Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/java/util/ArrayList.java
38829 views
1
/*
2
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.util;
27
28
import java.util.function.Consumer;
29
import java.util.function.Predicate;
30
import java.util.function.UnaryOperator;
31
import sun.misc.SharedSecrets;
32
33
/**
34
* Resizable-array implementation of the <tt>List</tt> interface. Implements
35
* all optional list operations, and permits all elements, including
36
* <tt>null</tt>. In addition to implementing the <tt>List</tt> interface,
37
* this class provides methods to manipulate the size of the array that is
38
* used internally to store the list. (This class is roughly equivalent to
39
* <tt>Vector</tt>, except that it is unsynchronized.)
40
*
41
* <p>The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
42
* <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
43
* time. The <tt>add</tt> operation runs in <i>amortized constant time</i>,
44
* that is, adding n elements requires O(n) time. All of the other operations
45
* run in linear time (roughly speaking). The constant factor is low compared
46
* to that for the <tt>LinkedList</tt> implementation.
47
*
48
* <p>Each <tt>ArrayList</tt> instance has a <i>capacity</i>. The capacity is
49
* the size of the array used to store the elements in the list. It is always
50
* at least as large as the list size. As elements are added to an ArrayList,
51
* its capacity grows automatically. The details of the growth policy are not
52
* specified beyond the fact that adding an element has constant amortized
53
* time cost.
54
*
55
* <p>An application can increase the capacity of an <tt>ArrayList</tt> instance
56
* before adding a large number of elements using the <tt>ensureCapacity</tt>
57
* operation. This may reduce the amount of incremental reallocation.
58
*
59
* <p><strong>Note that this implementation is not synchronized.</strong>
60
* If multiple threads access an <tt>ArrayList</tt> instance concurrently,
61
* and at least one of the threads modifies the list structurally, it
62
* <i>must</i> be synchronized externally. (A structural modification is
63
* any operation that adds or deletes one or more elements, or explicitly
64
* resizes the backing array; merely setting the value of an element is not
65
* a structural modification.) This is typically accomplished by
66
* synchronizing on some object that naturally encapsulates the list.
67
*
68
* If no such object exists, the list should be "wrapped" using the
69
* {@link Collections#synchronizedList Collections.synchronizedList}
70
* method. This is best done at creation time, to prevent accidental
71
* unsynchronized access to the list:<pre>
72
* List list = Collections.synchronizedList(new ArrayList(...));</pre>
73
*
74
* <p><a name="fail-fast">
75
* The iterators returned by this class's {@link #iterator() iterator} and
76
* {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:</a>
77
* if the list is structurally modified at any time after the iterator is
78
* created, in any way except through the iterator's own
79
* {@link ListIterator#remove() remove} or
80
* {@link ListIterator#add(Object) add} methods, the iterator will throw a
81
* {@link ConcurrentModificationException}. Thus, in the face of
82
* concurrent modification, the iterator fails quickly and cleanly, rather
83
* than risking arbitrary, non-deterministic behavior at an undetermined
84
* time in the future.
85
*
86
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
87
* as it is, generally speaking, impossible to make any hard guarantees in the
88
* presence of unsynchronized concurrent modification. Fail-fast iterators
89
* throw {@code ConcurrentModificationException} on a best-effort basis.
90
* Therefore, it would be wrong to write a program that depended on this
91
* exception for its correctness: <i>the fail-fast behavior of iterators
92
* should be used only to detect bugs.</i>
93
*
94
* <p>This class is a member of the
95
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
96
* Java Collections Framework</a>.
97
*
98
* @author Josh Bloch
99
* @author Neal Gafter
100
* @see Collection
101
* @see List
102
* @see LinkedList
103
* @see Vector
104
* @since 1.2
105
*/
106
107
public class ArrayList<E> extends AbstractList<E>
108
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109
{
110
private static final long serialVersionUID = 8683452581122892189L;
111
112
/**
113
* Default initial capacity.
114
*/
115
private static final int DEFAULT_CAPACITY = 10;
116
117
/**
118
* Shared empty array instance used for empty instances.
119
*/
120
private static final Object[] EMPTY_ELEMENTDATA = {};
121
122
/**
123
* Shared empty array instance used for default sized empty instances. We
124
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125
* first element is added.
126
*/
127
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128
129
/**
130
* The array buffer into which the elements of the ArrayList are stored.
131
* The capacity of the ArrayList is the length of this array buffer. Any
132
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133
* will be expanded to DEFAULT_CAPACITY when the first element is added.
134
*/
135
transient Object[] elementData; // non-private to simplify nested class access
136
137
/**
138
* The size of the ArrayList (the number of elements it contains).
139
*
140
* @serial
141
*/
142
private int size;
143
144
/**
145
* Constructs an empty list with the specified initial capacity.
146
*
147
* @param initialCapacity the initial capacity of the list
148
* @throws IllegalArgumentException if the specified initial capacity
149
* is negative
150
*/
151
public ArrayList(int initialCapacity) {
152
if (initialCapacity > 0) {
153
this.elementData = new Object[initialCapacity];
154
} else if (initialCapacity == 0) {
155
this.elementData = EMPTY_ELEMENTDATA;
156
} else {
157
throw new IllegalArgumentException("Illegal Capacity: "+
158
initialCapacity);
159
}
160
}
161
162
/**
163
* Constructs an empty list with an initial capacity of ten.
164
*/
165
public ArrayList() {
166
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167
}
168
169
/**
170
* Constructs a list containing the elements of the specified
171
* collection, in the order they are returned by the collection's
172
* iterator.
173
*
174
* @param c the collection whose elements are to be placed into this list
175
* @throws NullPointerException if the specified collection is null
176
*/
177
public ArrayList(Collection<? extends E> c) {
178
Object[] a = c.toArray();
179
if ((size = a.length) != 0) {
180
if (c.getClass() == ArrayList.class) {
181
elementData = a;
182
} else {
183
elementData = Arrays.copyOf(a, size, Object[].class);
184
}
185
} else {
186
// replace with empty array.
187
elementData = EMPTY_ELEMENTDATA;
188
}
189
}
190
191
/**
192
* Trims the capacity of this <tt>ArrayList</tt> instance to be the
193
* list's current size. An application can use this operation to minimize
194
* the storage of an <tt>ArrayList</tt> instance.
195
*/
196
public void trimToSize() {
197
modCount++;
198
if (size < elementData.length) {
199
elementData = (size == 0)
200
? EMPTY_ELEMENTDATA
201
: Arrays.copyOf(elementData, size);
202
}
203
}
204
205
/**
206
* Increases the capacity of this <tt>ArrayList</tt> instance, if
207
* necessary, to ensure that it can hold at least the number of elements
208
* specified by the minimum capacity argument.
209
*
210
* @param minCapacity the desired minimum capacity
211
*/
212
public void ensureCapacity(int minCapacity) {
213
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
214
// any size if not default element table
215
? 0
216
// larger than default for default empty table. It's already
217
// supposed to be at default size.
218
: DEFAULT_CAPACITY;
219
220
if (minCapacity > minExpand) {
221
ensureExplicitCapacity(minCapacity);
222
}
223
}
224
225
private static int calculateCapacity(Object[] elementData, int minCapacity) {
226
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
227
return Math.max(DEFAULT_CAPACITY, minCapacity);
228
}
229
return minCapacity;
230
}
231
232
private void ensureCapacityInternal(int minCapacity) {
233
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
234
}
235
236
private void ensureExplicitCapacity(int minCapacity) {
237
modCount++;
238
239
// overflow-conscious code
240
if (minCapacity - elementData.length > 0)
241
grow(minCapacity);
242
}
243
244
/**
245
* The maximum size of array to allocate.
246
* Some VMs reserve some header words in an array.
247
* Attempts to allocate larger arrays may result in
248
* OutOfMemoryError: Requested array size exceeds VM limit
249
*/
250
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
251
252
/**
253
* Increases the capacity to ensure that it can hold at least the
254
* number of elements specified by the minimum capacity argument.
255
*
256
* @param minCapacity the desired minimum capacity
257
*/
258
private void grow(int minCapacity) {
259
// overflow-conscious code
260
int oldCapacity = elementData.length;
261
int newCapacity = oldCapacity + (oldCapacity >> 1);
262
if (newCapacity - minCapacity < 0)
263
newCapacity = minCapacity;
264
if (newCapacity - MAX_ARRAY_SIZE > 0)
265
newCapacity = hugeCapacity(minCapacity);
266
// minCapacity is usually close to size, so this is a win:
267
elementData = Arrays.copyOf(elementData, newCapacity);
268
}
269
270
private static int hugeCapacity(int minCapacity) {
271
if (minCapacity < 0) // overflow
272
throw new OutOfMemoryError();
273
return (minCapacity > MAX_ARRAY_SIZE) ?
274
Integer.MAX_VALUE :
275
MAX_ARRAY_SIZE;
276
}
277
278
/**
279
* Returns the number of elements in this list.
280
*
281
* @return the number of elements in this list
282
*/
283
public int size() {
284
return size;
285
}
286
287
/**
288
* Returns <tt>true</tt> if this list contains no elements.
289
*
290
* @return <tt>true</tt> if this list contains no elements
291
*/
292
public boolean isEmpty() {
293
return size == 0;
294
}
295
296
/**
297
* Returns <tt>true</tt> if this list contains the specified element.
298
* More formally, returns <tt>true</tt> if and only if this list contains
299
* at least one element <tt>e</tt> such that
300
* <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
301
*
302
* @param o element whose presence in this list is to be tested
303
* @return <tt>true</tt> if this list contains the specified element
304
*/
305
public boolean contains(Object o) {
306
return indexOf(o) >= 0;
307
}
308
309
/**
310
* Returns the index of the first occurrence of the specified element
311
* in this list, or -1 if this list does not contain the element.
312
* More formally, returns the lowest index <tt>i</tt> such that
313
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
314
* or -1 if there is no such index.
315
*/
316
public int indexOf(Object o) {
317
if (o == null) {
318
for (int i = 0; i < size; i++)
319
if (elementData[i]==null)
320
return i;
321
} else {
322
for (int i = 0; i < size; i++)
323
if (o.equals(elementData[i]))
324
return i;
325
}
326
return -1;
327
}
328
329
/**
330
* Returns the index of the last occurrence of the specified element
331
* in this list, or -1 if this list does not contain the element.
332
* More formally, returns the highest index <tt>i</tt> such that
333
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
334
* or -1 if there is no such index.
335
*/
336
public int lastIndexOf(Object o) {
337
if (o == null) {
338
for (int i = size-1; i >= 0; i--)
339
if (elementData[i]==null)
340
return i;
341
} else {
342
for (int i = size-1; i >= 0; i--)
343
if (o.equals(elementData[i]))
344
return i;
345
}
346
return -1;
347
}
348
349
/**
350
* Returns a shallow copy of this <tt>ArrayList</tt> instance. (The
351
* elements themselves are not copied.)
352
*
353
* @return a clone of this <tt>ArrayList</tt> instance
354
*/
355
public Object clone() {
356
try {
357
ArrayList<?> v = (ArrayList<?>) super.clone();
358
v.elementData = Arrays.copyOf(elementData, size);
359
v.modCount = 0;
360
return v;
361
} catch (CloneNotSupportedException e) {
362
// this shouldn't happen, since we are Cloneable
363
throw new InternalError(e);
364
}
365
}
366
367
/**
368
* Returns an array containing all of the elements in this list
369
* in proper sequence (from first to last element).
370
*
371
* <p>The returned array will be "safe" in that no references to it are
372
* maintained by this list. (In other words, this method must allocate
373
* a new array). The caller is thus free to modify the returned array.
374
*
375
* <p>This method acts as bridge between array-based and collection-based
376
* APIs.
377
*
378
* @return an array containing all of the elements in this list in
379
* proper sequence
380
*/
381
public Object[] toArray() {
382
return Arrays.copyOf(elementData, size);
383
}
384
385
/**
386
* Returns an array containing all of the elements in this list in proper
387
* sequence (from first to last element); the runtime type of the returned
388
* array is that of the specified array. If the list fits in the
389
* specified array, it is returned therein. Otherwise, a new array is
390
* allocated with the runtime type of the specified array and the size of
391
* this list.
392
*
393
* <p>If the list fits in the specified array with room to spare
394
* (i.e., the array has more elements than the list), the element in
395
* the array immediately following the end of the collection is set to
396
* <tt>null</tt>. (This is useful in determining the length of the
397
* list <i>only</i> if the caller knows that the list does not contain
398
* any null elements.)
399
*
400
* @param a the array into which the elements of the list are to
401
* be stored, if it is big enough; otherwise, a new array of the
402
* same runtime type is allocated for this purpose.
403
* @return an array containing the elements of the list
404
* @throws ArrayStoreException if the runtime type of the specified array
405
* is not a supertype of the runtime type of every element in
406
* this list
407
* @throws NullPointerException if the specified array is null
408
*/
409
@SuppressWarnings("unchecked")
410
public <T> T[] toArray(T[] a) {
411
if (a.length < size)
412
// Make a new array of a's runtime type, but my contents:
413
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
414
System.arraycopy(elementData, 0, a, 0, size);
415
if (a.length > size)
416
a[size] = null;
417
return a;
418
}
419
420
// Positional Access Operations
421
422
@SuppressWarnings("unchecked")
423
E elementData(int index) {
424
return (E) elementData[index];
425
}
426
427
/**
428
* Returns the element at the specified position in this list.
429
*
430
* @param index index of the element to return
431
* @return the element at the specified position in this list
432
* @throws IndexOutOfBoundsException {@inheritDoc}
433
*/
434
public E get(int index) {
435
rangeCheck(index);
436
437
return elementData(index);
438
}
439
440
/**
441
* Replaces the element at the specified position in this list with
442
* the specified element.
443
*
444
* @param index index of the element to replace
445
* @param element element to be stored at the specified position
446
* @return the element previously at the specified position
447
* @throws IndexOutOfBoundsException {@inheritDoc}
448
*/
449
public E set(int index, E element) {
450
rangeCheck(index);
451
452
E oldValue = elementData(index);
453
elementData[index] = element;
454
return oldValue;
455
}
456
457
/**
458
* Appends the specified element to the end of this list.
459
*
460
* @param e element to be appended to this list
461
* @return <tt>true</tt> (as specified by {@link Collection#add})
462
*/
463
public boolean add(E e) {
464
ensureCapacityInternal(size + 1); // Increments modCount!!
465
elementData[size++] = e;
466
return true;
467
}
468
469
/**
470
* Inserts the specified element at the specified position in this
471
* list. Shifts the element currently at that position (if any) and
472
* any subsequent elements to the right (adds one to their indices).
473
*
474
* @param index index at which the specified element is to be inserted
475
* @param element element to be inserted
476
* @throws IndexOutOfBoundsException {@inheritDoc}
477
*/
478
public void add(int index, E element) {
479
rangeCheckForAdd(index);
480
481
ensureCapacityInternal(size + 1); // Increments modCount!!
482
System.arraycopy(elementData, index, elementData, index + 1,
483
size - index);
484
elementData[index] = element;
485
size++;
486
}
487
488
/**
489
* Removes the element at the specified position in this list.
490
* Shifts any subsequent elements to the left (subtracts one from their
491
* indices).
492
*
493
* @param index the index of the element to be removed
494
* @return the element that was removed from the list
495
* @throws IndexOutOfBoundsException {@inheritDoc}
496
*/
497
public E remove(int index) {
498
rangeCheck(index);
499
500
modCount++;
501
E oldValue = elementData(index);
502
503
int numMoved = size - index - 1;
504
if (numMoved > 0)
505
System.arraycopy(elementData, index+1, elementData, index,
506
numMoved);
507
elementData[--size] = null; // clear to let GC do its work
508
509
return oldValue;
510
}
511
512
/**
513
* Removes the first occurrence of the specified element from this list,
514
* if it is present. If the list does not contain the element, it is
515
* unchanged. More formally, removes the element with the lowest index
516
* <tt>i</tt> such that
517
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
518
* (if such an element exists). Returns <tt>true</tt> if this list
519
* contained the specified element (or equivalently, if this list
520
* changed as a result of the call).
521
*
522
* @param o element to be removed from this list, if present
523
* @return <tt>true</tt> if this list contained the specified element
524
*/
525
public boolean remove(Object o) {
526
if (o == null) {
527
for (int index = 0; index < size; index++)
528
if (elementData[index] == null) {
529
fastRemove(index);
530
return true;
531
}
532
} else {
533
for (int index = 0; index < size; index++)
534
if (o.equals(elementData[index])) {
535
fastRemove(index);
536
return true;
537
}
538
}
539
return false;
540
}
541
542
/*
543
* Private remove method that skips bounds checking and does not
544
* return the value removed.
545
*/
546
private void fastRemove(int index) {
547
modCount++;
548
int numMoved = size - index - 1;
549
if (numMoved > 0)
550
System.arraycopy(elementData, index+1, elementData, index,
551
numMoved);
552
elementData[--size] = null; // clear to let GC do its work
553
}
554
555
/**
556
* Removes all of the elements from this list. The list will
557
* be empty after this call returns.
558
*/
559
public void clear() {
560
modCount++;
561
562
// clear to let GC do its work
563
for (int i = 0; i < size; i++)
564
elementData[i] = null;
565
566
size = 0;
567
}
568
569
/**
570
* Appends all of the elements in the specified collection to the end of
571
* this list, in the order that they are returned by the
572
* specified collection's Iterator. The behavior of this operation is
573
* undefined if the specified collection is modified while the operation
574
* is in progress. (This implies that the behavior of this call is
575
* undefined if the specified collection is this list, and this
576
* list is nonempty.)
577
*
578
* @param c collection containing elements to be added to this list
579
* @return <tt>true</tt> if this list changed as a result of the call
580
* @throws NullPointerException if the specified collection is null
581
*/
582
public boolean addAll(Collection<? extends E> c) {
583
Object[] a = c.toArray();
584
int numNew = a.length;
585
ensureCapacityInternal(size + numNew); // Increments modCount
586
System.arraycopy(a, 0, elementData, size, numNew);
587
size += numNew;
588
return numNew != 0;
589
}
590
591
/**
592
* Inserts all of the elements in the specified collection into this
593
* list, starting at the specified position. Shifts the element
594
* currently at that position (if any) and any subsequent elements to
595
* the right (increases their indices). The new elements will appear
596
* in the list in the order that they are returned by the
597
* specified collection's iterator.
598
*
599
* @param index index at which to insert the first element from the
600
* specified collection
601
* @param c collection containing elements to be added to this list
602
* @return <tt>true</tt> if this list changed as a result of the call
603
* @throws IndexOutOfBoundsException {@inheritDoc}
604
* @throws NullPointerException if the specified collection is null
605
*/
606
public boolean addAll(int index, Collection<? extends E> c) {
607
rangeCheckForAdd(index);
608
609
Object[] a = c.toArray();
610
int numNew = a.length;
611
ensureCapacityInternal(size + numNew); // Increments modCount
612
613
int numMoved = size - index;
614
if (numMoved > 0)
615
System.arraycopy(elementData, index, elementData, index + numNew,
616
numMoved);
617
618
System.arraycopy(a, 0, elementData, index, numNew);
619
size += numNew;
620
return numNew != 0;
621
}
622
623
/**
624
* Removes from this list all of the elements whose index is between
625
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
626
* Shifts any succeeding elements to the left (reduces their index).
627
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
628
* (If {@code toIndex==fromIndex}, this operation has no effect.)
629
*
630
* @throws IndexOutOfBoundsException if {@code fromIndex} or
631
* {@code toIndex} is out of range
632
* ({@code fromIndex < 0 ||
633
* fromIndex >= size() ||
634
* toIndex > size() ||
635
* toIndex < fromIndex})
636
*/
637
protected void removeRange(int fromIndex, int toIndex) {
638
modCount++;
639
int numMoved = size - toIndex;
640
System.arraycopy(elementData, toIndex, elementData, fromIndex,
641
numMoved);
642
643
// clear to let GC do its work
644
int newSize = size - (toIndex-fromIndex);
645
for (int i = newSize; i < size; i++) {
646
elementData[i] = null;
647
}
648
size = newSize;
649
}
650
651
/**
652
* Checks if the given index is in range. If not, throws an appropriate
653
* runtime exception. This method does *not* check if the index is
654
* negative: It is always used immediately prior to an array access,
655
* which throws an ArrayIndexOutOfBoundsException if index is negative.
656
*/
657
private void rangeCheck(int index) {
658
if (index >= size)
659
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
660
}
661
662
/**
663
* A version of rangeCheck used by add and addAll.
664
*/
665
private void rangeCheckForAdd(int index) {
666
if (index > size || index < 0)
667
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
668
}
669
670
/**
671
* Constructs an IndexOutOfBoundsException detail message.
672
* Of the many possible refactorings of the error handling code,
673
* this "outlining" performs best with both server and client VMs.
674
*/
675
private String outOfBoundsMsg(int index) {
676
return "Index: "+index+", Size: "+size;
677
}
678
679
/**
680
* Removes from this list all of its elements that are contained in the
681
* specified collection.
682
*
683
* @param c collection containing elements to be removed from this list
684
* @return {@code true} if this list changed as a result of the call
685
* @throws ClassCastException if the class of an element of this list
686
* is incompatible with the specified collection
687
* (<a href="Collection.html#optional-restrictions">optional</a>)
688
* @throws NullPointerException if this list contains a null element and the
689
* specified collection does not permit null elements
690
* (<a href="Collection.html#optional-restrictions">optional</a>),
691
* or if the specified collection is null
692
* @see Collection#contains(Object)
693
*/
694
public boolean removeAll(Collection<?> c) {
695
Objects.requireNonNull(c);
696
return batchRemove(c, false);
697
}
698
699
/**
700
* Retains only the elements in this list that are contained in the
701
* specified collection. In other words, removes from this list all
702
* of its elements that are not contained in the specified collection.
703
*
704
* @param c collection containing elements to be retained in this list
705
* @return {@code true} if this list changed as a result of the call
706
* @throws ClassCastException if the class of an element of this list
707
* is incompatible with the specified collection
708
* (<a href="Collection.html#optional-restrictions">optional</a>)
709
* @throws NullPointerException if this list contains a null element and the
710
* specified collection does not permit null elements
711
* (<a href="Collection.html#optional-restrictions">optional</a>),
712
* or if the specified collection is null
713
* @see Collection#contains(Object)
714
*/
715
public boolean retainAll(Collection<?> c) {
716
Objects.requireNonNull(c);
717
return batchRemove(c, true);
718
}
719
720
private boolean batchRemove(Collection<?> c, boolean complement) {
721
final Object[] elementData = this.elementData;
722
int r = 0, w = 0;
723
boolean modified = false;
724
try {
725
for (; r < size; r++)
726
if (c.contains(elementData[r]) == complement)
727
elementData[w++] = elementData[r];
728
} finally {
729
// Preserve behavioral compatibility with AbstractCollection,
730
// even if c.contains() throws.
731
if (r != size) {
732
System.arraycopy(elementData, r,
733
elementData, w,
734
size - r);
735
w += size - r;
736
}
737
if (w != size) {
738
// clear to let GC do its work
739
for (int i = w; i < size; i++)
740
elementData[i] = null;
741
modCount += size - w;
742
size = w;
743
modified = true;
744
}
745
}
746
return modified;
747
}
748
749
/**
750
* Save the state of the <tt>ArrayList</tt> instance to a stream (that
751
* is, serialize it).
752
*
753
* @serialData The length of the array backing the <tt>ArrayList</tt>
754
* instance is emitted (int), followed by all of its elements
755
* (each an <tt>Object</tt>) in the proper order.
756
*/
757
private void writeObject(java.io.ObjectOutputStream s)
758
throws java.io.IOException{
759
// Write out element count, and any hidden stuff
760
int expectedModCount = modCount;
761
s.defaultWriteObject();
762
763
// Write out size as capacity for behavioural compatibility with clone()
764
s.writeInt(size);
765
766
// Write out all elements in the proper order.
767
for (int i=0; i<size; i++) {
768
s.writeObject(elementData[i]);
769
}
770
771
if (modCount != expectedModCount) {
772
throw new ConcurrentModificationException();
773
}
774
}
775
776
/**
777
* Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
778
* deserialize it).
779
*/
780
private void readObject(java.io.ObjectInputStream s)
781
throws java.io.IOException, ClassNotFoundException {
782
elementData = EMPTY_ELEMENTDATA;
783
784
// Read in size, and any hidden stuff
785
s.defaultReadObject();
786
787
// Read in capacity
788
s.readInt(); // ignored
789
790
if (size > 0) {
791
// be like clone(), allocate array based upon size not capacity
792
int capacity = calculateCapacity(elementData, size);
793
SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
794
ensureCapacityInternal(size);
795
796
Object[] a = elementData;
797
// Read in all elements in the proper order.
798
for (int i=0; i<size; i++) {
799
a[i] = s.readObject();
800
}
801
}
802
}
803
804
/**
805
* Returns a list iterator over the elements in this list (in proper
806
* sequence), starting at the specified position in the list.
807
* The specified index indicates the first element that would be
808
* returned by an initial call to {@link ListIterator#next next}.
809
* An initial call to {@link ListIterator#previous previous} would
810
* return the element with the specified index minus one.
811
*
812
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
813
*
814
* @throws IndexOutOfBoundsException {@inheritDoc}
815
*/
816
public ListIterator<E> listIterator(int index) {
817
if (index < 0 || index > size)
818
throw new IndexOutOfBoundsException("Index: "+index);
819
return new ListItr(index);
820
}
821
822
/**
823
* Returns a list iterator over the elements in this list (in proper
824
* sequence).
825
*
826
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
827
*
828
* @see #listIterator(int)
829
*/
830
public ListIterator<E> listIterator() {
831
return new ListItr(0);
832
}
833
834
/**
835
* Returns an iterator over the elements in this list in proper sequence.
836
*
837
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
838
*
839
* @return an iterator over the elements in this list in proper sequence
840
*/
841
public Iterator<E> iterator() {
842
return new Itr();
843
}
844
845
/**
846
* An optimized version of AbstractList.Itr
847
*/
848
private class Itr implements Iterator<E> {
849
int cursor; // index of next element to return
850
int lastRet = -1; // index of last element returned; -1 if no such
851
int expectedModCount = modCount;
852
853
Itr() {}
854
855
public boolean hasNext() {
856
return cursor != size;
857
}
858
859
@SuppressWarnings("unchecked")
860
public E next() {
861
checkForComodification();
862
int i = cursor;
863
if (i >= size)
864
throw new NoSuchElementException();
865
Object[] elementData = ArrayList.this.elementData;
866
if (i >= elementData.length)
867
throw new ConcurrentModificationException();
868
cursor = i + 1;
869
return (E) elementData[lastRet = i];
870
}
871
872
public void remove() {
873
if (lastRet < 0)
874
throw new IllegalStateException();
875
checkForComodification();
876
877
try {
878
ArrayList.this.remove(lastRet);
879
cursor = lastRet;
880
lastRet = -1;
881
expectedModCount = modCount;
882
} catch (IndexOutOfBoundsException ex) {
883
throw new ConcurrentModificationException();
884
}
885
}
886
887
@Override
888
@SuppressWarnings("unchecked")
889
public void forEachRemaining(Consumer<? super E> consumer) {
890
Objects.requireNonNull(consumer);
891
final int size = ArrayList.this.size;
892
int i = cursor;
893
if (i >= size) {
894
return;
895
}
896
final Object[] elementData = ArrayList.this.elementData;
897
if (i >= elementData.length) {
898
throw new ConcurrentModificationException();
899
}
900
while (i != size && modCount == expectedModCount) {
901
consumer.accept((E) elementData[i++]);
902
}
903
// update once at end of iteration to reduce heap write traffic
904
cursor = i;
905
lastRet = i - 1;
906
checkForComodification();
907
}
908
909
final void checkForComodification() {
910
if (modCount != expectedModCount)
911
throw new ConcurrentModificationException();
912
}
913
}
914
915
/**
916
* An optimized version of AbstractList.ListItr
917
*/
918
private class ListItr extends Itr implements ListIterator<E> {
919
ListItr(int index) {
920
super();
921
cursor = index;
922
}
923
924
public boolean hasPrevious() {
925
return cursor != 0;
926
}
927
928
public int nextIndex() {
929
return cursor;
930
}
931
932
public int previousIndex() {
933
return cursor - 1;
934
}
935
936
@SuppressWarnings("unchecked")
937
public E previous() {
938
checkForComodification();
939
int i = cursor - 1;
940
if (i < 0)
941
throw new NoSuchElementException();
942
Object[] elementData = ArrayList.this.elementData;
943
if (i >= elementData.length)
944
throw new ConcurrentModificationException();
945
cursor = i;
946
return (E) elementData[lastRet = i];
947
}
948
949
public void set(E e) {
950
if (lastRet < 0)
951
throw new IllegalStateException();
952
checkForComodification();
953
954
try {
955
ArrayList.this.set(lastRet, e);
956
} catch (IndexOutOfBoundsException ex) {
957
throw new ConcurrentModificationException();
958
}
959
}
960
961
public void add(E e) {
962
checkForComodification();
963
964
try {
965
int i = cursor;
966
ArrayList.this.add(i, e);
967
cursor = i + 1;
968
lastRet = -1;
969
expectedModCount = modCount;
970
} catch (IndexOutOfBoundsException ex) {
971
throw new ConcurrentModificationException();
972
}
973
}
974
}
975
976
/**
977
* Returns a view of the portion of this list between the specified
978
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
979
* {@code fromIndex} and {@code toIndex} are equal, the returned list is
980
* empty.) The returned list is backed by this list, so non-structural
981
* changes in the returned list are reflected in this list, and vice-versa.
982
* The returned list supports all of the optional list operations.
983
*
984
* <p>This method eliminates the need for explicit range operations (of
985
* the sort that commonly exist for arrays). Any operation that expects
986
* a list can be used as a range operation by passing a subList view
987
* instead of a whole list. For example, the following idiom
988
* removes a range of elements from a list:
989
* <pre>
990
* list.subList(from, to).clear();
991
* </pre>
992
* Similar idioms may be constructed for {@link #indexOf(Object)} and
993
* {@link #lastIndexOf(Object)}, and all of the algorithms in the
994
* {@link Collections} class can be applied to a subList.
995
*
996
* <p>The semantics of the list returned by this method become undefined if
997
* the backing list (i.e., this list) is <i>structurally modified</i> in
998
* any way other than via the returned list. (Structural modifications are
999
* those that change the size of this list, or otherwise perturb it in such
1000
* a fashion that iterations in progress may yield incorrect results.)
1001
*
1002
* @throws IndexOutOfBoundsException {@inheritDoc}
1003
* @throws IllegalArgumentException {@inheritDoc}
1004
*/
1005
public List<E> subList(int fromIndex, int toIndex) {
1006
subListRangeCheck(fromIndex, toIndex, size);
1007
return new SubList(this, 0, fromIndex, toIndex);
1008
}
1009
1010
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
1011
if (fromIndex < 0)
1012
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
1013
if (toIndex > size)
1014
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
1015
if (fromIndex > toIndex)
1016
throw new IllegalArgumentException("fromIndex(" + fromIndex +
1017
") > toIndex(" + toIndex + ")");
1018
}
1019
1020
private class SubList extends AbstractList<E> implements RandomAccess {
1021
private final AbstractList<E> parent;
1022
private final int parentOffset;
1023
private final int offset;
1024
int size;
1025
1026
SubList(AbstractList<E> parent,
1027
int offset, int fromIndex, int toIndex) {
1028
this.parent = parent;
1029
this.parentOffset = fromIndex;
1030
this.offset = offset + fromIndex;
1031
this.size = toIndex - fromIndex;
1032
this.modCount = ArrayList.this.modCount;
1033
}
1034
1035
public E set(int index, E e) {
1036
rangeCheck(index);
1037
checkForComodification();
1038
E oldValue = ArrayList.this.elementData(offset + index);
1039
ArrayList.this.elementData[offset + index] = e;
1040
return oldValue;
1041
}
1042
1043
public E get(int index) {
1044
rangeCheck(index);
1045
checkForComodification();
1046
return ArrayList.this.elementData(offset + index);
1047
}
1048
1049
public int size() {
1050
checkForComodification();
1051
return this.size;
1052
}
1053
1054
public void add(int index, E e) {
1055
rangeCheckForAdd(index);
1056
checkForComodification();
1057
parent.add(parentOffset + index, e);
1058
this.modCount = parent.modCount;
1059
this.size++;
1060
}
1061
1062
public E remove(int index) {
1063
rangeCheck(index);
1064
checkForComodification();
1065
E result = parent.remove(parentOffset + index);
1066
this.modCount = parent.modCount;
1067
this.size--;
1068
return result;
1069
}
1070
1071
protected void removeRange(int fromIndex, int toIndex) {
1072
checkForComodification();
1073
parent.removeRange(parentOffset + fromIndex,
1074
parentOffset + toIndex);
1075
this.modCount = parent.modCount;
1076
this.size -= toIndex - fromIndex;
1077
}
1078
1079
public boolean addAll(Collection<? extends E> c) {
1080
return addAll(this.size, c);
1081
}
1082
1083
public boolean addAll(int index, Collection<? extends E> c) {
1084
rangeCheckForAdd(index);
1085
int cSize = c.size();
1086
if (cSize==0)
1087
return false;
1088
1089
checkForComodification();
1090
parent.addAll(parentOffset + index, c);
1091
this.modCount = parent.modCount;
1092
this.size += cSize;
1093
return true;
1094
}
1095
1096
public Iterator<E> iterator() {
1097
return listIterator();
1098
}
1099
1100
public ListIterator<E> listIterator(final int index) {
1101
checkForComodification();
1102
rangeCheckForAdd(index);
1103
final int offset = this.offset;
1104
1105
return new ListIterator<E>() {
1106
int cursor = index;
1107
int lastRet = -1;
1108
int expectedModCount = ArrayList.this.modCount;
1109
1110
public boolean hasNext() {
1111
return cursor != SubList.this.size;
1112
}
1113
1114
@SuppressWarnings("unchecked")
1115
public E next() {
1116
checkForComodification();
1117
int i = cursor;
1118
if (i >= SubList.this.size)
1119
throw new NoSuchElementException();
1120
Object[] elementData = ArrayList.this.elementData;
1121
if (offset + i >= elementData.length)
1122
throw new ConcurrentModificationException();
1123
cursor = i + 1;
1124
return (E) elementData[offset + (lastRet = i)];
1125
}
1126
1127
public boolean hasPrevious() {
1128
return cursor != 0;
1129
}
1130
1131
@SuppressWarnings("unchecked")
1132
public E previous() {
1133
checkForComodification();
1134
int i = cursor - 1;
1135
if (i < 0)
1136
throw new NoSuchElementException();
1137
Object[] elementData = ArrayList.this.elementData;
1138
if (offset + i >= elementData.length)
1139
throw new ConcurrentModificationException();
1140
cursor = i;
1141
return (E) elementData[offset + (lastRet = i)];
1142
}
1143
1144
@SuppressWarnings("unchecked")
1145
public void forEachRemaining(Consumer<? super E> consumer) {
1146
Objects.requireNonNull(consumer);
1147
final int size = SubList.this.size;
1148
int i = cursor;
1149
if (i >= size) {
1150
return;
1151
}
1152
final Object[] elementData = ArrayList.this.elementData;
1153
if (offset + i >= elementData.length) {
1154
throw new ConcurrentModificationException();
1155
}
1156
while (i != size && modCount == expectedModCount) {
1157
consumer.accept((E) elementData[offset + (i++)]);
1158
}
1159
// update once at end of iteration to reduce heap write traffic
1160
lastRet = cursor = i;
1161
checkForComodification();
1162
}
1163
1164
public int nextIndex() {
1165
return cursor;
1166
}
1167
1168
public int previousIndex() {
1169
return cursor - 1;
1170
}
1171
1172
public void remove() {
1173
if (lastRet < 0)
1174
throw new IllegalStateException();
1175
checkForComodification();
1176
1177
try {
1178
SubList.this.remove(lastRet);
1179
cursor = lastRet;
1180
lastRet = -1;
1181
expectedModCount = ArrayList.this.modCount;
1182
} catch (IndexOutOfBoundsException ex) {
1183
throw new ConcurrentModificationException();
1184
}
1185
}
1186
1187
public void set(E e) {
1188
if (lastRet < 0)
1189
throw new IllegalStateException();
1190
checkForComodification();
1191
1192
try {
1193
ArrayList.this.set(offset + lastRet, e);
1194
} catch (IndexOutOfBoundsException ex) {
1195
throw new ConcurrentModificationException();
1196
}
1197
}
1198
1199
public void add(E e) {
1200
checkForComodification();
1201
1202
try {
1203
int i = cursor;
1204
SubList.this.add(i, e);
1205
cursor = i + 1;
1206
lastRet = -1;
1207
expectedModCount = ArrayList.this.modCount;
1208
} catch (IndexOutOfBoundsException ex) {
1209
throw new ConcurrentModificationException();
1210
}
1211
}
1212
1213
final void checkForComodification() {
1214
if (expectedModCount != ArrayList.this.modCount)
1215
throw new ConcurrentModificationException();
1216
}
1217
};
1218
}
1219
1220
public List<E> subList(int fromIndex, int toIndex) {
1221
subListRangeCheck(fromIndex, toIndex, size);
1222
return new SubList(this, offset, fromIndex, toIndex);
1223
}
1224
1225
private void rangeCheck(int index) {
1226
if (index < 0 || index >= this.size)
1227
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1228
}
1229
1230
private void rangeCheckForAdd(int index) {
1231
if (index < 0 || index > this.size)
1232
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1233
}
1234
1235
private String outOfBoundsMsg(int index) {
1236
return "Index: "+index+", Size: "+this.size;
1237
}
1238
1239
private void checkForComodification() {
1240
if (ArrayList.this.modCount != this.modCount)
1241
throw new ConcurrentModificationException();
1242
}
1243
1244
public Spliterator<E> spliterator() {
1245
checkForComodification();
1246
return new ArrayListSpliterator<E>(ArrayList.this, offset,
1247
offset + this.size, this.modCount);
1248
}
1249
}
1250
1251
@Override
1252
public void forEach(Consumer<? super E> action) {
1253
Objects.requireNonNull(action);
1254
final int expectedModCount = modCount;
1255
@SuppressWarnings("unchecked")
1256
final E[] elementData = (E[]) this.elementData;
1257
final int size = this.size;
1258
for (int i=0; modCount == expectedModCount && i < size; i++) {
1259
action.accept(elementData[i]);
1260
}
1261
if (modCount != expectedModCount) {
1262
throw new ConcurrentModificationException();
1263
}
1264
}
1265
1266
/**
1267
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1268
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
1269
* list.
1270
*
1271
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1272
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1273
* Overriding implementations should document the reporting of additional
1274
* characteristic values.
1275
*
1276
* @return a {@code Spliterator} over the elements in this list
1277
* @since 1.8
1278
*/
1279
@Override
1280
public Spliterator<E> spliterator() {
1281
return new ArrayListSpliterator<>(this, 0, -1, 0);
1282
}
1283
1284
/** Index-based split-by-two, lazily initialized Spliterator */
1285
static final class ArrayListSpliterator<E> implements Spliterator<E> {
1286
1287
/*
1288
* If ArrayLists were immutable, or structurally immutable (no
1289
* adds, removes, etc), we could implement their spliterators
1290
* with Arrays.spliterator. Instead we detect as much
1291
* interference during traversal as practical without
1292
* sacrificing much performance. We rely primarily on
1293
* modCounts. These are not guaranteed to detect concurrency
1294
* violations, and are sometimes overly conservative about
1295
* within-thread interference, but detect enough problems to
1296
* be worthwhile in practice. To carry this out, we (1) lazily
1297
* initialize fence and expectedModCount until the latest
1298
* point that we need to commit to the state we are checking
1299
* against; thus improving precision. (This doesn't apply to
1300
* SubLists, that create spliterators with current non-lazy
1301
* values). (2) We perform only a single
1302
* ConcurrentModificationException check at the end of forEach
1303
* (the most performance-sensitive method). When using forEach
1304
* (as opposed to iterators), we can normally only detect
1305
* interference after actions, not before. Further
1306
* CME-triggering checks apply to all other possible
1307
* violations of assumptions for example null or too-small
1308
* elementData array given its size(), that could only have
1309
* occurred due to interference. This allows the inner loop
1310
* of forEach to run without any further checks, and
1311
* simplifies lambda-resolution. While this does entail a
1312
* number of checks, note that in the common case of
1313
* list.stream().forEach(a), no checks or other computation
1314
* occur anywhere other than inside forEach itself. The other
1315
* less-often-used methods cannot take advantage of most of
1316
* these streamlinings.
1317
*/
1318
1319
private final ArrayList<E> list;
1320
private int index; // current index, modified on advance/split
1321
private int fence; // -1 until used; then one past last index
1322
private int expectedModCount; // initialized when fence set
1323
1324
/** Create new spliterator covering the given range */
1325
ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1326
int expectedModCount) {
1327
this.list = list; // OK if null unless traversed
1328
this.index = origin;
1329
this.fence = fence;
1330
this.expectedModCount = expectedModCount;
1331
}
1332
1333
private int getFence() { // initialize fence to size on first use
1334
int hi; // (a specialized variant appears in method forEach)
1335
ArrayList<E> lst;
1336
if ((hi = fence) < 0) {
1337
if ((lst = list) == null)
1338
hi = fence = 0;
1339
else {
1340
expectedModCount = lst.modCount;
1341
hi = fence = lst.size;
1342
}
1343
}
1344
return hi;
1345
}
1346
1347
public ArrayListSpliterator<E> trySplit() {
1348
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1349
return (lo >= mid) ? null : // divide range in half unless too small
1350
new ArrayListSpliterator<E>(list, lo, index = mid,
1351
expectedModCount);
1352
}
1353
1354
public boolean tryAdvance(Consumer<? super E> action) {
1355
if (action == null)
1356
throw new NullPointerException();
1357
int hi = getFence(), i = index;
1358
if (i < hi) {
1359
index = i + 1;
1360
@SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1361
action.accept(e);
1362
if (list.modCount != expectedModCount)
1363
throw new ConcurrentModificationException();
1364
return true;
1365
}
1366
return false;
1367
}
1368
1369
public void forEachRemaining(Consumer<? super E> action) {
1370
int i, hi, mc; // hoist accesses and checks from loop
1371
ArrayList<E> lst; Object[] a;
1372
if (action == null)
1373
throw new NullPointerException();
1374
if ((lst = list) != null && (a = lst.elementData) != null) {
1375
if ((hi = fence) < 0) {
1376
mc = lst.modCount;
1377
hi = lst.size;
1378
}
1379
else
1380
mc = expectedModCount;
1381
if ((i = index) >= 0 && (index = hi) <= a.length) {
1382
for (; i < hi; ++i) {
1383
@SuppressWarnings("unchecked") E e = (E) a[i];
1384
action.accept(e);
1385
}
1386
if (lst.modCount == mc)
1387
return;
1388
}
1389
}
1390
throw new ConcurrentModificationException();
1391
}
1392
1393
public long estimateSize() {
1394
return (long) (getFence() - index);
1395
}
1396
1397
public int characteristics() {
1398
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1399
}
1400
}
1401
1402
@Override
1403
public boolean removeIf(Predicate<? super E> filter) {
1404
Objects.requireNonNull(filter);
1405
// figure out which elements are to be removed
1406
// any exception thrown from the filter predicate at this stage
1407
// will leave the collection unmodified
1408
int removeCount = 0;
1409
final BitSet removeSet = new BitSet(size);
1410
final int expectedModCount = modCount;
1411
final int size = this.size;
1412
for (int i=0; modCount == expectedModCount && i < size; i++) {
1413
@SuppressWarnings("unchecked")
1414
final E element = (E) elementData[i];
1415
if (filter.test(element)) {
1416
removeSet.set(i);
1417
removeCount++;
1418
}
1419
}
1420
if (modCount != expectedModCount) {
1421
throw new ConcurrentModificationException();
1422
}
1423
1424
// shift surviving elements left over the spaces left by removed elements
1425
final boolean anyToRemove = removeCount > 0;
1426
if (anyToRemove) {
1427
final int newSize = size - removeCount;
1428
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
1429
i = removeSet.nextClearBit(i);
1430
elementData[j] = elementData[i];
1431
}
1432
for (int k=newSize; k < size; k++) {
1433
elementData[k] = null; // Let gc do its work
1434
}
1435
this.size = newSize;
1436
if (modCount != expectedModCount) {
1437
throw new ConcurrentModificationException();
1438
}
1439
modCount++;
1440
}
1441
1442
return anyToRemove;
1443
}
1444
1445
@Override
1446
@SuppressWarnings("unchecked")
1447
public void replaceAll(UnaryOperator<E> operator) {
1448
Objects.requireNonNull(operator);
1449
final int expectedModCount = modCount;
1450
final int size = this.size;
1451
for (int i=0; modCount == expectedModCount && i < size; i++) {
1452
elementData[i] = operator.apply((E) elementData[i]);
1453
}
1454
if (modCount != expectedModCount) {
1455
throw new ConcurrentModificationException();
1456
}
1457
modCount++;
1458
}
1459
1460
@Override
1461
@SuppressWarnings("unchecked")
1462
public void sort(Comparator<? super E> c) {
1463
final int expectedModCount = modCount;
1464
Arrays.sort((E[]) elementData, 0, size, c);
1465
if (modCount != expectedModCount) {
1466
throw new ConcurrentModificationException();
1467
}
1468
modCount++;
1469
}
1470
}
1471
1472