Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/java/time/Instant.java
38829 views
1
/*
2
* Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/*
27
* This file is available under and governed by the GNU General Public
28
* License version 2 only, as published by the Free Software Foundation.
29
* However, the following notice accompanied the original version of this
30
* file:
31
*
32
* Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
33
*
34
* All rights reserved.
35
*
36
* Redistribution and use in source and binary forms, with or without
37
* modification, are permitted provided that the following conditions are met:
38
*
39
* * Redistributions of source code must retain the above copyright notice,
40
* this list of conditions and the following disclaimer.
41
*
42
* * Redistributions in binary form must reproduce the above copyright notice,
43
* this list of conditions and the following disclaimer in the documentation
44
* and/or other materials provided with the distribution.
45
*
46
* * Neither the name of JSR-310 nor the names of its contributors
47
* may be used to endorse or promote products derived from this software
48
* without specific prior written permission.
49
*
50
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
54
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
55
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
56
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
57
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
58
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
59
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
60
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61
*/
62
package java.time;
63
64
import static java.time.LocalTime.NANOS_PER_SECOND;
65
import static java.time.LocalTime.SECONDS_PER_DAY;
66
import static java.time.LocalTime.SECONDS_PER_HOUR;
67
import static java.time.LocalTime.SECONDS_PER_MINUTE;
68
import static java.time.temporal.ChronoField.INSTANT_SECONDS;
69
import static java.time.temporal.ChronoField.MICRO_OF_SECOND;
70
import static java.time.temporal.ChronoField.MILLI_OF_SECOND;
71
import static java.time.temporal.ChronoField.NANO_OF_SECOND;
72
import static java.time.temporal.ChronoUnit.DAYS;
73
import static java.time.temporal.ChronoUnit.NANOS;
74
75
import java.io.DataInput;
76
import java.io.DataOutput;
77
import java.io.IOException;
78
import java.io.InvalidObjectException;
79
import java.io.ObjectInputStream;
80
import java.io.Serializable;
81
import java.time.format.DateTimeFormatter;
82
import java.time.format.DateTimeParseException;
83
import java.time.temporal.ChronoField;
84
import java.time.temporal.ChronoUnit;
85
import java.time.temporal.Temporal;
86
import java.time.temporal.TemporalAccessor;
87
import java.time.temporal.TemporalAdjuster;
88
import java.time.temporal.TemporalAmount;
89
import java.time.temporal.TemporalField;
90
import java.time.temporal.TemporalQueries;
91
import java.time.temporal.TemporalQuery;
92
import java.time.temporal.TemporalUnit;
93
import java.time.temporal.UnsupportedTemporalTypeException;
94
import java.time.temporal.ValueRange;
95
import java.util.Objects;
96
97
/**
98
* An instantaneous point on the time-line.
99
* <p>
100
* This class models a single instantaneous point on the time-line.
101
* This might be used to record event time-stamps in the application.
102
* <p>
103
* The range of an instant requires the storage of a number larger than a {@code long}.
104
* To achieve this, the class stores a {@code long} representing epoch-seconds and an
105
* {@code int} representing nanosecond-of-second, which will always be between 0 and 999,999,999.
106
* The epoch-seconds are measured from the standard Java epoch of {@code 1970-01-01T00:00:00Z}
107
* where instants after the epoch have positive values, and earlier instants have negative values.
108
* For both the epoch-second and nanosecond parts, a larger value is always later on the time-line
109
* than a smaller value.
110
*
111
* <h3>Time-scale</h3>
112
* <p>
113
* The length of the solar day is the standard way that humans measure time.
114
* This has traditionally been subdivided into 24 hours of 60 minutes of 60 seconds,
115
* forming a 86400 second day.
116
* <p>
117
* Modern timekeeping is based on atomic clocks which precisely define an SI second
118
* relative to the transitions of a Caesium atom. The length of an SI second was defined
119
* to be very close to the 86400th fraction of a day.
120
* <p>
121
* Unfortunately, as the Earth rotates the length of the day varies.
122
* In addition, over time the average length of the day is getting longer as the Earth slows.
123
* As a result, the length of a solar day in 2012 is slightly longer than 86400 SI seconds.
124
* The actual length of any given day and the amount by which the Earth is slowing
125
* are not predictable and can only be determined by measurement.
126
* The UT1 time-scale captures the accurate length of day, but is only available some
127
* time after the day has completed.
128
* <p>
129
* The UTC time-scale is a standard approach to bundle up all the additional fractions
130
* of a second from UT1 into whole seconds, known as <i>leap-seconds</i>.
131
* A leap-second may be added or removed depending on the Earth's rotational changes.
132
* As such, UTC permits a day to have 86399 SI seconds or 86401 SI seconds where
133
* necessary in order to keep the day aligned with the Sun.
134
* <p>
135
* The modern UTC time-scale was introduced in 1972, introducing the concept of whole leap-seconds.
136
* Between 1958 and 1972, the definition of UTC was complex, with minor sub-second leaps and
137
* alterations to the length of the notional second. As of 2012, discussions are underway
138
* to change the definition of UTC again, with the potential to remove leap seconds or
139
* introduce other changes.
140
* <p>
141
* Given the complexity of accurate timekeeping described above, this Java API defines
142
* its own time-scale, the <i>Java Time-Scale</i>.
143
* <p>
144
* The Java Time-Scale divides each calendar day into exactly 86400
145
* subdivisions, known as seconds. These seconds may differ from the
146
* SI second. It closely matches the de facto international civil time
147
* scale, the definition of which changes from time to time.
148
* <p>
149
* The Java Time-Scale has slightly different definitions for different
150
* segments of the time-line, each based on the consensus international
151
* time scale that is used as the basis for civil time. Whenever the
152
* internationally-agreed time scale is modified or replaced, a new
153
* segment of the Java Time-Scale must be defined for it. Each segment
154
* must meet these requirements:
155
* <ul>
156
* <li>the Java Time-Scale shall closely match the underlying international
157
* civil time scale;</li>
158
* <li>the Java Time-Scale shall exactly match the international civil
159
* time scale at noon each day;</li>
160
* <li>the Java Time-Scale shall have a precisely-defined relationship to
161
* the international civil time scale.</li>
162
* </ul>
163
* There are currently, as of 2013, two segments in the Java time-scale.
164
* <p>
165
* For the segment from 1972-11-03 (exact boundary discussed below) until
166
* further notice, the consensus international time scale is UTC (with
167
* leap seconds). In this segment, the Java Time-Scale is identical to
168
* <a href="http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/">UTC-SLS</a>.
169
* This is identical to UTC on days that do not have a leap second.
170
* On days that do have a leap second, the leap second is spread equally
171
* over the last 1000 seconds of the day, maintaining the appearance of
172
* exactly 86400 seconds per day.
173
* <p>
174
* For the segment prior to 1972-11-03, extending back arbitrarily far,
175
* the consensus international time scale is defined to be UT1, applied
176
* proleptically, which is equivalent to the (mean) solar time on the
177
* prime meridian (Greenwich). In this segment, the Java Time-Scale is
178
* identical to the consensus international time scale. The exact
179
* boundary between the two segments is the instant where UT1 = UTC
180
* between 1972-11-03T00:00 and 1972-11-04T12:00.
181
* <p>
182
* Implementations of the Java time-scale using the JSR-310 API are not
183
* required to provide any clock that is sub-second accurate, or that
184
* progresses monotonically or smoothly. Implementations are therefore
185
* not required to actually perform the UTC-SLS slew or to otherwise be
186
* aware of leap seconds. JSR-310 does, however, require that
187
* implementations must document the approach they use when defining a
188
* clock representing the current instant.
189
* See {@link Clock} for details on the available clocks.
190
* <p>
191
* The Java time-scale is used for all date-time classes.
192
* This includes {@code Instant}, {@code LocalDate}, {@code LocalTime}, {@code OffsetDateTime},
193
* {@code ZonedDateTime} and {@code Duration}.
194
*
195
* <p>
196
* This is a <a href="{@docRoot}/java/lang/doc-files/ValueBased.html">value-based</a>
197
* class; use of identity-sensitive operations (including reference equality
198
* ({@code ==}), identity hash code, or synchronization) on instances of
199
* {@code Instant} may have unpredictable results and should be avoided.
200
* The {@code equals} method should be used for comparisons.
201
*
202
* @implSpec
203
* This class is immutable and thread-safe.
204
*
205
* @since 1.8
206
*/
207
public final class Instant
208
implements Temporal, TemporalAdjuster, Comparable<Instant>, Serializable {
209
210
/**
211
* Constant for the 1970-01-01T00:00:00Z epoch instant.
212
*/
213
public static final Instant EPOCH = new Instant(0, 0);
214
/**
215
* The minimum supported epoch second.
216
*/
217
private static final long MIN_SECOND = -31557014167219200L;
218
/**
219
* The maximum supported epoch second.
220
*/
221
private static final long MAX_SECOND = 31556889864403199L;
222
/**
223
* The minimum supported {@code Instant}, '-1000000000-01-01T00:00Z'.
224
* This could be used by an application as a "far past" instant.
225
* <p>
226
* This is one year earlier than the minimum {@code LocalDateTime}.
227
* This provides sufficient values to handle the range of {@code ZoneOffset}
228
* which affect the instant in addition to the local date-time.
229
* The value is also chosen such that the value of the year fits in
230
* an {@code int}.
231
*/
232
public static final Instant MIN = Instant.ofEpochSecond(MIN_SECOND, 0);
233
/**
234
* The maximum supported {@code Instant}, '1000000000-12-31T23:59:59.999999999Z'.
235
* This could be used by an application as a "far future" instant.
236
* <p>
237
* This is one year later than the maximum {@code LocalDateTime}.
238
* This provides sufficient values to handle the range of {@code ZoneOffset}
239
* which affect the instant in addition to the local date-time.
240
* The value is also chosen such that the value of the year fits in
241
* an {@code int}.
242
*/
243
public static final Instant MAX = Instant.ofEpochSecond(MAX_SECOND, 999_999_999);
244
245
/**
246
* Serialization version.
247
*/
248
private static final long serialVersionUID = -665713676816604388L;
249
250
/**
251
* The number of seconds from the epoch of 1970-01-01T00:00:00Z.
252
*/
253
private final long seconds;
254
/**
255
* The number of nanoseconds, later along the time-line, from the seconds field.
256
* This is always positive, and never exceeds 999,999,999.
257
*/
258
private final int nanos;
259
260
//-----------------------------------------------------------------------
261
/**
262
* Obtains the current instant from the system clock.
263
* <p>
264
* This will query the {@link Clock#systemUTC() system UTC clock} to
265
* obtain the current instant.
266
* <p>
267
* Using this method will prevent the ability to use an alternate time-source for
268
* testing because the clock is effectively hard-coded.
269
*
270
* @return the current instant using the system clock, not null
271
*/
272
public static Instant now() {
273
return Clock.systemUTC().instant();
274
}
275
276
/**
277
* Obtains the current instant from the specified clock.
278
* <p>
279
* This will query the specified clock to obtain the current time.
280
* <p>
281
* Using this method allows the use of an alternate clock for testing.
282
* The alternate clock may be introduced using {@link Clock dependency injection}.
283
*
284
* @param clock the clock to use, not null
285
* @return the current instant, not null
286
*/
287
public static Instant now(Clock clock) {
288
Objects.requireNonNull(clock, "clock");
289
return clock.instant();
290
}
291
292
//-----------------------------------------------------------------------
293
/**
294
* Obtains an instance of {@code Instant} using seconds from the
295
* epoch of 1970-01-01T00:00:00Z.
296
* <p>
297
* The nanosecond field is set to zero.
298
*
299
* @param epochSecond the number of seconds from 1970-01-01T00:00:00Z
300
* @return an instant, not null
301
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
302
*/
303
public static Instant ofEpochSecond(long epochSecond) {
304
return create(epochSecond, 0);
305
}
306
307
/**
308
* Obtains an instance of {@code Instant} using seconds from the
309
* epoch of 1970-01-01T00:00:00Z and nanosecond fraction of second.
310
* <p>
311
* This method allows an arbitrary number of nanoseconds to be passed in.
312
* The factory will alter the values of the second and nanosecond in order
313
* to ensure that the stored nanosecond is in the range 0 to 999,999,999.
314
* For example, the following will result in the exactly the same instant:
315
* <pre>
316
* Instant.ofEpochSecond(3, 1);
317
* Instant.ofEpochSecond(4, -999_999_999);
318
* Instant.ofEpochSecond(2, 1000_000_001);
319
* </pre>
320
*
321
* @param epochSecond the number of seconds from 1970-01-01T00:00:00Z
322
* @param nanoAdjustment the nanosecond adjustment to the number of seconds, positive or negative
323
* @return an instant, not null
324
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
325
* @throws ArithmeticException if numeric overflow occurs
326
*/
327
public static Instant ofEpochSecond(long epochSecond, long nanoAdjustment) {
328
long secs = Math.addExact(epochSecond, Math.floorDiv(nanoAdjustment, NANOS_PER_SECOND));
329
int nos = (int)Math.floorMod(nanoAdjustment, NANOS_PER_SECOND);
330
return create(secs, nos);
331
}
332
333
/**
334
* Obtains an instance of {@code Instant} using milliseconds from the
335
* epoch of 1970-01-01T00:00:00Z.
336
* <p>
337
* The seconds and nanoseconds are extracted from the specified milliseconds.
338
*
339
* @param epochMilli the number of milliseconds from 1970-01-01T00:00:00Z
340
* @return an instant, not null
341
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
342
*/
343
public static Instant ofEpochMilli(long epochMilli) {
344
long secs = Math.floorDiv(epochMilli, 1000);
345
int mos = (int)Math.floorMod(epochMilli, 1000);
346
return create(secs, mos * 1000_000);
347
}
348
349
//-----------------------------------------------------------------------
350
/**
351
* Obtains an instance of {@code Instant} from a temporal object.
352
* <p>
353
* This obtains an instant based on the specified temporal.
354
* A {@code TemporalAccessor} represents an arbitrary set of date and time information,
355
* which this factory converts to an instance of {@code Instant}.
356
* <p>
357
* The conversion extracts the {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
358
* and {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} fields.
359
* <p>
360
* This method matches the signature of the functional interface {@link TemporalQuery}
361
* allowing it to be used as a query via method reference, {@code Instant::from}.
362
*
363
* @param temporal the temporal object to convert, not null
364
* @return the instant, not null
365
* @throws DateTimeException if unable to convert to an {@code Instant}
366
*/
367
public static Instant from(TemporalAccessor temporal) {
368
if (temporal instanceof Instant) {
369
return (Instant) temporal;
370
}
371
Objects.requireNonNull(temporal, "temporal");
372
try {
373
long instantSecs = temporal.getLong(INSTANT_SECONDS);
374
int nanoOfSecond = temporal.get(NANO_OF_SECOND);
375
return Instant.ofEpochSecond(instantSecs, nanoOfSecond);
376
} catch (DateTimeException ex) {
377
throw new DateTimeException("Unable to obtain Instant from TemporalAccessor: " +
378
temporal + " of type " + temporal.getClass().getName(), ex);
379
}
380
}
381
382
//-----------------------------------------------------------------------
383
/**
384
* Obtains an instance of {@code Instant} from a text string such as
385
* {@code 2007-12-03T10:15:30.00Z}.
386
* <p>
387
* The string must represent a valid instant in UTC and is parsed using
388
* {@link DateTimeFormatter#ISO_INSTANT}.
389
*
390
* @param text the text to parse, not null
391
* @return the parsed instant, not null
392
* @throws DateTimeParseException if the text cannot be parsed
393
*/
394
public static Instant parse(final CharSequence text) {
395
return DateTimeFormatter.ISO_INSTANT.parse(text, Instant::from);
396
}
397
398
//-----------------------------------------------------------------------
399
/**
400
* Obtains an instance of {@code Instant} using seconds and nanoseconds.
401
*
402
* @param seconds the length of the duration in seconds
403
* @param nanoOfSecond the nano-of-second, from 0 to 999,999,999
404
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
405
*/
406
private static Instant create(long seconds, int nanoOfSecond) {
407
if ((seconds | nanoOfSecond) == 0) {
408
return EPOCH;
409
}
410
if (seconds < MIN_SECOND || seconds > MAX_SECOND) {
411
throw new DateTimeException("Instant exceeds minimum or maximum instant");
412
}
413
return new Instant(seconds, nanoOfSecond);
414
}
415
416
/**
417
* Constructs an instance of {@code Instant} using seconds from the epoch of
418
* 1970-01-01T00:00:00Z and nanosecond fraction of second.
419
*
420
* @param epochSecond the number of seconds from 1970-01-01T00:00:00Z
421
* @param nanos the nanoseconds within the second, must be positive
422
*/
423
private Instant(long epochSecond, int nanos) {
424
super();
425
this.seconds = epochSecond;
426
this.nanos = nanos;
427
}
428
429
//-----------------------------------------------------------------------
430
/**
431
* Checks if the specified field is supported.
432
* <p>
433
* This checks if this instant can be queried for the specified field.
434
* If false, then calling the {@link #range(TemporalField) range},
435
* {@link #get(TemporalField) get} and {@link #with(TemporalField, long)}
436
* methods will throw an exception.
437
* <p>
438
* If the field is a {@link ChronoField} then the query is implemented here.
439
* The supported fields are:
440
* <ul>
441
* <li>{@code NANO_OF_SECOND}
442
* <li>{@code MICRO_OF_SECOND}
443
* <li>{@code MILLI_OF_SECOND}
444
* <li>{@code INSTANT_SECONDS}
445
* </ul>
446
* All other {@code ChronoField} instances will return false.
447
* <p>
448
* If the field is not a {@code ChronoField}, then the result of this method
449
* is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)}
450
* passing {@code this} as the argument.
451
* Whether the field is supported is determined by the field.
452
*
453
* @param field the field to check, null returns false
454
* @return true if the field is supported on this instant, false if not
455
*/
456
@Override
457
public boolean isSupported(TemporalField field) {
458
if (field instanceof ChronoField) {
459
return field == INSTANT_SECONDS || field == NANO_OF_SECOND || field == MICRO_OF_SECOND || field == MILLI_OF_SECOND;
460
}
461
return field != null && field.isSupportedBy(this);
462
}
463
464
/**
465
* Checks if the specified unit is supported.
466
* <p>
467
* This checks if the specified unit can be added to, or subtracted from, this date-time.
468
* If false, then calling the {@link #plus(long, TemporalUnit)} and
469
* {@link #minus(long, TemporalUnit) minus} methods will throw an exception.
470
* <p>
471
* If the unit is a {@link ChronoUnit} then the query is implemented here.
472
* The supported units are:
473
* <ul>
474
* <li>{@code NANOS}
475
* <li>{@code MICROS}
476
* <li>{@code MILLIS}
477
* <li>{@code SECONDS}
478
* <li>{@code MINUTES}
479
* <li>{@code HOURS}
480
* <li>{@code HALF_DAYS}
481
* <li>{@code DAYS}
482
* </ul>
483
* All other {@code ChronoUnit} instances will return false.
484
* <p>
485
* If the unit is not a {@code ChronoUnit}, then the result of this method
486
* is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)}
487
* passing {@code this} as the argument.
488
* Whether the unit is supported is determined by the unit.
489
*
490
* @param unit the unit to check, null returns false
491
* @return true if the unit can be added/subtracted, false if not
492
*/
493
@Override
494
public boolean isSupported(TemporalUnit unit) {
495
if (unit instanceof ChronoUnit) {
496
return unit.isTimeBased() || unit == DAYS;
497
}
498
return unit != null && unit.isSupportedBy(this);
499
}
500
501
//-----------------------------------------------------------------------
502
/**
503
* Gets the range of valid values for the specified field.
504
* <p>
505
* The range object expresses the minimum and maximum valid values for a field.
506
* This instant is used to enhance the accuracy of the returned range.
507
* If it is not possible to return the range, because the field is not supported
508
* or for some other reason, an exception is thrown.
509
* <p>
510
* If the field is a {@link ChronoField} then the query is implemented here.
511
* The {@link #isSupported(TemporalField) supported fields} will return
512
* appropriate range instances.
513
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
514
* <p>
515
* If the field is not a {@code ChronoField}, then the result of this method
516
* is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)}
517
* passing {@code this} as the argument.
518
* Whether the range can be obtained is determined by the field.
519
*
520
* @param field the field to query the range for, not null
521
* @return the range of valid values for the field, not null
522
* @throws DateTimeException if the range for the field cannot be obtained
523
* @throws UnsupportedTemporalTypeException if the field is not supported
524
*/
525
@Override // override for Javadoc
526
public ValueRange range(TemporalField field) {
527
return Temporal.super.range(field);
528
}
529
530
/**
531
* Gets the value of the specified field from this instant as an {@code int}.
532
* <p>
533
* This queries this instant for the value of the specified field.
534
* The returned value will always be within the valid range of values for the field.
535
* If it is not possible to return the value, because the field is not supported
536
* or for some other reason, an exception is thrown.
537
* <p>
538
* If the field is a {@link ChronoField} then the query is implemented here.
539
* The {@link #isSupported(TemporalField) supported fields} will return valid
540
* values based on this date-time, except {@code INSTANT_SECONDS} which is too
541
* large to fit in an {@code int} and throws a {@code DateTimeException}.
542
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
543
* <p>
544
* If the field is not a {@code ChronoField}, then the result of this method
545
* is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
546
* passing {@code this} as the argument. Whether the value can be obtained,
547
* and what the value represents, is determined by the field.
548
*
549
* @param field the field to get, not null
550
* @return the value for the field
551
* @throws DateTimeException if a value for the field cannot be obtained or
552
* the value is outside the range of valid values for the field
553
* @throws UnsupportedTemporalTypeException if the field is not supported or
554
* the range of values exceeds an {@code int}
555
* @throws ArithmeticException if numeric overflow occurs
556
*/
557
@Override // override for Javadoc and performance
558
public int get(TemporalField field) {
559
if (field instanceof ChronoField) {
560
switch ((ChronoField) field) {
561
case NANO_OF_SECOND: return nanos;
562
case MICRO_OF_SECOND: return nanos / 1000;
563
case MILLI_OF_SECOND: return nanos / 1000_000;
564
case INSTANT_SECONDS: INSTANT_SECONDS.checkValidIntValue(seconds);
565
}
566
throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
567
}
568
return range(field).checkValidIntValue(field.getFrom(this), field);
569
}
570
571
/**
572
* Gets the value of the specified field from this instant as a {@code long}.
573
* <p>
574
* This queries this instant for the value of the specified field.
575
* If it is not possible to return the value, because the field is not supported
576
* or for some other reason, an exception is thrown.
577
* <p>
578
* If the field is a {@link ChronoField} then the query is implemented here.
579
* The {@link #isSupported(TemporalField) supported fields} will return valid
580
* values based on this date-time.
581
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
582
* <p>
583
* If the field is not a {@code ChronoField}, then the result of this method
584
* is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
585
* passing {@code this} as the argument. Whether the value can be obtained,
586
* and what the value represents, is determined by the field.
587
*
588
* @param field the field to get, not null
589
* @return the value for the field
590
* @throws DateTimeException if a value for the field cannot be obtained
591
* @throws UnsupportedTemporalTypeException if the field is not supported
592
* @throws ArithmeticException if numeric overflow occurs
593
*/
594
@Override
595
public long getLong(TemporalField field) {
596
if (field instanceof ChronoField) {
597
switch ((ChronoField) field) {
598
case NANO_OF_SECOND: return nanos;
599
case MICRO_OF_SECOND: return nanos / 1000;
600
case MILLI_OF_SECOND: return nanos / 1000_000;
601
case INSTANT_SECONDS: return seconds;
602
}
603
throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
604
}
605
return field.getFrom(this);
606
}
607
608
//-----------------------------------------------------------------------
609
/**
610
* Gets the number of seconds from the Java epoch of 1970-01-01T00:00:00Z.
611
* <p>
612
* The epoch second count is a simple incrementing count of seconds where
613
* second 0 is 1970-01-01T00:00:00Z.
614
* The nanosecond part of the day is returned by {@code getNanosOfSecond}.
615
*
616
* @return the seconds from the epoch of 1970-01-01T00:00:00Z
617
*/
618
public long getEpochSecond() {
619
return seconds;
620
}
621
622
/**
623
* Gets the number of nanoseconds, later along the time-line, from the start
624
* of the second.
625
* <p>
626
* The nanosecond-of-second value measures the total number of nanoseconds from
627
* the second returned by {@code getEpochSecond}.
628
*
629
* @return the nanoseconds within the second, always positive, never exceeds 999,999,999
630
*/
631
public int getNano() {
632
return nanos;
633
}
634
635
//-------------------------------------------------------------------------
636
/**
637
* Returns an adjusted copy of this instant.
638
* <p>
639
* This returns an {@code Instant}, based on this one, with the instant adjusted.
640
* The adjustment takes place using the specified adjuster strategy object.
641
* Read the documentation of the adjuster to understand what adjustment will be made.
642
* <p>
643
* The result of this method is obtained by invoking the
644
* {@link TemporalAdjuster#adjustInto(Temporal)} method on the
645
* specified adjuster passing {@code this} as the argument.
646
* <p>
647
* This instance is immutable and unaffected by this method call.
648
*
649
* @param adjuster the adjuster to use, not null
650
* @return an {@code Instant} based on {@code this} with the adjustment made, not null
651
* @throws DateTimeException if the adjustment cannot be made
652
* @throws ArithmeticException if numeric overflow occurs
653
*/
654
@Override
655
public Instant with(TemporalAdjuster adjuster) {
656
return (Instant) adjuster.adjustInto(this);
657
}
658
659
/**
660
* Returns a copy of this instant with the specified field set to a new value.
661
* <p>
662
* This returns an {@code Instant}, based on this one, with the value
663
* for the specified field changed.
664
* If it is not possible to set the value, because the field is not supported or for
665
* some other reason, an exception is thrown.
666
* <p>
667
* If the field is a {@link ChronoField} then the adjustment is implemented here.
668
* The supported fields behave as follows:
669
* <ul>
670
* <li>{@code NANO_OF_SECOND} -
671
* Returns an {@code Instant} with the specified nano-of-second.
672
* The epoch-second will be unchanged.
673
* <li>{@code MICRO_OF_SECOND} -
674
* Returns an {@code Instant} with the nano-of-second replaced by the specified
675
* micro-of-second multiplied by 1,000. The epoch-second will be unchanged.
676
* <li>{@code MILLI_OF_SECOND} -
677
* Returns an {@code Instant} with the nano-of-second replaced by the specified
678
* milli-of-second multiplied by 1,000,000. The epoch-second will be unchanged.
679
* <li>{@code INSTANT_SECONDS} -
680
* Returns an {@code Instant} with the specified epoch-second.
681
* The nano-of-second will be unchanged.
682
* </ul>
683
* <p>
684
* In all cases, if the new value is outside the valid range of values for the field
685
* then a {@code DateTimeException} will be thrown.
686
* <p>
687
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
688
* <p>
689
* If the field is not a {@code ChronoField}, then the result of this method
690
* is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)}
691
* passing {@code this} as the argument. In this case, the field determines
692
* whether and how to adjust the instant.
693
* <p>
694
* This instance is immutable and unaffected by this method call.
695
*
696
* @param field the field to set in the result, not null
697
* @param newValue the new value of the field in the result
698
* @return an {@code Instant} based on {@code this} with the specified field set, not null
699
* @throws DateTimeException if the field cannot be set
700
* @throws UnsupportedTemporalTypeException if the field is not supported
701
* @throws ArithmeticException if numeric overflow occurs
702
*/
703
@Override
704
public Instant with(TemporalField field, long newValue) {
705
if (field instanceof ChronoField) {
706
ChronoField f = (ChronoField) field;
707
f.checkValidValue(newValue);
708
switch (f) {
709
case MILLI_OF_SECOND: {
710
int nval = (int) newValue * 1000_000;
711
return (nval != nanos ? create(seconds, nval) : this);
712
}
713
case MICRO_OF_SECOND: {
714
int nval = (int) newValue * 1000;
715
return (nval != nanos ? create(seconds, nval) : this);
716
}
717
case NANO_OF_SECOND: return (newValue != nanos ? create(seconds, (int) newValue) : this);
718
case INSTANT_SECONDS: return (newValue != seconds ? create(newValue, nanos) : this);
719
}
720
throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
721
}
722
return field.adjustInto(this, newValue);
723
}
724
725
//-----------------------------------------------------------------------
726
/**
727
* Returns a copy of this {@code Instant} truncated to the specified unit.
728
* <p>
729
* Truncating the instant returns a copy of the original with fields
730
* smaller than the specified unit set to zero.
731
* The fields are calculated on the basis of using a UTC offset as seen
732
* in {@code toString}.
733
* For example, truncating with the {@link ChronoUnit#MINUTES MINUTES} unit will
734
* round down to the nearest minute, setting the seconds and nanoseconds to zero.
735
* <p>
736
* The unit must have a {@linkplain TemporalUnit#getDuration() duration}
737
* that divides into the length of a standard day without remainder.
738
* This includes all supplied time units on {@link ChronoUnit} and
739
* {@link ChronoUnit#DAYS DAYS}. Other units throw an exception.
740
* <p>
741
* This instance is immutable and unaffected by this method call.
742
*
743
* @param unit the unit to truncate to, not null
744
* @return an {@code Instant} based on this instant with the time truncated, not null
745
* @throws DateTimeException if the unit is invalid for truncation
746
* @throws UnsupportedTemporalTypeException if the unit is not supported
747
*/
748
public Instant truncatedTo(TemporalUnit unit) {
749
if (unit == ChronoUnit.NANOS) {
750
return this;
751
}
752
Duration unitDur = unit.getDuration();
753
if (unitDur.getSeconds() > LocalTime.SECONDS_PER_DAY) {
754
throw new UnsupportedTemporalTypeException("Unit is too large to be used for truncation");
755
}
756
long dur = unitDur.toNanos();
757
if ((LocalTime.NANOS_PER_DAY % dur) != 0) {
758
throw new UnsupportedTemporalTypeException("Unit must divide into a standard day without remainder");
759
}
760
long nod = (seconds % LocalTime.SECONDS_PER_DAY) * LocalTime.NANOS_PER_SECOND + nanos;
761
long result = (nod / dur) * dur;
762
return plusNanos(result - nod);
763
}
764
765
//-----------------------------------------------------------------------
766
/**
767
* Returns a copy of this instant with the specified amount added.
768
* <p>
769
* This returns an {@code Instant}, based on this one, with the specified amount added.
770
* The amount is typically {@link Duration} but may be any other type implementing
771
* the {@link TemporalAmount} interface.
772
* <p>
773
* The calculation is delegated to the amount object by calling
774
* {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free
775
* to implement the addition in any way it wishes, however it typically
776
* calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation
777
* of the amount implementation to determine if it can be successfully added.
778
* <p>
779
* This instance is immutable and unaffected by this method call.
780
*
781
* @param amountToAdd the amount to add, not null
782
* @return an {@code Instant} based on this instant with the addition made, not null
783
* @throws DateTimeException if the addition cannot be made
784
* @throws ArithmeticException if numeric overflow occurs
785
*/
786
@Override
787
public Instant plus(TemporalAmount amountToAdd) {
788
return (Instant) amountToAdd.addTo(this);
789
}
790
791
/**
792
* Returns a copy of this instant with the specified amount added.
793
* <p>
794
* This returns an {@code Instant}, based on this one, with the amount
795
* in terms of the unit added. If it is not possible to add the amount, because the
796
* unit is not supported or for some other reason, an exception is thrown.
797
* <p>
798
* If the field is a {@link ChronoUnit} then the addition is implemented here.
799
* The supported fields behave as follows:
800
* <ul>
801
* <li>{@code NANOS} -
802
* Returns a {@code Instant} with the specified number of nanoseconds added.
803
* This is equivalent to {@link #plusNanos(long)}.
804
* <li>{@code MICROS} -
805
* Returns a {@code Instant} with the specified number of microseconds added.
806
* This is equivalent to {@link #plusNanos(long)} with the amount
807
* multiplied by 1,000.
808
* <li>{@code MILLIS} -
809
* Returns a {@code Instant} with the specified number of milliseconds added.
810
* This is equivalent to {@link #plusNanos(long)} with the amount
811
* multiplied by 1,000,000.
812
* <li>{@code SECONDS} -
813
* Returns a {@code Instant} with the specified number of seconds added.
814
* This is equivalent to {@link #plusSeconds(long)}.
815
* <li>{@code MINUTES} -
816
* Returns a {@code Instant} with the specified number of minutes added.
817
* This is equivalent to {@link #plusSeconds(long)} with the amount
818
* multiplied by 60.
819
* <li>{@code HOURS} -
820
* Returns a {@code Instant} with the specified number of hours added.
821
* This is equivalent to {@link #plusSeconds(long)} with the amount
822
* multiplied by 3,600.
823
* <li>{@code HALF_DAYS} -
824
* Returns a {@code Instant} with the specified number of half-days added.
825
* This is equivalent to {@link #plusSeconds(long)} with the amount
826
* multiplied by 43,200 (12 hours).
827
* <li>{@code DAYS} -
828
* Returns a {@code Instant} with the specified number of days added.
829
* This is equivalent to {@link #plusSeconds(long)} with the amount
830
* multiplied by 86,400 (24 hours).
831
* </ul>
832
* <p>
833
* All other {@code ChronoUnit} instances will throw an {@code UnsupportedTemporalTypeException}.
834
* <p>
835
* If the field is not a {@code ChronoUnit}, then the result of this method
836
* is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)}
837
* passing {@code this} as the argument. In this case, the unit determines
838
* whether and how to perform the addition.
839
* <p>
840
* This instance is immutable and unaffected by this method call.
841
*
842
* @param amountToAdd the amount of the unit to add to the result, may be negative
843
* @param unit the unit of the amount to add, not null
844
* @return an {@code Instant} based on this instant with the specified amount added, not null
845
* @throws DateTimeException if the addition cannot be made
846
* @throws UnsupportedTemporalTypeException if the unit is not supported
847
* @throws ArithmeticException if numeric overflow occurs
848
*/
849
@Override
850
public Instant plus(long amountToAdd, TemporalUnit unit) {
851
if (unit instanceof ChronoUnit) {
852
switch ((ChronoUnit) unit) {
853
case NANOS: return plusNanos(amountToAdd);
854
case MICROS: return plus(amountToAdd / 1000_000, (amountToAdd % 1000_000) * 1000);
855
case MILLIS: return plusMillis(amountToAdd);
856
case SECONDS: return plusSeconds(amountToAdd);
857
case MINUTES: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_MINUTE));
858
case HOURS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_HOUR));
859
case HALF_DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY / 2));
860
case DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY));
861
}
862
throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
863
}
864
return unit.addTo(this, amountToAdd);
865
}
866
867
//-----------------------------------------------------------------------
868
/**
869
* Returns a copy of this instant with the specified duration in seconds added.
870
* <p>
871
* This instance is immutable and unaffected by this method call.
872
*
873
* @param secondsToAdd the seconds to add, positive or negative
874
* @return an {@code Instant} based on this instant with the specified seconds added, not null
875
* @throws DateTimeException if the result exceeds the maximum or minimum instant
876
* @throws ArithmeticException if numeric overflow occurs
877
*/
878
public Instant plusSeconds(long secondsToAdd) {
879
return plus(secondsToAdd, 0);
880
}
881
882
/**
883
* Returns a copy of this instant with the specified duration in milliseconds added.
884
* <p>
885
* This instance is immutable and unaffected by this method call.
886
*
887
* @param millisToAdd the milliseconds to add, positive or negative
888
* @return an {@code Instant} based on this instant with the specified milliseconds added, not null
889
* @throws DateTimeException if the result exceeds the maximum or minimum instant
890
* @throws ArithmeticException if numeric overflow occurs
891
*/
892
public Instant plusMillis(long millisToAdd) {
893
return plus(millisToAdd / 1000, (millisToAdd % 1000) * 1000_000);
894
}
895
896
/**
897
* Returns a copy of this instant with the specified duration in nanoseconds added.
898
* <p>
899
* This instance is immutable and unaffected by this method call.
900
*
901
* @param nanosToAdd the nanoseconds to add, positive or negative
902
* @return an {@code Instant} based on this instant with the specified nanoseconds added, not null
903
* @throws DateTimeException if the result exceeds the maximum or minimum instant
904
* @throws ArithmeticException if numeric overflow occurs
905
*/
906
public Instant plusNanos(long nanosToAdd) {
907
return plus(0, nanosToAdd);
908
}
909
910
/**
911
* Returns a copy of this instant with the specified duration added.
912
* <p>
913
* This instance is immutable and unaffected by this method call.
914
*
915
* @param secondsToAdd the seconds to add, positive or negative
916
* @param nanosToAdd the nanos to add, positive or negative
917
* @return an {@code Instant} based on this instant with the specified seconds added, not null
918
* @throws DateTimeException if the result exceeds the maximum or minimum instant
919
* @throws ArithmeticException if numeric overflow occurs
920
*/
921
private Instant plus(long secondsToAdd, long nanosToAdd) {
922
if ((secondsToAdd | nanosToAdd) == 0) {
923
return this;
924
}
925
long epochSec = Math.addExact(seconds, secondsToAdd);
926
epochSec = Math.addExact(epochSec, nanosToAdd / NANOS_PER_SECOND);
927
nanosToAdd = nanosToAdd % NANOS_PER_SECOND;
928
long nanoAdjustment = nanos + nanosToAdd; // safe int+NANOS_PER_SECOND
929
return ofEpochSecond(epochSec, nanoAdjustment);
930
}
931
932
//-----------------------------------------------------------------------
933
/**
934
* Returns a copy of this instant with the specified amount subtracted.
935
* <p>
936
* This returns an {@code Instant}, based on this one, with the specified amount subtracted.
937
* The amount is typically {@link Duration} but may be any other type implementing
938
* the {@link TemporalAmount} interface.
939
* <p>
940
* The calculation is delegated to the amount object by calling
941
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
942
* to implement the subtraction in any way it wishes, however it typically
943
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
944
* of the amount implementation to determine if it can be successfully subtracted.
945
* <p>
946
* This instance is immutable and unaffected by this method call.
947
*
948
* @param amountToSubtract the amount to subtract, not null
949
* @return an {@code Instant} based on this instant with the subtraction made, not null
950
* @throws DateTimeException if the subtraction cannot be made
951
* @throws ArithmeticException if numeric overflow occurs
952
*/
953
@Override
954
public Instant minus(TemporalAmount amountToSubtract) {
955
return (Instant) amountToSubtract.subtractFrom(this);
956
}
957
958
/**
959
* Returns a copy of this instant with the specified amount subtracted.
960
* <p>
961
* This returns a {@code Instant}, based on this one, with the amount
962
* in terms of the unit subtracted. If it is not possible to subtract the amount,
963
* because the unit is not supported or for some other reason, an exception is thrown.
964
* <p>
965
* This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated.
966
* See that method for a full description of how addition, and thus subtraction, works.
967
* <p>
968
* This instance is immutable and unaffected by this method call.
969
*
970
* @param amountToSubtract the amount of the unit to subtract from the result, may be negative
971
* @param unit the unit of the amount to subtract, not null
972
* @return an {@code Instant} based on this instant with the specified amount subtracted, not null
973
* @throws DateTimeException if the subtraction cannot be made
974
* @throws UnsupportedTemporalTypeException if the unit is not supported
975
* @throws ArithmeticException if numeric overflow occurs
976
*/
977
@Override
978
public Instant minus(long amountToSubtract, TemporalUnit unit) {
979
return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit));
980
}
981
982
//-----------------------------------------------------------------------
983
/**
984
* Returns a copy of this instant with the specified duration in seconds subtracted.
985
* <p>
986
* This instance is immutable and unaffected by this method call.
987
*
988
* @param secondsToSubtract the seconds to subtract, positive or negative
989
* @return an {@code Instant} based on this instant with the specified seconds subtracted, not null
990
* @throws DateTimeException if the result exceeds the maximum or minimum instant
991
* @throws ArithmeticException if numeric overflow occurs
992
*/
993
public Instant minusSeconds(long secondsToSubtract) {
994
if (secondsToSubtract == Long.MIN_VALUE) {
995
return plusSeconds(Long.MAX_VALUE).plusSeconds(1);
996
}
997
return plusSeconds(-secondsToSubtract);
998
}
999
1000
/**
1001
* Returns a copy of this instant with the specified duration in milliseconds subtracted.
1002
* <p>
1003
* This instance is immutable and unaffected by this method call.
1004
*
1005
* @param millisToSubtract the milliseconds to subtract, positive or negative
1006
* @return an {@code Instant} based on this instant with the specified milliseconds subtracted, not null
1007
* @throws DateTimeException if the result exceeds the maximum or minimum instant
1008
* @throws ArithmeticException if numeric overflow occurs
1009
*/
1010
public Instant minusMillis(long millisToSubtract) {
1011
if (millisToSubtract == Long.MIN_VALUE) {
1012
return plusMillis(Long.MAX_VALUE).plusMillis(1);
1013
}
1014
return plusMillis(-millisToSubtract);
1015
}
1016
1017
/**
1018
* Returns a copy of this instant with the specified duration in nanoseconds subtracted.
1019
* <p>
1020
* This instance is immutable and unaffected by this method call.
1021
*
1022
* @param nanosToSubtract the nanoseconds to subtract, positive or negative
1023
* @return an {@code Instant} based on this instant with the specified nanoseconds subtracted, not null
1024
* @throws DateTimeException if the result exceeds the maximum or minimum instant
1025
* @throws ArithmeticException if numeric overflow occurs
1026
*/
1027
public Instant minusNanos(long nanosToSubtract) {
1028
if (nanosToSubtract == Long.MIN_VALUE) {
1029
return plusNanos(Long.MAX_VALUE).plusNanos(1);
1030
}
1031
return plusNanos(-nanosToSubtract);
1032
}
1033
1034
//-------------------------------------------------------------------------
1035
/**
1036
* Queries this instant using the specified query.
1037
* <p>
1038
* This queries this instant using the specified query strategy object.
1039
* The {@code TemporalQuery} object defines the logic to be used to
1040
* obtain the result. Read the documentation of the query to understand
1041
* what the result of this method will be.
1042
* <p>
1043
* The result of this method is obtained by invoking the
1044
* {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the
1045
* specified query passing {@code this} as the argument.
1046
*
1047
* @param <R> the type of the result
1048
* @param query the query to invoke, not null
1049
* @return the query result, null may be returned (defined by the query)
1050
* @throws DateTimeException if unable to query (defined by the query)
1051
* @throws ArithmeticException if numeric overflow occurs (defined by the query)
1052
*/
1053
@SuppressWarnings("unchecked")
1054
@Override
1055
public <R> R query(TemporalQuery<R> query) {
1056
if (query == TemporalQueries.precision()) {
1057
return (R) NANOS;
1058
}
1059
// inline TemporalAccessor.super.query(query) as an optimization
1060
if (query == TemporalQueries.chronology() || query == TemporalQueries.zoneId() ||
1061
query == TemporalQueries.zone() || query == TemporalQueries.offset() ||
1062
query == TemporalQueries.localDate() || query == TemporalQueries.localTime()) {
1063
return null;
1064
}
1065
return query.queryFrom(this);
1066
}
1067
1068
/**
1069
* Adjusts the specified temporal object to have this instant.
1070
* <p>
1071
* This returns a temporal object of the same observable type as the input
1072
* with the instant changed to be the same as this.
1073
* <p>
1074
* The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)}
1075
* twice, passing {@link ChronoField#INSTANT_SECONDS} and
1076
* {@link ChronoField#NANO_OF_SECOND} as the fields.
1077
* <p>
1078
* In most cases, it is clearer to reverse the calling pattern by using
1079
* {@link Temporal#with(TemporalAdjuster)}:
1080
* <pre>
1081
* // these two lines are equivalent, but the second approach is recommended
1082
* temporal = thisInstant.adjustInto(temporal);
1083
* temporal = temporal.with(thisInstant);
1084
* </pre>
1085
* <p>
1086
* This instance is immutable and unaffected by this method call.
1087
*
1088
* @param temporal the target object to be adjusted, not null
1089
* @return the adjusted object, not null
1090
* @throws DateTimeException if unable to make the adjustment
1091
* @throws ArithmeticException if numeric overflow occurs
1092
*/
1093
@Override
1094
public Temporal adjustInto(Temporal temporal) {
1095
return temporal.with(INSTANT_SECONDS, seconds).with(NANO_OF_SECOND, nanos);
1096
}
1097
1098
/**
1099
* Calculates the amount of time until another instant in terms of the specified unit.
1100
* <p>
1101
* This calculates the amount of time between two {@code Instant}
1102
* objects in terms of a single {@code TemporalUnit}.
1103
* The start and end points are {@code this} and the specified instant.
1104
* The result will be negative if the end is before the start.
1105
* The calculation returns a whole number, representing the number of
1106
* complete units between the two instants.
1107
* The {@code Temporal} passed to this method is converted to a
1108
* {@code Instant} using {@link #from(TemporalAccessor)}.
1109
* For example, the amount in days between two dates can be calculated
1110
* using {@code startInstant.until(endInstant, SECONDS)}.
1111
* <p>
1112
* There are two equivalent ways of using this method.
1113
* The first is to invoke this method.
1114
* The second is to use {@link TemporalUnit#between(Temporal, Temporal)}:
1115
* <pre>
1116
* // these two lines are equivalent
1117
* amount = start.until(end, SECONDS);
1118
* amount = SECONDS.between(start, end);
1119
* </pre>
1120
* The choice should be made based on which makes the code more readable.
1121
* <p>
1122
* The calculation is implemented in this method for {@link ChronoUnit}.
1123
* The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS},
1124
* {@code MINUTES}, {@code HOURS}, {@code HALF_DAYS} and {@code DAYS}
1125
* are supported. Other {@code ChronoUnit} values will throw an exception.
1126
* <p>
1127
* If the unit is not a {@code ChronoUnit}, then the result of this method
1128
* is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)}
1129
* passing {@code this} as the first argument and the converted input temporal
1130
* as the second argument.
1131
* <p>
1132
* This instance is immutable and unaffected by this method call.
1133
*
1134
* @param endExclusive the end date, exclusive, which is converted to an {@code Instant}, not null
1135
* @param unit the unit to measure the amount in, not null
1136
* @return the amount of time between this instant and the end instant
1137
* @throws DateTimeException if the amount cannot be calculated, or the end
1138
* temporal cannot be converted to an {@code Instant}
1139
* @throws UnsupportedTemporalTypeException if the unit is not supported
1140
* @throws ArithmeticException if numeric overflow occurs
1141
*/
1142
@Override
1143
public long until(Temporal endExclusive, TemporalUnit unit) {
1144
Instant end = Instant.from(endExclusive);
1145
if (unit instanceof ChronoUnit) {
1146
ChronoUnit f = (ChronoUnit) unit;
1147
switch (f) {
1148
case NANOS: return nanosUntil(end);
1149
case MICROS: return nanosUntil(end) / 1000;
1150
case MILLIS: return Math.subtractExact(end.toEpochMilli(), toEpochMilli());
1151
case SECONDS: return secondsUntil(end);
1152
case MINUTES: return secondsUntil(end) / SECONDS_PER_MINUTE;
1153
case HOURS: return secondsUntil(end) / SECONDS_PER_HOUR;
1154
case HALF_DAYS: return secondsUntil(end) / (12 * SECONDS_PER_HOUR);
1155
case DAYS: return secondsUntil(end) / (SECONDS_PER_DAY);
1156
}
1157
throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
1158
}
1159
return unit.between(this, end);
1160
}
1161
1162
private long nanosUntil(Instant end) {
1163
long secsDiff = Math.subtractExact(end.seconds, seconds);
1164
long totalNanos = Math.multiplyExact(secsDiff, NANOS_PER_SECOND);
1165
return Math.addExact(totalNanos, end.nanos - nanos);
1166
}
1167
1168
private long secondsUntil(Instant end) {
1169
long secsDiff = Math.subtractExact(end.seconds, seconds);
1170
long nanosDiff = end.nanos - nanos;
1171
if (secsDiff > 0 && nanosDiff < 0) {
1172
secsDiff--;
1173
} else if (secsDiff < 0 && nanosDiff > 0) {
1174
secsDiff++;
1175
}
1176
return secsDiff;
1177
}
1178
1179
//-----------------------------------------------------------------------
1180
/**
1181
* Combines this instant with an offset to create an {@code OffsetDateTime}.
1182
* <p>
1183
* This returns an {@code OffsetDateTime} formed from this instant at the
1184
* specified offset from UTC/Greenwich. An exception will be thrown if the
1185
* instant is too large to fit into an offset date-time.
1186
* <p>
1187
* This method is equivalent to
1188
* {@link OffsetDateTime#ofInstant(Instant, ZoneId) OffsetDateTime.ofInstant(this, offset)}.
1189
*
1190
* @param offset the offset to combine with, not null
1191
* @return the offset date-time formed from this instant and the specified offset, not null
1192
* @throws DateTimeException if the result exceeds the supported range
1193
*/
1194
public OffsetDateTime atOffset(ZoneOffset offset) {
1195
return OffsetDateTime.ofInstant(this, offset);
1196
}
1197
1198
/**
1199
* Combines this instant with a time-zone to create a {@code ZonedDateTime}.
1200
* <p>
1201
* This returns an {@code ZonedDateTime} formed from this instant at the
1202
* specified time-zone. An exception will be thrown if the instant is too
1203
* large to fit into a zoned date-time.
1204
* <p>
1205
* This method is equivalent to
1206
* {@link ZonedDateTime#ofInstant(Instant, ZoneId) ZonedDateTime.ofInstant(this, zone)}.
1207
*
1208
* @param zone the zone to combine with, not null
1209
* @return the zoned date-time formed from this instant and the specified zone, not null
1210
* @throws DateTimeException if the result exceeds the supported range
1211
*/
1212
public ZonedDateTime atZone(ZoneId zone) {
1213
return ZonedDateTime.ofInstant(this, zone);
1214
}
1215
1216
//-----------------------------------------------------------------------
1217
/**
1218
* Converts this instant to the number of milliseconds from the epoch
1219
* of 1970-01-01T00:00:00Z.
1220
* <p>
1221
* If this instant represents a point on the time-line too far in the future
1222
* or past to fit in a {@code long} milliseconds, then an exception is thrown.
1223
* <p>
1224
* If this instant has greater than millisecond precision, then the conversion
1225
* will drop any excess precision information as though the amount in nanoseconds
1226
* was subject to integer division by one million.
1227
*
1228
* @return the number of milliseconds since the epoch of 1970-01-01T00:00:00Z
1229
* @throws ArithmeticException if numeric overflow occurs
1230
*/
1231
public long toEpochMilli() {
1232
if (seconds < 0 && nanos > 0) {
1233
long millis = Math.multiplyExact(seconds+1, 1000);
1234
long adjustment = nanos / 1000_000 - 1000;
1235
return Math.addExact(millis, adjustment);
1236
} else {
1237
long millis = Math.multiplyExact(seconds, 1000);
1238
return Math.addExact(millis, nanos / 1000_000);
1239
}
1240
}
1241
1242
//-----------------------------------------------------------------------
1243
/**
1244
* Compares this instant to the specified instant.
1245
* <p>
1246
* The comparison is based on the time-line position of the instants.
1247
* It is "consistent with equals", as defined by {@link Comparable}.
1248
*
1249
* @param otherInstant the other instant to compare to, not null
1250
* @return the comparator value, negative if less, positive if greater
1251
* @throws NullPointerException if otherInstant is null
1252
*/
1253
@Override
1254
public int compareTo(Instant otherInstant) {
1255
int cmp = Long.compare(seconds, otherInstant.seconds);
1256
if (cmp != 0) {
1257
return cmp;
1258
}
1259
return nanos - otherInstant.nanos;
1260
}
1261
1262
/**
1263
* Checks if this instant is after the specified instant.
1264
* <p>
1265
* The comparison is based on the time-line position of the instants.
1266
*
1267
* @param otherInstant the other instant to compare to, not null
1268
* @return true if this instant is after the specified instant
1269
* @throws NullPointerException if otherInstant is null
1270
*/
1271
public boolean isAfter(Instant otherInstant) {
1272
return compareTo(otherInstant) > 0;
1273
}
1274
1275
/**
1276
* Checks if this instant is before the specified instant.
1277
* <p>
1278
* The comparison is based on the time-line position of the instants.
1279
*
1280
* @param otherInstant the other instant to compare to, not null
1281
* @return true if this instant is before the specified instant
1282
* @throws NullPointerException if otherInstant is null
1283
*/
1284
public boolean isBefore(Instant otherInstant) {
1285
return compareTo(otherInstant) < 0;
1286
}
1287
1288
//-----------------------------------------------------------------------
1289
/**
1290
* Checks if this instant is equal to the specified instant.
1291
* <p>
1292
* The comparison is based on the time-line position of the instants.
1293
*
1294
* @param otherInstant the other instant, null returns false
1295
* @return true if the other instant is equal to this one
1296
*/
1297
@Override
1298
public boolean equals(Object otherInstant) {
1299
if (this == otherInstant) {
1300
return true;
1301
}
1302
if (otherInstant instanceof Instant) {
1303
Instant other = (Instant) otherInstant;
1304
return this.seconds == other.seconds &&
1305
this.nanos == other.nanos;
1306
}
1307
return false;
1308
}
1309
1310
/**
1311
* Returns a hash code for this instant.
1312
*
1313
* @return a suitable hash code
1314
*/
1315
@Override
1316
public int hashCode() {
1317
return ((int) (seconds ^ (seconds >>> 32))) + 51 * nanos;
1318
}
1319
1320
//-----------------------------------------------------------------------
1321
/**
1322
* A string representation of this instant using ISO-8601 representation.
1323
* <p>
1324
* The format used is the same as {@link DateTimeFormatter#ISO_INSTANT}.
1325
*
1326
* @return an ISO-8601 representation of this instant, not null
1327
*/
1328
@Override
1329
public String toString() {
1330
return DateTimeFormatter.ISO_INSTANT.format(this);
1331
}
1332
1333
// -----------------------------------------------------------------------
1334
/**
1335
* Writes the object using a
1336
* <a href="../../serialized-form.html#java.time.Ser">dedicated serialized form</a>.
1337
* @serialData
1338
* <pre>
1339
* out.writeByte(2); // identifies an Instant
1340
* out.writeLong(seconds);
1341
* out.writeInt(nanos);
1342
* </pre>
1343
*
1344
* @return the instance of {@code Ser}, not null
1345
*/
1346
private Object writeReplace() {
1347
return new Ser(Ser.INSTANT_TYPE, this);
1348
}
1349
1350
/**
1351
* Defend against malicious streams.
1352
*
1353
* @param s the stream to read
1354
* @throws InvalidObjectException always
1355
*/
1356
private void readObject(ObjectInputStream s) throws InvalidObjectException {
1357
throw new InvalidObjectException("Deserialization via serialization delegate");
1358
}
1359
1360
void writeExternal(DataOutput out) throws IOException {
1361
out.writeLong(seconds);
1362
out.writeInt(nanos);
1363
}
1364
1365
static Instant readExternal(DataInput in) throws IOException {
1366
long seconds = in.readLong();
1367
int nanos = in.readInt();
1368
return Instant.ofEpochSecond(seconds, nanos);
1369
}
1370
1371
}
1372
1373