
513
514
/**
515
* Returns a String representation of this MutableBigInteger in radix 10.
516
*/
517
public String toString() {
518
BigInteger b = toBigInteger(1);
519
return b.toString();
520
}
521
522
/**
523
* Like {@link #rightShift(int)} but {@code n} can be greater than the length of the number.
524
*/
525
void safeRightShift(int n) {
526
if (n/32 >= intLen) {
527
reset();
528
} else {
529
rightShift(n);
530
}
531
}
532
533
/**
534
* Right shift this MutableBigInteger n bits. The MutableBigInteger is left
535
* in normal form.
536
*/
537
void rightShift(int n) {
538
if (intLen == 0)
539
return;
540
int nInts = n >>> 5;
541
int nBits = n & 0x1F;
542
this.intLen -= nInts;
543
if (nBits == 0)
544
return;
545
int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);
546
if (nBits >= bitsInHighWord) {
547
this.primitiveLeftShift(32 - nBits);
548
this.intLen--;
549
} else {
550
primitiveRightShift(nBits);
551
}
552
}
553
554
/**
555
* Like {@link #leftShift(int)} but {@code n} can be zero.
556
*/
557
void safeLeftShift(int n) {
558
if (n > 0) {
559
leftShift(n);
560
}
561
}
562
563
/**
564
* Left shift this MutableBigInteger n bits.
565
*/
566
void leftShift(int n) {
567
/*
568
* If there is enough storage space in this MutableBigInteger already
569
* the available space will be used. Space to the right of the used
570
* ints in the value array is faster to utilize, so the extra space
571
* will be taken from the right if possible.
572
*/
573
if (intLen == 0)
574
return;
575
int nInts = n >>> 5;
576
int nBits = n&0x1F;
577
int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);
578
579
// If shift can be done without moving words, do so
580
if (n <= (32-bitsInHighWord)) {
581
primitiveLeftShift(nBits);
582
return;
583
}
584
585
int newLen = intLen + nInts +1;
586
if (nBits <= (32-bitsInHighWord))
587
newLen--;
588
if (value.length < newLen) {
589
// The array must grow
590
int[] result = new int[newLen];
591
for (int i=0; i < intLen; i++)
592
result[i] = value[offset+i];
593
setValue(result, newLen);
594
} else if (value.length - offset >= newLen) {
595
// Use space on right
596
for(int i=0; i < newLen - intLen; i++)
597
value[offset+intLen+i] = 0;
598
} else {
599
// Must use space on left
600
for (int i=0; i < intLen; i++)
601
value[i] = value[offset+i];
602
for (int i=intLen; i < newLen; i++)
603
value[i] = 0;
604
offset = 0;
605
}
606
intLen = newLen;
607
if (nBits == 0)
608
return;
609
if (nBits <= (32-bitsInHighWord))
610
primitiveLeftShift(nBits);
611
else
612
primitiveRightShift(32 -nBits);
613
}
614
615
/**
616
* A primitive used for division. This method adds in one multiple of the
617
* divisor a back to the dividend result at a specified offset. It is used
618
* when qhat was estimated too large, and must be adjusted.
619
*/
620
private int divadd(int[] a, int[] result, int offset) {
621
long carry = 0;
622
623
for (int j=a.length-1; j >= 0; j--) {
624
long sum = (a[j] & LONG_MASK) +
625
(result[j+offset] & LONG_MASK) + carry;
626
result[j+offset] = (int)sum;
627
carry = sum >>> 32;
628
}
629
return (int)carry;
630
}
631
632
/**
633
* This method is used for division. It multiplies an n word input a by one
634
* word input x, and subtracts the n word product from q. This is needed
635
* when subtracting qhat*divisor from dividend.
636
*/
637
private int mulsub(int[] q, int[] a, int x, int len, int offset) {
638
long xLong = x & LONG_MASK;
639
long carry = 0;
640
offset += len;
641
642
for (int j=len-1; j >= 0; j--) {
643
long product = (a[j] & LONG_MASK) * xLong + carry;
644
long difference = q[offset] - product;
645
q[offset--] = (int)difference;
646
carry = (product >>> 32)
647
+ (((difference & LONG_MASK) >
648
(((~(int)product) & LONG_MASK))) ? 1:0);
649
}
650
return (int)carry;
651
}
652
653
/**
654
* The method is the same as mulsun, except the fact that q array is not
655
* updated, the only result of the method is borrow flag.
656
*/
657
private int mulsubBorrow(int[] q, int[] a, int x, int len, int offset) {
658
long xLong = x & LONG_MASK;
659
long carry = 0;
660
offset += len;
661
for (int j=len-1; j >= 0; j--) {
662
long product = (a[j] & LONG_MASK) * xLong + carry;
663
long difference = q[offset--] - product;
664
carry = (product >>> 32)
665
+ (((difference & LONG_MASK) >
666
(((~(int)product) & LONG_MASK))) ? 1:0);
667
}
668
return (int)carry;
669
}
670
671
/**
672
* Right shift this MutableBigInteger n bits, where n is
673
* less than 32.
674
* Assumes that intLen > 0, n > 0 for speed
675
*/
676
private final void primitiveRightShift(int n) {
677
int[] val = value;
678
int n2 = 32 - n;
679
for (int i=offset+intLen-1, c=val[i]; i > offset; i--) {
680
int b = c;
681
c = val[i-1];
682
val[i] = (c << n2) | (b >>> n);
683
}
684
val[offset] >>>= n;
685
}
686
687
/**
688
* Left shift this MutableBigInteger n bits, where n is
689
* less than 32.
690
* Assumes that intLen > 0, n > 0 for speed
691
*/
692
private final void primitiveLeftShift(int n) {
693
int[] val = value;
694
int n2 = 32 - n;
695
for (int i=offset, c=val[i], m=i+intLen-1; i < m; i++) {
696
int b = c;
697
c = val[i+1];
698
val[i] = (b << n) | (c >>> n2);
699
}
700
val[offset+intLen-1] <<= n;
701
}
702
703
/**
704
* Returns a {@code BigInteger} equal to the {@code n}
705
* low ints of this number.
706
*/
707
private BigInteger getLower(int n) {
708
if (isZero()) {
709
return BigInteger.ZERO;
710
} else if (intLen < n) {
711
return toBigInteger(1);
712
} else {
713
// strip zeros
714
int len = n;
715
while (len > 0 && value[offset+intLen-len] == 0)
716
len--;
717
int sign = len > 0 ? 1 : 0;
718
return new BigInteger(Arrays.copyOfRange(value, offset+intLen-len, offset+intLen), sign);
719
}
720
}
721
722
/**
723
* Discards all ints whose index is greater than {@code n}.
724
*/
725
private void keepLower(int n) {
726
if (intLen >= n) {
727
offset += intLen - n;
728
intLen = n;
729
}
730
}
731
732
/**
733
* Adds the contents of two MutableBigInteger objects.The result
734
* is placed within this MutableBigInteger.
735
* The contents of the addend are not changed.
736
*/
737
void add(MutableBigInteger addend) {
738
int x = intLen;
739
int y = addend.intLen;
740
int resultLen = (intLen > addend.intLen ? intLen : addend.intLen);
741
int[] result = (value.length < resultLen ? new int[resultLen] : value);
742
743
int rstart = result.length-1;
744
long sum;
745
long carry = 0;
746
747
// Add common parts of both numbers
748
while(x > 0 && y > 0) {
749
x--; y--;
750
sum = (value[x+offset] & LONG_MASK) +
751
(addend.value[y+addend.offset] & LONG_MASK) + carry;
752
result[rstart--] = (int)sum;
753
carry = sum >>> 32;
754
}
755
756
// Add remainder of the longer number
757
while(x > 0) {
758
x--;
759
if (carry == 0 && result == value && rstart == (x + offset))
760
return;
761
sum = (value[x+offset] & LONG_MASK) + carry;
762
result[rstart--] = (int)sum;
763
carry = sum >>> 32;
764
}
765
while(y > 0) {
766
y--;
767
sum = (addend.value[y+addend.offset] & LONG_MASK) + carry;
768
result[rstart--] = (int)sum;
769
carry = sum >>> 32;
770
}
771
772
if (carry > 0) { // Result must grow in length
773
resultLen++;
774
if (result.length < resultLen) {
775
int temp[] = new int[resultLen];
776
// Result one word longer from carry-out; copy low-order
777
// bits into new result.
778
System.arraycopy(result, 0, temp, 1, result.length);
779
temp[0] = 1;
780
result = temp;
781
} else {
782
result[rstart--] = 1;
783
}
784
}
785
786
value = result;
787
intLen = resultLen;
788
offset = result.length - resultLen;
789
}
790
791
/**
792
* Adds the value of {@code addend} shifted {@code n} ints to the left.
793
* Has the same effect as {@code addend.leftShift(32*ints); add(addend);}
794
* but doesn't change the value of {@code addend}.
795
*/
796
void addShifted(MutableBigInteger addend, int n) {
797
if (addend.isZero()) {
798
return;
799
}
800
801
int x = intLen;
802
int y = addend.intLen + n;
803
int resultLen = (intLen > y ? intLen : y);
804
int[] result = (value.length < resultLen ? new int[resultLen] : value);
805
806
int rstart = result.length-1;
807
long sum;
808
long carry = 0;
809
810
// Add common parts of both numbers
811
while (x > 0 && y > 0) {
812
x--; y--;
813
int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
814
sum = (value[x+offset] & LONG_MASK) +
815
(bval & LONG_MASK) + carry;
816
result[rstart--] = (int)sum;
817
carry = sum >>> 32;
818
}
819
820
// Add remainder of the longer number
821
while (x > 0) {
822
x--;
823
if (carry == 0 && result == value && rstart == (x + offset)) {
824
return;
825
}
826
sum = (value[x+offset] & LONG_MASK) + carry;
827
result[rstart--] = (int)sum;
828
carry = sum >>> 32;
829
}
830
while (y > 0) {
831
y--;
832
int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
833
sum = (bval & LONG_MASK) + carry;
834
result[rstart--] = (int)sum;
835
carry = sum >>> 32;
836
}
837
838
if (carry > 0) { // Result must grow in length
839
resultLen++;
840
if (result.length < resultLen) {
841
int temp[] = new int[resultLen];
842
// Result one word longer from carry-out; copy low-order
843
// bits into new result.
844
System.arraycopy(result, 0, temp, 1, result.length);
845
temp[0] = 1;
846
result = temp;
847
} else {
848
result[rstart--] = 1;
849
}
850
}
851
852
value = result;
853
intLen = resultLen;
854
offset = result.length - resultLen;
855
}
856
857
/**
858
* Like {@link #addShifted(MutableBigInteger, int)} but {@code this.intLen} must
859
* not be greater than {@code n}. In other words, concatenates {@code this}
860
* and {@code addend}.
861
*/
862
void addDisjoint(MutableBigInteger addend, int n) {
863
if (addend.isZero())
864
return;
865
866
int x = intLen;
867
int y = addend.intLen + n;
868
int resultLen = (intLen > y ? intLen : y);
869
int[] result;
870
if (value.length < resultLen)
871
result = new int[resultLen];
872
else {
873
result = value;
874
Arrays.fill(value, offset+intLen, value.length, 0);
875
}
876
877
int rstart = result.length-1;
878
879
// copy from this if needed
880
System.arraycopy(value, offset, result, rstart+1-x, x);
881
y -= x;
882
rstart -= x;
883
884
int len = Math.min(y, addend.value.length-addend.offset);
885
System.arraycopy(addend.value, addend.offset, result, rstart+1-y, len);
886
887
// zero the gap
888
for (int i=rstart+1-y+len; i < rstart+1; i++)
889
result[i] = 0;
890
891
value = result;
892
intLen = resultLen;
893
offset = result.length - resultLen;
894
}
895
896
/**
897
* Adds the low {@code n} ints of {@code addend}.
898
*/
899
void addLower(MutableBigInteger addend, int n) {
900
MutableBigInteger a = new MutableBigInteger(addend);
901
if (a.offset + a.intLen >= n) {
902
a.offset = a.offset + a.intLen - n;
903
a.intLen = n;
904
}
905
a.normalize();
906
add(a);
907
}
908
909
/**
910
* Subtracts the smaller of this and b from the larger and places the
911
* result into this MutableBigInteger.
912
*/
913
int subtract(MutableBigInteger b) {
914
MutableBigInteger a = this;
915
916
int[] result = value;
917
int sign = a.compare(b);
918
919
if (sign == 0) {
920
reset();
921
return 0;
922
}
923
if (sign < 0) {
924
MutableBigInteger tmp = a;
925
a = b;
926
b = tmp;
927
}
928
929
int resultLen = a.intLen;
930
if (result.length < resultLen)
931
result = new int[resultLen];
932
933
long diff = 0;
934
int x = a.intLen;
935
int y = b.intLen;
936
int rstart = result.length - 1;
937
938
// Subtract common parts of both numbers
939
while (y > 0) {
940
x--; y--;
941
942
diff = (a.value[x+a.offset] & LONG_MASK) -
943
(b.value[y+b.offset] & LONG_MASK) - ((int)-(diff>>32));
944
result[rstart--] = (int)diff;
945
}
946
// Subtract remainder of longer number
947
while (x > 0) {
948
x--;
949
diff = (a.value[x+a.offset] & LONG_MASK) - ((int)-(diff>>32));
950
result[rstart--] = (int)diff;
951
}
952
953
value = result;
954
intLen = resultLen;
955
offset = value.length - resultLen;
956
normalize();
957
return sign;
958
}
959
960
/**
961
* Subtracts the smaller of a and b from the larger and places the result
962
* into the larger. Returns 1 if the answer is in a, -1 if in b, 0 if no
963
* operation was performed.
964
*/
965
private int difference(MutableBigInteger b) {
966
MutableBigInteger a = this;
967
int sign = a.compare(b);
968
if (sign == 0)
969
return 0;
970
if (sign < 0) {
971
MutableBigInteger tmp = a;
972
a = b;
973
b = tmp;
974
}
975
976
long diff = 0;
977
int x = a.intLen;
978
int y = b.intLen;
979
980
// Subtract common parts of both numbers
981
while (y > 0) {
982
x--; y--;
983
diff = (a.value[a.offset+ x] & LONG_MASK) -
984
(b.value[b.offset+ y] & LONG_MASK) - ((int)-(diff>>32));
985
a.value[a.offset+x] = (int)diff;
986
}
987
// Subtract remainder of longer number
988
while (x > 0) {
989
x--;
990
diff = (a.value[a.offset+ x] & LONG_MASK) - ((int)-(diff>>32));
991
a.value[a.offset+x] = (int)diff;
992
}
993
994
a.normalize();
995
return sign;
996
}
997
998
/**
999
* Multiply the contents of two MutableBigInteger objects. The result is
1000
* placed into MutableBigInteger z. The contents of y are not changed.
1001
*/
1002
void multiply(MutableBigInteger y, MutableBigInteger z) {
1003
int xLen = intLen;
1004
int yLen = y.intLen;
1005
int newLen = xLen + yLen;
1006
1007
// Put z into an appropriate state to receive product
1008
if (z.value.length < newLen)
1009
z.value = new int[newLen];
1010
z.offset = 0;
1011
z.intLen = newLen;
1012
1013
// The first iteration is hoisted out of the loop to avoid extra add
1014
long carry = 0;
1015
for (int j=yLen-1, k=yLen+xLen-1; j >= 0; j--, k--) {
1016
long product = (y.value[j+y.offset] & LONG_MASK) *
1017
(value[xLen-1+offset] & LONG_MASK) + carry;
1018
z.value[k] = (int)product;
1019
carry = product >>> 32;
1020
}
1021
z.value[xLen-1] = (int)carry;
1022
1023
// Perform the multiplication word by word
1024
for (int i = xLen-2; i >= 0; i--) {
1025
carry = 0;
1026
for (int j=yLen-1, k=yLen+i; j >= 0; j--, k--) {
1027
long product = (y.value[j+y.offset] & LONG_MASK) *
1028
(value[i+offset] & LONG_MASK) +
1029
(z.value[k] & LONG_MASK) + carry;
1030
z.value[k] = (int)product;
1031
carry = product >>> 32;
1032
}
1033
z.value[i] = (int)carry;
1034
}
1035
1036
// Remove leading zeros from product
1037
z.normalize();
1038
}
1039
1040
/**
1041
* Multiply the contents of this MutableBigInteger by the word y. The
1042
* result is placed into z.
1043
*/
1044
void mul(int y, MutableBigInteger z) {
1045
if (y == 1) {
1046
z.copyValue(this);
1047
return;
1048
}
1049
1050
if (y == 0) {
1051
z.clear();
1052
return;
1053
}
1054
1055
// Perform the multiplication word by word
1056
long ylong = y & LONG_MASK;
1057
int[] zval = (z.value.length < intLen+1 ? new int[intLen + 1]
1058
: z.value);
1059
long carry = 0;
1060
for (int i = intLen-1; i >= 0; i--) {
1061
long product = ylong * (value[i+offset] & LONG_MASK) + carry;
1062
zval[i+1] = (int)product;
1063
carry = product >>> 32;
1064
}
1065
1066
if (carry == 0) {
1067
z.offset = 1;
1068
z.intLen = intLen;
1069
} else {
1070
z.offset = 0;
1071
z.intLen = intLen + 1;
1072
zval[0] = (int)carry;
1073
}
1074
z.value = zval;
1075
}
1076
1077
/**
1078
* This method is used for division of an n word dividend by a one word
1079
* divisor. The quotient is placed into quotient. The one word divisor is
1080
* specified by divisor.
1081
*
1082
* @return the remainder of the division is returned.
1083
*
1084
*/
1085
int divideOneWord(int divisor, MutableBigInteger quotient) {
1086
long divisorLong = divisor & LONG_MASK;
1087
1088
// Special case of one word dividend
1089
if (intLen == 1) {
1090
long dividendValue = value[offset] & LONG_MASK;
1091
int q = (int) (dividendValue / divisorLong);
1092
int r = (int) (dividendValue - q * divisorLong);
1093
quotient.value[0] = q;
1094
quotient.intLen = (q == 0) ? 0 : 1;
1095
quotient.offset = 0;
1096
return r;
1097
}
1098
1099
if (quotient.value.length < intLen)
1100
quotient.value = new int[intLen];
1101
quotient.offset = 0;
1102
quotient.intLen = intLen;
1103
1104
// Normalize the divisor
1105
int shift = Integer.numberOfLeadingZeros(divisor);
1106
1107
int rem = value[offset];
1108
long remLong = rem & LONG_MASK;
1109
if (remLong < divisorLong) {
1110
quotient.value[0] = 0;
1111
} else {
1112
quotient.value[0] = (int)(remLong / divisorLong);
1113
rem = (int) (remLong - (quotient.value[0] * divisorLong));
1114
remLong = rem & LONG_MASK;
1115
}
1116
int xlen = intLen;
1117
while (--xlen > 0) {
1118
long dividendEstimate = (remLong << 32) |
1119
(value[offset + intLen - xlen] & LONG_MASK);
1120
int q;
1121
if (dividendEstimate >= 0) {
1122
q = (int) (dividendEstimate / divisorLong);
1123
rem = (int) (dividendEstimate - q * divisorLong);
1124
} else {
1125
long tmp = divWord(dividendEstimate, divisor);
1126
q = (int) (tmp & LONG_MASK);
1127
rem = (int) (tmp >>> 32);
1128
}
1129
quotient.value[intLen - xlen] = q;
1130
remLong = rem & LONG_MASK;
1131
}
1132
1133
quotient.normalize();
1134
// Unnormalize
1135
if (shift > 0)
1136
return rem % divisor;
1137
else
1138
return rem;
1139
}
1140
1141
/**
1142
* Calculates the quotient of this div b and places the quotient in the
1143
* provided MutableBigInteger objects and the remainder object is returned.
1144
*
1145
*/
1146
MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient) {
1147
return divide(b,quotient,true);
1148
}
1149
1150
MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
1151
if (b.intLen < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD ||
1152
intLen - b.intLen < BigInteger.BURNIKEL_ZIEGLER_OFFSET) {
1153
return divideKnuth(b, quotient, needRemainder);
1154
} else {
1155
return divideAndRemainderBurnikelZiegler(b, quotient);
1156
}
1157
}
1158
1159
/**
1160
* @see #divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
1161
*/
1162
MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient) {
1163
return divideKnuth(b,quotient,true);
1164
}
1165
1166
/**
1167
* Calculates the quotient of this div b and places the quotient in the
1168
* provided MutableBigInteger objects and the remainder object is returned.
1169
*
1170
* Uses Algorithm D in Knuth section 4.3.1.
1171
* Many optimizations to that algorithm have been adapted from the Colin
1172
* Plumb C library.
1173
* It special cases one word divisors for speed. The content of b is not
1174
* changed.
1175
*
1176
*/
1177
MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
1178
if (b.intLen == 0)
1179
throw new ArithmeticException("BigInteger divide by zero");
1180
1181
// Dividend is zero
1182
if (intLen == 0) {
1183
quotient.intLen = quotient.offset = 0;
1184
return needRemainder ? new MutableBigInteger() : null;
1185
}
1186
1187
int cmp = compare(b);
1188
// Dividend less than divisor
1189
if (cmp < 0) {
1190
quotient.intLen = quotient.offset = 0;
1191
return needRemainder ? new MutableBigInteger(this) : null;
1192
}
1193
// Dividend equal to divisor
1194
if (cmp == 0) {
1195
quotient.value[0] = quotient.intLen = 1;
1196
quotient.offset = 0;
1197
return needRemainder ? new MutableBigInteger() : null;
1198
}
1199
1200
quotient.clear();
1201
// Special case one word divisor
1202
if (b.intLen == 1) {
1203
int r = divideOneWord(b.value[b.offset], quotient);
1204
if(needRemainder) {
1205
if (r == 0)
1206
return new MutableBigInteger();
1207
return new MutableBigInteger(r);
1208
} else {
1209
return null;
1210
}
1211
}
1212
1213
// Cancel common powers of two if we're above the KNUTH_POW2_* thresholds
1214
if (intLen >= KNUTH_POW2_THRESH_LEN) {
1215
int trailingZeroBits = Math.min(getLowestSetBit(), b.getLowestSetBit());
1216
if (trailingZeroBits >= KNUTH_POW2_THRESH_ZEROS*32) {
1217
MutableBigInteger a = new MutableBigInteger(this);
1218
b = new MutableBigInteger(b);
1219
a.rightShift(trailingZeroBits);
1220
b.rightShift(trailingZeroBits);
1221
MutableBigInteger r = a.divideKnuth(b, quotient);
1222
r.leftShift(trailingZeroBits);
1223
return r;
1224
}
1225
}
1226
1227
return divideMagnitude(b, quotient, needRemainder);
1228
}
1229
1230
/**
1231
* Computes {@code this/b} and {@code this%b} using the
1232
* <a href="http://cr.yp.to/bib/1998/burnikel.ps"> Burnikel-Ziegler algorithm</a>.
1233
* This method implements algorithm 3 from pg. 9 of the Burnikel-Ziegler paper.
1234
* The parameter beta was chosen to b 2<sup>32</sup> so almost all shifts are
1235
* multiples of 32 bits.<br/>
1236
* {@code this} and {@code b} must be nonnegative.
1237
* @param b the divisor
1238
* @param quotient output parameter for {@code this/b}
1239
* @return the remainder
1240
*/
1241
MutableBigInteger divideAndRemainderBurnikelZiegler(MutableBigInteger b, MutableBigInteger quotient) {
1242
int r = intLen;
1243
int s = b.intLen;
1244
1245
// Clear the quotient
1246
quotient.offset = quotient.intLen = 0;
1247
1248
if (r < s) {
1249
return this;
1250
} else {
1251
// Unlike Knuth division, we don't check for common powers of two here because
1252
// BZ already runs faster if both numbers contain powers of two and cancelling them has no
1253
// additional benefit.
1254
1255
// step 1: let m = min{2^k | (2^k)*BURNIKEL_ZIEGLER_THRESHOLD > s}
1256
int m = 1 << (32-Integer.numberOfLeadingZeros(s/BigInteger.BURNIKEL_ZIEGLER_THRESHOLD));
1257
1258
int j = (s+m-1) / m; // step 2a: j = ceil(s/m)
1259
int n = j * m; // step 2b: block length in 32-bit units
1260
long n32 = 32L * n; // block length in bits
1261
int sigma = (int) Math.max(0, n32 - b.bitLength()); // step 3: sigma = max{T | (2^T)*B < beta^n}
1262
MutableBigInteger bShifted = new MutableBigInteger(b);
1263
bShifted.safeLeftShift(sigma); // step 4a: shift b so its length is a multiple of n
1264
MutableBigInteger aShifted = new MutableBigInteger (this);
1265
aShifted.safeLeftShift(sigma); // step 4b: shift a by the same amount
1266
1267
// step 5: t is the number of blocks needed to accommodate a plus one additional bit
1268
int t = (int) ((aShifted.bitLength()+n32) / n32);
1269
if (t < 2) {
1270
t = 2;
1271
}
1272
1273
// step 6: conceptually split a into blocks a[t-1], ..., a[0]
1274
MutableBigInteger a1 = aShifted.getBlock(t-1, t, n); // the most significant block of a
1275
1276
// step 7: z[t-2] = [a[t-1], a[t-2]]
1277
MutableBigInteger z = aShifted.getBlock(t-2, t, n); // the second to most significant block
1278
z.addDisjoint(a1, n); // z[t-2]
1279
1280
// do schoolbook division on blocks, dividing 2-block numbers by 1-block numbers
1281
MutableBigInteger qi = new MutableBigInteger();
1282
MutableBigInteger ri;
1283
for (int i=t-2; i > 0; i--) {
1284
// step 8a: compute (qi,ri) such that z=b*qi+ri
1285
ri = z.divide2n1n(bShifted, qi);
1286
1287
// step 8b: z = [ri, a[i-1]]
1288
z = aShifted.getBlock(i-1, t, n); // a[i-1]
1289
z.addDisjoint(ri, n);
1290
quotient.addShifted(qi, i*n); // update q (part of step 9)
1291
}
1292
// final iteration of step 8: do the loop one more time for i=0 but leave z unchanged
1293
ri = z.divide2n1n(bShifted, qi);
1294
quotient.add(qi);
1295
1296
ri.rightShift(sigma); // step 9: a and b were shifted, so shift back
1297
return ri;
1298
}
1299
}
1300
1301
/**
1302
* This method implements algorithm 1 from pg. 4 of the Burnikel-Ziegler paper.
1303
* It divides a 2n-digit number by a n-digit number.<br/>
1304
* The parameter beta is 2<sup>32</sup> so all shifts are multiples of 32 bits.
1305
* <br/>
1306
* {@code this} must be a nonnegative number such that {@code this.bitLength() <= 2*b.bitLength()}
1307
* @param b a positive number such that {@code b.bitLength()} is even
1308
* @param quotient output parameter for {@code this/b}
1309
* @return {@code this%b}
1310
*/
1311
private MutableBigInteger divide2n1n(MutableBigInteger b, MutableBigInteger quotient) {
1312
int n = b.intLen;
1313
1314
// step 1: base case
1315
if (n%2 != 0 || n < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD) {
1316
return divideKnuth(b, quotient);
1317
}
1318
1319
// step 2: view this as [a1,a2,a3,a4] where each ai is n/2 ints or less
1320
MutableBigInteger aUpper = new MutableBigInteger(this);
1321
aUpper.safeRightShift(32*(n/2)); // aUpper = [a1,a2,a3]
1322
keepLower(n/2); // this = a4
1323
1324
// step 3: q1=aUpper/b, r1=aUpper%b
1325
MutableBigInteger q1 = new MutableBigInteger();
1326
MutableBigInteger r1 = aUpper.divide3n2n(b, q1);
1327
1328
// step 4: quotient=[r1,this]/b, r2=[r1,this]%b
1329
addDisjoint(r1, n/2); // this = [r1,this]
1330
MutableBigInteger r2 = divide3n2n(b, quotient);
1331
1332
// step 5: let quotient=[q1,quotient] and return r2
1333
quotient.addDisjoint(q1, n/2);
1334
return r2;
1335
}
1336
1337
/**
1338
* This method implements algorithm 2 from pg. 5 of the Burnikel-Ziegler paper.
1339
* It divides a 3n-digit number by a 2n-digit number.<br/>
1340
* The parameter beta is 2<sup>32</sup> so all shifts are multiples of 32 bits.<br/>
1341
* <br/>
1342
* {@code this} must be a nonnegative number such that {@code 2*this.bitLength() <= 3*b.bitLength()}
1343
* @param quotient output parameter for {@code this/b}
1344
* @return {@code this%b}
1345
*/
1346
private MutableBigInteger divide3n2n(MutableBigInteger b, MutableBigInteger quotient) {
1347
int n = b.intLen / 2; // half the length of b in ints
1348
1349
// step 1: view this as [a1,a2,a3] where each ai is n ints or less; let a12=[a1,a2]
1350
MutableBigInteger a12 = new MutableBigInteger(this);
1351
a12.safeRightShift(32*n);
1352
1353
// step 2: view b as [b1,b2] where each bi is n ints or less
1354
MutableBigInteger b1 = new MutableBigInteger(b);
1355
b1.safeRightShift(n * 32);
1356
BigInteger b2 = b.getLower(n);
1357
1358
MutableBigInteger r;
1359
MutableBigInteger d;
1360
if (compareShifted(b, n) < 0) {
1361
// step 3a: if a1<b1, let quotient=a12/b1 and r=a12%b1
1362
r = a12.divide2n1n(b1, quotient);
1363
1364
// step 4: d=quotient*b2
1365
d = new MutableBigInteger(quotient.toBigInteger().multiply(b2));
1366
} else {
1367
// step 3b: if a1>=b1, let quotient=beta^n-1 and r=a12-b1*2^n+b1
1368
quotient.ones(n);
1369
a12.add(b1);
1370
b1.leftShift(32*n);
1371
a12.subtract(b1);
1372
r = a12;
1373
1374
// step 4: d=quotient*b2=(b2 << 32*n) - b2
1375
d = new MutableBigInteger(b2);
1376
d.leftShift(32 * n);
1377
d.subtract(new MutableBigInteger(b2));
1378
}
1379
1380
// step 5: r = r*beta^n + a3 - d (paper says a4)
1381
// However, don't subtract d until after the while loop so r doesn't become negative
1382
r.leftShift(32 * n);
1383
r.addLower(this, n);
1384
1385
// step 6: add b until r>=d
1386
while (r.compare(d) < 0) {
1387
r.add(b);
1388
quotient.subtract(MutableBigInteger.ONE);
1389
}
1390
r.subtract(d);
1391
1392
return r;
1393
}
1394
1395
/**
1396
* Returns a {@code MutableBigInteger} containing {@code blockLength} ints from
1397
* {@code this} number, starting at {@code index*blockLength}.<br/>
1398
* Used by Burnikel-Ziegler division.
1399
* @param index the block index
1400
* @param numBlocks the total number of blocks in {@code this} number
1401
* @param blockLength length of one block in units of 32 bits
1402
* @return
1403
*/
1404
private MutableBigInteger getBlock(int index, int numBlocks, int blockLength) {
1405
int blockStart = index * blockLength;
1406
if (blockStart >= intLen) {
1407
return new MutableBigInteger();
1408
}
1409
1410
int blockEnd;
1411
if (index == numBlocks-1) {
1412
blockEnd = intLen;
1413
} else {
1414
blockEnd = (index+1) * blockLength;
1415
}
1416
if (blockEnd > intLen) {
1417
return new MutableBigInteger();
1418
}
1419
1420
int[] newVal = Arrays.copyOfRange(value, offset+intLen-blockEnd, offset+intLen-blockStart);
1421
return new MutableBigInteger(newVal);
1422
}
1423
1424
/** @see BigInteger#bitLength() */
1425
long bitLength() {
1426
if (intLen == 0)
1427
return 0;
1428
return intLen*32L - Integer.numberOfLeadingZeros(value[offset]);
1429
}
1430
1431
/**
1432
* Internally used to calculate the quotient of this div v and places the
1433
* quotient in the provided MutableBigInteger object and the remainder is
1434
* returned.
1435
*
1436
* @return the remainder of the division will be returned.
1437
*/
1438
long divide(long v, MutableBigInteger quotient) {
1439
if (v == 0)
1440
throw new ArithmeticException("BigInteger divide by zero");
1441
1442
// Dividend is zero
1443
if (intLen == 0) {
1444
quotient.intLen = quotient.offset = 0;
1445
return 0;
1446
}
1447
if (v < 0)
1448
v = -v;
1449
1450
int d = (int)(v >>> 32);
1451
quotient.clear();
1452
// Special case on word divisor
1453
if (d == 0)
1454
return divideOneWord((int)v, quotient) & LONG_MASK;
1455
else {
1456
return divideLongMagnitude(v, quotient).toLong();
1457
}
1458
}
1459
1460
private static void copyAndShift(int[] src, int srcFrom, int srcLen, int[] dst, int dstFrom, int shift) {
1461
int n2 = 32 - shift;
1462
int c=src[srcFrom];
1463
for (int i=0; i < srcLen-1; i++) {
1464
int b = c;
1465
c = src[++srcFrom];
1466
dst[dstFrom+i] = (b << shift) | (c >>> n2);
1467
}
1468
dst[dstFrom+srcLen-1] = c << shift;
1469
}
1470
1471
/**
1472
* Divide this MutableBigInteger by the divisor.
1473
* The quotient will be placed into the provided quotient object &
1474
* the remainder object is returned.
1475
*/
1476
private MutableBigInteger divideMagnitude(MutableBigInteger div,
1477
MutableBigInteger quotient,
1478
boolean needRemainder ) {
1479
// assert div.intLen > 1
1480
// D1 normalize the divisor
1481
int shift = Integer.numberOfLeadingZeros(div.value[div.offset]);
1482
// Copy divisor value to protect divisor
1483
final int dlen = div.intLen;
1484
int[] divisor;
1485
MutableBigInteger rem; // Remainder starts as dividend with space for a leading zero
1486
if (shift > 0) {
1487
divisor = new int[dlen];
1488
copyAndShift(div.value,div.offset,dlen,divisor,0,shift);
1489
if (Integer.numberOfLeadingZeros(value[offset]) >= shift) {
1490
int[] remarr = new int[intLen + 1];
1491
rem = new MutableBigInteger(remarr);
1492
rem.intLen = intLen;
1493
rem.offset = 1;
1494
copyAndShift(value,offset,intLen,remarr,1,shift);
1495
} else {
1496
int[] remarr = new int[intLen + 2];
1497
rem = new MutableBigInteger(remarr);
1498
rem.intLen = intLen+1;
1499
rem.offset = 1;
1500
int rFrom = offset;
1501
int c=0;
1502
int n2 = 32 - shift;
1503
for (int i=1; i < intLen+1; i++,rFrom++) {
1504
int b = c;
1505
c = value[rFrom];
1506
remarr[i] = (b << shift) | (c >>> n2);
1507
}
1508
remarr[intLen+1] = c << shift;
1509
}
1510
} else {
1511
divisor = Arrays.copyOfRange(div.value, div.offset, div.offset + div.intLen);
1512
rem = new MutableBigInteger(new int[intLen + 1]);
1513
System.arraycopy(value, offset, rem.value, 1, intLen);
1514
rem.intLen = intLen;
1515
rem.offset = 1;
1516
}
1517
1518
int nlen = rem.intLen;
1519
1520
// Set the quotient size
1521
final int limit = nlen - dlen + 1;
1522
if (quotient.value.length < limit) {
1523
quotient.value = new int[limit];
1524
quotient.offset = 0;
1525
}
1526
quotient.intLen = limit;
1527
int[] q = quotient.value;
1528
1529
1530
// Must insert leading 0 in rem if its length did not change
1531
if (rem.intLen == nlen) {
1532
rem.offset = 0;
1533
rem.value[0] = 0;
1534
rem.intLen++;
1535
}
1536
1537
int dh = divisor[0];
1538
long dhLong = dh & LONG_MASK;
1539
int dl = divisor[1];
1540
1541
// D2 Initialize j
1542
for (int j=0; j < limit-1; j++) {
1543
// D3 Calculate qhat
1544
// estimate qhat
1545
int qhat = 0;
1546
int qrem = 0;
1547
boolean skipCorrection = false;
1548
int nh = rem.value[j+rem.offset];
1549
int nh2 = nh + 0x80000000;
1550
int nm = rem.value[j+1+rem.offset];
1551
1552
if (nh == dh) {
1553
qhat = ~0;
1554
qrem = nh + nm;
1555
skipCorrection = qrem + 0x80000000 < nh2;
1556
} else {
1557
long nChunk = (((long)nh) << 32) | (nm & LONG_MASK);
1558
if (nChunk >= 0) {
1559
qhat = (int) (nChunk / dhLong);
1560
qrem = (int) (nChunk - (qhat * dhLong));
1561
} else {
1562
long tmp = divWord(nChunk, dh);
1563
qhat = (int) (tmp & LONG_MASK);
1564
qrem = (int) (tmp >>> 32);
1565
}
1566
}
1567
1568
if (qhat == 0)
1569
continue;
1570
1571
if (!skipCorrection) { // Correct qhat
1572
long nl = rem.value[j+2+rem.offset] & LONG_MASK;
1573
long rs = ((qrem & LONG_MASK) << 32) | nl;
1574
long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
1575
1576
if (unsignedLongCompare(estProduct, rs)) {
1577
qhat--;
1578
qrem = (int)((qrem & LONG_MASK) + dhLong);
1579
if ((qrem & LONG_MASK) >= dhLong) {
1580
estProduct -= (dl & LONG_MASK);
1581
rs = ((qrem & LONG_MASK) << 32) | nl;
1582
if (unsignedLongCompare(estProduct, rs))
1583
qhat--;
1584
}
1585
}
1586
}
1587
1588
// D4 Multiply and subtract
1589
rem.value[j+rem.offset] = 0;
1590
int borrow = mulsub(rem.value, divisor, qhat, dlen, j+rem.offset);
1591
1592
// D5 Test remainder
1593
if (borrow + 0x80000000 > nh2) {
1594
// D6 Add back
1595
divadd(divisor, rem.value, j+1+rem.offset);
1596
qhat--;
1597
}
1598
1599
// Store the quotient digit
1600
q[j] = qhat;
1601
} // D7 loop on j
1602
// D3 Calculate qhat
1603
// estimate qhat
1604
int qhat = 0;
1605
int qrem = 0;
1606
boolean skipCorrection = false;
1607
int nh = rem.value[limit - 1 + rem.offset];
1608
int nh2 = nh + 0x80000000;
1609
int nm = rem.value[limit + rem.offset];
1610
1611
if (nh == dh) {
1612
qhat = ~0;
1613
qrem = nh + nm;
1614
skipCorrection = qrem + 0x80000000 < nh2;
1615
} else {
1616
long nChunk = (((long) nh) << 32) | (nm & LONG_MASK);
1617
if (nChunk >= 0) {
1618
qhat = (int) (nChunk / dhLong);
1619
qrem = (int) (nChunk - (qhat * dhLong));
1620
} else {
1621
long tmp = divWord(nChunk, dh);
1622
qhat = (int) (tmp & LONG_MASK);
1623
qrem = (int) (tmp >>> 32);
1624
}
1625
}
1626
if (qhat != 0) {
1627
if (!skipCorrection) { // Correct qhat
1628
long nl = rem.value[limit + 1 + rem.offset] & LONG_MASK;
1629
long rs = ((qrem & LONG_MASK) << 32) | nl;
1630
long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
1631
1632
if (unsignedLongCompare(estProduct, rs)) {
1633
qhat--;
1634
qrem = (int) ((qrem & LONG_MASK) + dhLong);
1635
if ((qrem & LONG_MASK) >= dhLong) {
1636
estProduct -= (dl & LONG_MASK);
1637
rs = ((qrem & LONG_MASK) << 32) | nl;
1638
if (unsignedLongCompare(estProduct, rs))
1639
qhat--;
1640
}
1641
}
1642
}
1643
1644
1645
// D4 Multiply and subtract
1646
int borrow;
1647
rem.value[limit - 1 + rem.offset] = 0;
1648
if(needRemainder)
1649
borrow = mulsub(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset);
1650
else
1651
borrow = mulsubBorrow(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset);
1652
1653
// D5 Test remainder
1654
if (borrow + 0x80000000 > nh2) {
1655
// D6 Add back
1656
if(needRemainder)
1657
divadd(divisor, rem.value, limit - 1 + 1 + rem.offset);
1658
qhat--;
1659
}
1660
1661
// Store the quotient digit
1662
q[(limit - 1)] = qhat;
1663
}
1664
1665
1666
if (needRemainder) {
1667
// D8 Unnormalize
1668
if (shift > 0)
1669
rem.rightShift(shift);
1670
rem.normalize();
1671
}
1672
quotient.normalize();
1673
return needRemainder ? rem : null;
1674
}
1675
1676
/**
1677
* Divide this MutableBigInteger by the divisor represented by positive long
1678
* value. The quotient will be placed into the provided quotient object &
1679
* the remainder object is returned.
1680
*/
1681
private MutableBigInteger divideLongMagnitude(long ldivisor, MutableBigInteger quotient) {
1682
// Remainder starts as dividend with space for a leading zero
1683
MutableBigInteger rem = new MutableBigInteger(new int[intLen + 1]);
1684
System.arraycopy(value, offset, rem.value, 1, intLen);
1685
rem.intLen = intLen;
1686
rem.offset = 1;
1687
1688
int nlen = rem.intLen;
1689
1690
int limit = nlen - 2 + 1;
1691
if (quotient.value.length < limit) {
1692
quotient.value = new int[limit];
1693
quotient.offset = 0;
1694
}
1695
quotient.intLen = limit;
1696
int[] q = quotient.value;
1697
1698
// D1 normalize the divisor
1699
int shift = Long.numberOfLeadingZeros(ldivisor);
1700
if (shift > 0) {
1701
ldivisor<<=shift;
1702
rem.leftShift(shift);
1703
}
1704
1705
// Must insert leading 0 in rem if its length did not change
1706
if (rem.intLen == nlen) {
1707
rem.offset = 0;
1708
rem.value[0] = 0;
1709
rem.intLen++;
1710
}
1711
1712
int dh = (int)(ldivisor >>> 32);
1713
long dhLong = dh & LONG_MASK;
1714
int dl = (int)(ldivisor & LONG_MASK);
1715
1716
// D2 Initialize j
1717
for (int j = 0; j < limit; j++) {
1718
// D3 Calculate qhat
1719
// estimate qhat
1720
int qhat = 0;
1721
int qrem = 0;
1722
boolean skipCorrection = false;
1723
int nh = rem.value[j + rem.offset];
1724
int nh2 = nh + 0x80000000;
1725
int nm = rem.value[j + 1 + rem.offset];
1726
1727
if (nh == dh) {
1728
qhat = ~0;
1729
qrem = nh + nm;
1730
skipCorrection = qrem + 0x80000000 < nh2;
1731
} else {
1732
long nChunk = (((long) nh) << 32) | (nm & LONG_MASK);
1733
if (nChunk >= 0) {
1734
qhat = (int) (nChunk / dhLong);
1735
qrem = (int) (nChunk - (qhat * dhLong));
1736
} else {
1737
long tmp = divWord(nChunk, dh);
1738
qhat =(int)(tmp & LONG_MASK);
1739
qrem = (int)(tmp>>>32);
1740
}
1741
}
1742
1743
if (qhat == 0)
1744
continue;
1745
1746
if (!skipCorrection) { // Correct qhat
1747
long nl = rem.value[j + 2 + rem.offset] & LONG_MASK;
1748
long rs = ((qrem & LONG_MASK) << 32) | nl;
1749
long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
1750
1751
if (unsignedLongCompare(estProduct, rs)) {
1752
qhat--;
1753
qrem = (int) ((qrem & LONG_MASK) + dhLong);
1754
if ((qrem & LONG_MASK) >= dhLong) {
1755
estProduct -= (dl & LONG_MASK);
1756
rs = ((qrem & LONG_MASK) << 32) | nl;
1757
if (unsignedLongCompare(estProduct, rs))
1758
qhat--;
1759
}
1760
}
1761
}
1762
1763
// D4 Multiply and subtract
1764
rem.value[j + rem.offset] = 0;
1765
int borrow = mulsubLong(rem.value, dh, dl, qhat, j + rem.offset);
1766
1767
// D5 Test remainder
1768
if (borrow + 0x80000000 > nh2) {
1769
// D6 Add back
1770
divaddLong(dh,dl, rem.value, j + 1 + rem.offset);
1771
qhat--;
1772
}
1773
1774
// Store the quotient digit
1775
q[j] = qhat;
1776
} // D7 loop on j
1777
1778
// D8 Unnormalize
1779
if (shift > 0)
1780
rem.rightShift(shift);
1781
1782
quotient.normalize();
1783
rem.normalize();
1784
return rem;
1785
}
1786
1787
/**
1788
* A primitive used for division by long.
1789
* Specialized version of the method divadd.
1790
* dh is a high part of the divisor, dl is a low part
1791
*/
1792
private int divaddLong(int dh, int dl, int[] result, int offset) {
1793
long carry = 0;
1794
1795
long sum = (dl & LONG_MASK) + (result[1+offset] & LONG_MASK);
1796
result[1+offset] = (int)sum;
1797
1798
sum = (dh & LONG_MASK) + (result[offset] & LONG_MASK) + carry;
1799
result[offset] = (int)sum;
1800
carry = sum >>> 32;
1801
return (int)carry;
1802
}
1803
1804
/**
1805
* This method is used for division by long.
1806
* Specialized version of the method sulsub.
1807
* dh is a high part of the divisor, dl is a low part
1808
*/
1809
private int mulsubLong(int[] q, int dh, int dl, int x, int offset) {
1810
long xLong = x & LONG_MASK;
1811
offset += 2;
1812
long product = (dl & LONG_MASK) * xLong;
1813
long difference = q[offset] - product;
1814
q[offset--] = (int)difference;
1815
long carry = (product >>> 32)
1816
+ (((difference & LONG_MASK) >
1817
(((~(int)product) & LONG_MASK))) ? 1:0);
1818
product = (dh & LONG_MASK) * xLong + carry;
1819
difference = q[offset] - product;
1820
q[offset--] = (int)difference;
1821
carry = (product >>> 32)
1822
+ (((difference & LONG_MASK) >
1823
(((~(int)product) & LONG_MASK))) ? 1:0);
1824
return (int)carry;
1825
}
1826
1827
/**
1828
* Compare two longs as if they were unsigned.
1829
* Returns true iff one is bigger than two.
1830
*/
1831
private boolean unsignedLongCompare(long one, long two) {
1832
return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE);
1833
}
1834
1835
/**
1836
* This method divides a long quantity by an int to estimate
1837
* qhat for two multi precision numbers. It is used when
1838
* the signed value of n is less than zero.
1839
* Returns long value where high 32 bits contain remainder value and
1840
* low 32 bits contain quotient value.
1841
*/
1842
static long divWord(long n, int d) {
1843
long dLong = d & LONG_MASK;
1844
long r;
1845
long q;
1846
if (dLong == 1) {
1847
q = (int)n;
1848
r = 0;
1849
return (r << 32) | (q & LONG_MASK);
1850
}
1851
1852
// Approximate the quotient and remainder
1853
q = (n >>> 1) / (dLong >>> 1);
1854
r = n - q*dLong;
1855
1856
// Correct the approximation
1857
while (r < 0) {
1858
r += dLong;
1859
q--;
1860
}
1861
while (r >= dLong) {
1862
r -= dLong;
1863
q++;
1864
}
1865
// n - q*dlong == r && 0 <= r <dLong, hence we're done.
1866
return (r << 32) | (q & LONG_MASK);
1867
}
1868
1869
/**
1870
* Calculate GCD of this and b. This and b are changed by the computation.
1871
*/
1872
MutableBigInteger hybridGCD(MutableBigInteger b) {
1873
// Use Euclid's algorithm until the numbers are approximately the
1874
// same length, then use the binary GCD algorithm to find the GCD.
1875
MutableBigInteger a = this;
1876
MutableBigInteger q = new MutableBigInteger();
1877
1878
while (b.intLen != 0) {
1879
if (Math.abs(a.intLen - b.intLen) < 2)
1880
return a.binaryGCD(b);
1881
1882
MutableBigInteger r = a.divide(b, q);
1883
a = b;
1884
b = r;
1885
}
1886
return a;
1887
}
1888
1889
/**
1890
* Calculate GCD of this and v.
1891
* Assumes that this and v are not zero.
1892
*/
1893
private MutableBigInteger binaryGCD(MutableBigInteger v) {
1894
// Algorithm B from Knuth section 4.5.2
1895
MutableBigInteger u = this;
1896
MutableBigInteger r = new MutableBigInteger();
1897
1898
// step B1
1899
int s1 = u.getLowestSetBit();
1900
int s2 = v.getLowestSetBit();
1901
int k = (s1 < s2) ? s1 : s2;
1902
if (k != 0) {
1903
u.rightShift(k);
1904
v.rightShift(k);
1905
}
1906
1907
// step B2
1908
boolean uOdd = (k == s1);
1909
MutableBigInteger t = uOdd ? v: u;
1910
int tsign = uOdd ? -1 : 1;
1911
1912
int lb;
1913
while ((lb = t.getLowestSetBit()) >= 0) {
1914
// steps B3 and B4
1915
t.rightShift(lb);
1916
// step B5
1917
if (tsign > 0)
1918
u = t;
1919
else
1920
v = t;
1921
1922
// Special case one word numbers
1923
if (u.intLen < 2 && v.intLen < 2) {
1924
int x = u.value[u.offset];
1925
int y = v.value[v.offset];
1926
x = binaryGcd(x, y);
1927
r.value[0] = x;
1928
r.intLen = 1;
1929
r.offset = 0;
1930
if (k > 0)
1931
r.leftShift(k);
1932
return r;
1933
}
1934
1935
// step B6
1936
if ((tsign = u.difference(v)) == 0)
1937
break;
1938
t = (tsign >= 0) ? u : v;
1939
}
1940
1941
if (k > 0)
1942
u.leftShift(k);
1943
return u;
1944
}
1945
1946
/**
1947
* Calculate GCD of a and b interpreted as unsigned integers.
1948
*/
1949
static int binaryGcd(int a, int b) {
1950
if (b == 0)
1951
return a;
1952
if (a == 0)
1953
return b;
1954
1955
// Right shift a & b till their last bits equal to 1.
1956
int aZeros = Integer.numberOfTrailingZeros(a);
1957
int bZeros = Integer.numberOfTrailingZeros(b);
1958
a >>>= aZeros;
1959
b >>>= bZeros;
1960
1961
int t = (aZeros < bZeros ? aZeros : bZeros);
1962
1963
while (a != b) {
1964
if ((a+0x80000000) > (b+0x80000000)) { // a > b as unsigned
1965
a -= b;
1966
a >>>= Integer.numberOfTrailingZeros(a);
1967
} else {
1968
b -= a;
1969
b >>>= Integer.numberOfTrailingZeros(b);
1970
}
1971
}
1972
return a<<t;
1973
}
1974
1975
/**
1976
* Returns the modInverse of this mod p. This and p are not affected by
1977
* the operation.
1978
*/
1979
MutableBigInteger mutableModInverse(MutableBigInteger p) {
1980
// Modulus is odd, use Schroeppel's algorithm
1981
if (p.isOdd())
1982
return modInverse(p);
1983
1984
// Base and modulus are even, throw exception
1985
if (isEven())
1986
throw new ArithmeticException("BigInteger not invertible.");
1987
1988
// Get even part of modulus expressed as a power of 2
1989
int powersOf2 = p.getLowestSetBit();
1990
1991
// Construct odd part of modulus
1992
MutableBigInteger oddMod = new MutableBigInteger(p);
1993
oddMod.rightShift(powersOf2);
1994
1995
if (oddMod.isOne())
1996
return modInverseMP2(powersOf2);
1997
1998
// Calculate 1/a mod oddMod
1999
MutableBigInteger oddPart = modInverse(oddMod);
2000
2001
// Calculate 1/a mod evenMod
2002
MutableBigInteger evenPart = modInverseMP2(powersOf2);
2003
2004
// Combine the results using Chinese Remainder Theorem
2005
MutableBigInteger y1 = modInverseBP2(oddMod, powersOf2);
2006
MutableBigInteger y2 = oddMod.modInverseMP2(powersOf2);
2007
2008
MutableBigInteger temp1 = new MutableBigInteger();
2009
MutableBigInteger temp2 = new MutableBigInteger();
2010
MutableBigInteger result = new MutableBigInteger();
2011
2012
oddPart.leftShift(powersOf2);
2013
oddPart.multiply(y1, result);
2014
2015
evenPart.multiply(oddMod, temp1);
2016
temp1.multiply(y2, temp2);
2017
2018
result.add(temp2);
2019
return result.divide(p, temp1);
2020
}
2021
2022
/*
2023
* Calculate the multiplicative inverse of this mod 2^k.
2024
*/
2025
MutableBigInteger modInverseMP2(int k) {
2026
if (isEven())
2027
throw new ArithmeticException("Non-invertible. (GCD != 1)");
2028
2029
if (k > 64)
2030
return euclidModInverse(k);
2031
2032
int t = inverseMod32(value[offset+intLen-1]);
2033
2034
if (k < 33) {
2035
t = (k == 32 ? t : t & ((1 << k) - 1));
2036
return new MutableBigInteger(t);
2037
}
2038
2039
long pLong = (value[offset+intLen-1] & LONG_MASK);
2040
if (intLen > 1)
2041
pLong |= ((long)value[offset+intLen-2] << 32);
2042
long tLong = t & LONG_MASK;
2043
tLong = tLong * (2 - pLong * tLong); // 1 more Newton iter step
2044
tLong = (k == 64 ? tLong : tLong & ((1L << k) - 1));
2045
2046
MutableBigInteger result = new MutableBigInteger(new int[2]);
2047
result.value[0] = (int)(tLong >>> 32);
2048
result.value[1] = (int)tLong;
2049
result.intLen = 2;
2050
result.normalize();
2051
return result;
2052
}
2053
2054
/**
2055
* Returns the multiplicative inverse of val mod 2^32. Assumes val is odd.
2056
*/
2057
static int inverseMod32(int val) {
2058
// Newton's iteration!
2059
int t = val;
2060
t *= 2 - val*t;
2061
t *= 2 - val*t;
2062
t *= 2 - val*t;
2063
t *= 2 - val*t;
2064
return t;
2065
}
2066
2067
/**
2068
* Returns the multiplicative inverse of val mod 2^64. Assumes val is odd.
2069
*/
2070
static long inverseMod64(long val) {
2071
// Newton's iteration!
2072
long t = val;
2073
t *= 2 - val*t;
2074
t *= 2 - val*t;
2075
t *= 2 - val*t;
2076
t *= 2 - val*t;
2077
t *= 2 - val*t;
2078
assert(t * val == 1);
2079
return t;
2080
}
2081
2082
/**
2083
* Calculate the multiplicative inverse of 2^k mod mod, where mod is odd.
2084
*/
2085
static MutableBigInteger modInverseBP2(MutableBigInteger mod, int k) {
2086
// Copy the mod to protect original
2087
return fixup(new MutableBigInteger(1), new MutableBigInteger(mod), k);
2088
}
2089
2090
/**
2091
* Calculate the multiplicative inverse of this modulo mod, where the mod
2092
* argument is odd. This and mod are not changed by the calculation.
2093
*
2094
* This method implements an algorithm due to Richard Schroeppel, that uses
2095
* the same intermediate representation as Montgomery Reduction
2096
* ("Montgomery Form"). The algorithm is described in an unpublished
2097
* manuscript entitled "Fast Modular Reciprocals."
2098
*/
2099
private MutableBigInteger modInverse(MutableBigInteger mod) {
2100
MutableBigInteger p = new MutableBigInteger(mod);
2101
MutableBigInteger f = new MutableBigInteger(this);
2102
MutableBigInteger g = new MutableBigInteger(p);
2103
SignedMutableBigInteger c = new SignedMutableBigInteger(1);
2104
SignedMutableBigInteger d = new SignedMutableBigInteger();
2105
MutableBigInteger temp = null;
2106
SignedMutableBigInteger sTemp = null;
2107
2108
int k = 0;
2109
// Right shift f k times until odd, left shift d k times
2110
if (f.isEven()) {
2111
int trailingZeros = f.getLowestSetBit();
2112
f.rightShift(trailingZeros);
2113
d.leftShift(trailingZeros);
2114
k = trailingZeros;
2115
}
2116
2117
// The Almost Inverse Algorithm
2118
while (!f.isOne()) {
2119
// If gcd(f, g) != 1, number is not invertible modulo mod
2120
if (f.isZero())
2121
throw new ArithmeticException("BigInteger not invertible.");
2122
2123
// If f < g exchange f, g and c, d
2124
if (f.compare(g) < 0) {
2125
temp = f; f = g; g = temp;
2126
sTemp = d; d = c; c = sTemp;
2127
}
2128
2129
// If f == g (mod 4)
2130
if (((f.value[f.offset + f.intLen - 1] ^
2131
g.value[g.offset + g.intLen - 1]) & 3) == 0) {
2132
f.subtract(g);
2133
c.signedSubtract(d);
2134
} else { // If f != g (mod 4)
2135
f.add(g);
2136
c.signedAdd(d);
2137
}
2138
2139
// Right shift f k times until odd, left shift d k times
2140
int trailingZeros = f.getLowestSetBit();
2141
f.rightShift(trailingZeros);
2142
d.leftShift(trailingZeros);
2143
k += trailingZeros;
2144
}
2145
2146
if (c.compare(p) >= 0) { // c has a larger magnitude than p
2147
MutableBigInteger remainder = c.divide(p,
2148
new MutableBigInteger());
2149
// The previous line ignores the sign so we copy the data back
2150
// into c which will restore the sign as needed (and converts
2151
// it back to a SignedMutableBigInteger)
2152
c.copyValue(remainder);
2153
}
2154
2155
if (c.sign < 0) {
2156
c.signedAdd(p);
2157
}
2158
2159
return fixup(c, p, k);
2160
}
2161
2162
/**
2163
* The Fixup Algorithm
2164
* Calculates X such that X = C * 2^(-k) (mod P)
2165
* Assumes C<P and P is odd.
2166
*/
2167
static MutableBigInteger fixup(MutableBigInteger c, MutableBigInteger p,
2168
int k) {
2169
MutableBigInteger temp = new MutableBigInteger();
2170
// Set r to the multiplicative inverse of p mod 2^32
2171
int r = -inverseMod32(p.value[p.offset+p.intLen-1]);
2172
2173
for (int i=0, numWords = k >> 5; i < numWords; i++) {
2174
// V = R * c (mod 2^j)
2175
int v = r * c.value[c.offset + c.intLen-1];
2176
// c = c + (v * p)
2177
p.mul(v, temp);
2178
c.add(temp);
2179
// c = c / 2^j
2180
c.intLen--;
2181
}
2182
int numBits = k & 0x1f;
2183
if (numBits != 0) {
2184
// V = R * c (mod 2^j)
2185
int v = r * c.value[c.offset + c.intLen-1];
2186
v &= ((1<<numBits) - 1);
2187
// c = c + (v * p)
2188
p.mul(v, temp);
2189
c.add(temp);
2190
// c = c / 2^j
2191
c.rightShift(numBits);
2192
}
2193
2194
// In theory, c may be greater than p at this point (Very rare!)
2195
if (c.compare(p) >= 0)
2196
c = c.divide(p, new MutableBigInteger());
2197
2198
return c;
2199
}
2200
2201
/**
2202
* Uses the extended Euclidean algorithm to compute the modInverse of base
2203
* mod a modulus that is a power of 2. The modulus is 2^k.
2204
*/
2205
MutableBigInteger euclidModInverse(int k) {
2206
MutableBigInteger b = new MutableBigInteger(1);
2207
b.leftShift(k);
2208
MutableBigInteger mod = new MutableBigInteger(b);
2209
2210
MutableBigInteger a = new MutableBigInteger(this);
2211
MutableBigInteger q = new MutableBigInteger();
2212
MutableBigInteger r = b.divide(a, q);
2213
2214
MutableBigInteger swapper = b;
2215
// swap b & r
2216
b = r;
2217
r = swapper;
2218
2219
MutableBigInteger t1 = new MutableBigInteger(q);
2220
MutableBigInteger t0 = new MutableBigInteger(1);
2221
MutableBigInteger temp = new MutableBigInteger();
2222
2223
while (!b.isOne()) {
2224
r = a.divide(b, q);
2225
2226
if (r.intLen == 0)
2227
throw new ArithmeticException("BigInteger not invertible.");
2228
2229
swapper = r;
2230
a = swapper;
2231
2232
if (q.intLen == 1)
2233
t1.mul(q.value[q.offset], temp);
2234
else
2235
q.multiply(t1, temp);
2236
swapper = q;
2237
q = temp;
2238
temp = swapper;
2239
t0.add(q);
2240
2241
if (a.isOne())
2242
return t0;
2243
2244
r = b.divide(a, q);
2245
2246
if (r.intLen == 0)
2247
throw new ArithmeticException("BigInteger not invertible.");
2248
2249
swapper = b;
2250
b = r;
2251
2252
if (q.intLen == 1)
2253
t0.mul(q.value[q.offset], temp);
2254
else
2255
q.multiply(t0, temp);
2256
swapper = q; q = temp; temp = swapper;
2257
2258
t1.add(q);
2259
}
2260
mod.subtract(t1);
2261
return mod;
2262
}
2263
}
2264
2265