Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/java/util/Formatter.java
38829 views
1
/*
2
* Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.util;
27
28
import java.io.BufferedWriter;
29
import java.io.Closeable;
30
import java.io.IOException;
31
import java.io.File;
32
import java.io.FileOutputStream;
33
import java.io.FileNotFoundException;
34
import java.io.Flushable;
35
import java.io.OutputStream;
36
import java.io.OutputStreamWriter;
37
import java.io.PrintStream;
38
import java.io.UnsupportedEncodingException;
39
import java.math.BigDecimal;
40
import java.math.BigInteger;
41
import java.math.MathContext;
42
import java.math.RoundingMode;
43
import java.nio.charset.Charset;
44
import java.nio.charset.IllegalCharsetNameException;
45
import java.nio.charset.UnsupportedCharsetException;
46
import java.text.DateFormatSymbols;
47
import java.text.DecimalFormat;
48
import java.text.DecimalFormatSymbols;
49
import java.text.NumberFormat;
50
import java.util.regex.Matcher;
51
import java.util.regex.Pattern;
52
53
import java.time.DateTimeException;
54
import java.time.Instant;
55
import java.time.ZoneId;
56
import java.time.ZoneOffset;
57
import java.time.temporal.ChronoField;
58
import java.time.temporal.TemporalAccessor;
59
import java.time.temporal.TemporalQueries;
60
61
import sun.misc.DoubleConsts;
62
import sun.misc.FormattedFloatingDecimal;
63
64
/**
65
* An interpreter for printf-style format strings. This class provides support
66
* for layout justification and alignment, common formats for numeric, string,
67
* and date/time data, and locale-specific output. Common Java types such as
68
* {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
69
* are supported. Limited formatting customization for arbitrary user types is
70
* provided through the {@link Formattable} interface.
71
*
72
* <p> Formatters are not necessarily safe for multithreaded access. Thread
73
* safety is optional and is the responsibility of users of methods in this
74
* class.
75
*
76
* <p> Formatted printing for the Java language is heavily inspired by C's
77
* {@code printf}. Although the format strings are similar to C, some
78
* customizations have been made to accommodate the Java language and exploit
79
* some of its features. Also, Java formatting is more strict than C's; for
80
* example, if a conversion is incompatible with a flag, an exception will be
81
* thrown. In C inapplicable flags are silently ignored. The format strings
82
* are thus intended to be recognizable to C programmers but not necessarily
83
* completely compatible with those in C.
84
*
85
* <p> Examples of expected usage:
86
*
87
* <blockquote><pre>
88
* StringBuilder sb = new StringBuilder();
89
* // Send all output to the Appendable object sb
90
* Formatter formatter = new Formatter(sb, Locale.US);
91
*
92
* // Explicit argument indices may be used to re-order output.
93
* formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
94
* // -&gt; " d c b a"
95
*
96
* // Optional locale as the first argument can be used to get
97
* // locale-specific formatting of numbers. The precision and width can be
98
* // given to round and align the value.
99
* formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
100
* // -&gt; "e = +2,7183"
101
*
102
* // The '(' numeric flag may be used to format negative numbers with
103
* // parentheses rather than a minus sign. Group separators are
104
* // automatically inserted.
105
* formatter.format("Amount gained or lost since last statement: $ %(,.2f",
106
* balanceDelta);
107
* // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
108
* </pre></blockquote>
109
*
110
* <p> Convenience methods for common formatting requests exist as illustrated
111
* by the following invocations:
112
*
113
* <blockquote><pre>
114
* // Writes a formatted string to System.out.
115
* System.out.format("Local time: %tT", Calendar.getInstance());
116
* // -&gt; "Local time: 13:34:18"
117
*
118
* // Writes formatted output to System.err.
119
* System.err.printf("Unable to open file '%1$s': %2$s",
120
* fileName, exception.getMessage());
121
* // -&gt; "Unable to open file 'food': No such file or directory"
122
* </pre></blockquote>
123
*
124
* <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
125
* method {@link String#format(String,Object...) String.format}:
126
*
127
* <blockquote><pre>
128
* // Format a string containing a date.
129
* import java.util.Calendar;
130
* import java.util.GregorianCalendar;
131
* import static java.util.Calendar.*;
132
*
133
* Calendar c = new GregorianCalendar(1995, MAY, 23);
134
* String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
135
* // -&gt; s == "Duke's Birthday: May 23, 1995"
136
* </pre></blockquote>
137
*
138
* <h3><a name="org">Organization</a></h3>
139
*
140
* <p> This specification is divided into two sections. The first section, <a
141
* href="#summary">Summary</a>, covers the basic formatting concepts. This
142
* section is intended for users who want to get started quickly and are
143
* familiar with formatted printing in other programming languages. The second
144
* section, <a href="#detail">Details</a>, covers the specific implementation
145
* details. It is intended for users who want more precise specification of
146
* formatting behavior.
147
*
148
* <h3><a name="summary">Summary</a></h3>
149
*
150
* <p> This section is intended to provide a brief overview of formatting
151
* concepts. For precise behavioral details, refer to the <a
152
* href="#detail">Details</a> section.
153
*
154
* <h4><a name="syntax">Format String Syntax</a></h4>
155
*
156
* <p> Every method which produces formatted output requires a <i>format
157
* string</i> and an <i>argument list</i>. The format string is a {@link
158
* String} which may contain fixed text and one or more embedded <i>format
159
* specifiers</i>. Consider the following example:
160
*
161
* <blockquote><pre>
162
* Calendar c = ...;
163
* String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
164
* </pre></blockquote>
165
*
166
* This format string is the first argument to the {@code format} method. It
167
* contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
168
* "{@code %1$tY}" which indicate how the arguments should be processed and
169
* where they should be inserted in the text. The remaining portions of the
170
* format string are fixed text including {@code "Dukes Birthday: "} and any
171
* other spaces or punctuation.
172
*
173
* The argument list consists of all arguments passed to the method after the
174
* format string. In the above example, the argument list is of size one and
175
* consists of the {@link java.util.Calendar Calendar} object {@code c}.
176
*
177
* <ul>
178
*
179
* <li> The format specifiers for general, character, and numeric types have
180
* the following syntax:
181
*
182
* <blockquote><pre>
183
* %[argument_index$][flags][width][.precision]conversion
184
* </pre></blockquote>
185
*
186
* <p> The optional <i>argument_index</i> is a decimal integer indicating the
187
* position of the argument in the argument list. The first argument is
188
* referenced by "{@code 1$}", the second by "{@code 2$}", etc.
189
*
190
* <p> The optional <i>flags</i> is a set of characters that modify the output
191
* format. The set of valid flags depends on the conversion.
192
*
193
* <p> The optional <i>width</i> is a positive decimal integer indicating
194
* the minimum number of characters to be written to the output.
195
*
196
* <p> The optional <i>precision</i> is a non-negative decimal integer usually
197
* used to restrict the number of characters. The specific behavior depends on
198
* the conversion.
199
*
200
* <p> The required <i>conversion</i> is a character indicating how the
201
* argument should be formatted. The set of valid conversions for a given
202
* argument depends on the argument's data type.
203
*
204
* <li> The format specifiers for types which are used to represents dates and
205
* times have the following syntax:
206
*
207
* <blockquote><pre>
208
* %[argument_index$][flags][width]conversion
209
* </pre></blockquote>
210
*
211
* <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
212
* defined as above.
213
*
214
* <p> The required <i>conversion</i> is a two character sequence. The first
215
* character is {@code 't'} or {@code 'T'}. The second character indicates
216
* the format to be used. These characters are similar to but not completely
217
* identical to those defined by GNU {@code date} and POSIX
218
* {@code strftime(3c)}.
219
*
220
* <li> The format specifiers which do not correspond to arguments have the
221
* following syntax:
222
*
223
* <blockquote><pre>
224
* %[flags][width]conversion
225
* </pre></blockquote>
226
*
227
* <p> The optional <i>flags</i> and <i>width</i> is defined as above.
228
*
229
* <p> The required <i>conversion</i> is a character indicating content to be
230
* inserted in the output.
231
*
232
* </ul>
233
*
234
* <h4> Conversions </h4>
235
*
236
* <p> Conversions are divided into the following categories:
237
*
238
* <ol>
239
*
240
* <li> <b>General</b> - may be applied to any argument
241
* type
242
*
243
* <li> <b>Character</b> - may be applied to basic types which represent
244
* Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
245
* Byte}, {@code short}, and {@link Short}. This conversion may also be
246
* applied to the types {@code int} and {@link Integer} when {@link
247
* Character#isValidCodePoint} returns {@code true}
248
*
249
* <li> <b>Numeric</b>
250
*
251
* <ol>
252
*
253
* <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
254
* {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
255
* Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
256
* BigInteger} (but not {@code char} or {@link Character})
257
*
258
* <li><b>Floating Point</b> - may be applied to Java floating-point types:
259
* {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
260
* java.math.BigDecimal BigDecimal}
261
*
262
* </ol>
263
*
264
* <li> <b>Date/Time</b> - may be applied to Java types which are capable of
265
* encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
266
* {@link Date} and {@link TemporalAccessor TemporalAccessor}
267
*
268
* <li> <b>Percent</b> - produces a literal {@code '%'}
269
* (<tt>'&#92;u0025'</tt>)
270
*
271
* <li> <b>Line Separator</b> - produces the platform-specific line separator
272
*
273
* </ol>
274
*
275
* <p> The following table summarizes the supported conversions. Conversions
276
* denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
277
* {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
278
* {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
279
* lower-case conversion characters except that the result is converted to
280
* upper case according to the rules of the prevailing {@link java.util.Locale
281
* Locale}. The result is equivalent to the following invocation of {@link
282
* String#toUpperCase()}
283
*
284
* <pre>
285
* out.toUpperCase() </pre>
286
*
287
* <table cellpadding=5 summary="genConv">
288
*
289
* <tr><th valign="bottom"> Conversion
290
* <th valign="bottom"> Argument Category
291
* <th valign="bottom"> Description
292
*
293
* <tr><td valign="top"> {@code 'b'}, {@code 'B'}
294
* <td valign="top"> general
295
* <td> If the argument <i>arg</i> is {@code null}, then the result is
296
* "{@code false}". If <i>arg</i> is a {@code boolean} or {@link
297
* Boolean}, then the result is the string returned by {@link
298
* String#valueOf(boolean) String.valueOf(arg)}. Otherwise, the result is
299
* "true".
300
*
301
* <tr><td valign="top"> {@code 'h'}, {@code 'H'}
302
* <td valign="top"> general
303
* <td> If the argument <i>arg</i> is {@code null}, then the result is
304
* "{@code null}". Otherwise, the result is obtained by invoking
305
* {@code Integer.toHexString(arg.hashCode())}.
306
*
307
* <tr><td valign="top"> {@code 's'}, {@code 'S'}
308
* <td valign="top"> general
309
* <td> If the argument <i>arg</i> is {@code null}, then the result is
310
* "{@code null}". If <i>arg</i> implements {@link Formattable}, then
311
* {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
312
* result is obtained by invoking {@code arg.toString()}.
313
*
314
* <tr><td valign="top">{@code 'c'}, {@code 'C'}
315
* <td valign="top"> character
316
* <td> The result is a Unicode character
317
*
318
* <tr><td valign="top">{@code 'd'}
319
* <td valign="top"> integral
320
* <td> The result is formatted as a decimal integer
321
*
322
* <tr><td valign="top">{@code 'o'}
323
* <td valign="top"> integral
324
* <td> The result is formatted as an octal integer
325
*
326
* <tr><td valign="top">{@code 'x'}, {@code 'X'}
327
* <td valign="top"> integral
328
* <td> The result is formatted as a hexadecimal integer
329
*
330
* <tr><td valign="top">{@code 'e'}, {@code 'E'}
331
* <td valign="top"> floating point
332
* <td> The result is formatted as a decimal number in computerized
333
* scientific notation
334
*
335
* <tr><td valign="top">{@code 'f'}
336
* <td valign="top"> floating point
337
* <td> The result is formatted as a decimal number
338
*
339
* <tr><td valign="top">{@code 'g'}, {@code 'G'}
340
* <td valign="top"> floating point
341
* <td> The result is formatted using computerized scientific notation or
342
* decimal format, depending on the precision and the value after rounding.
343
*
344
* <tr><td valign="top">{@code 'a'}, {@code 'A'}
345
* <td valign="top"> floating point
346
* <td> The result is formatted as a hexadecimal floating-point number with
347
* a significand and an exponent. This conversion is <b>not</b> supported
348
* for the {@code BigDecimal} type despite the latter's being in the
349
* <i>floating point</i> argument category.
350
*
351
* <tr><td valign="top">{@code 't'}, {@code 'T'}
352
* <td valign="top"> date/time
353
* <td> Prefix for date and time conversion characters. See <a
354
* href="#dt">Date/Time Conversions</a>.
355
*
356
* <tr><td valign="top">{@code '%'}
357
* <td valign="top"> percent
358
* <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
359
*
360
* <tr><td valign="top">{@code 'n'}
361
* <td valign="top"> line separator
362
* <td> The result is the platform-specific line separator
363
*
364
* </table>
365
*
366
* <p> Any characters not explicitly defined as conversions are illegal and are
367
* reserved for future extensions.
368
*
369
* <h4><a name="dt">Date/Time Conversions</a></h4>
370
*
371
* <p> The following date and time conversion suffix characters are defined for
372
* the {@code 't'} and {@code 'T'} conversions. The types are similar to but
373
* not completely identical to those defined by GNU {@code date} and POSIX
374
* {@code strftime(3c)}. Additional conversion types are provided to access
375
* Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
376
* second).
377
*
378
* <p> The following conversion characters are used for formatting times:
379
*
380
* <table cellpadding=5 summary="time">
381
*
382
* <tr><td valign="top"> {@code 'H'}
383
* <td> Hour of the day for the 24-hour clock, formatted as two digits with
384
* a leading zero as necessary i.e. {@code 00 - 23}.
385
*
386
* <tr><td valign="top">{@code 'I'}
387
* <td> Hour for the 12-hour clock, formatted as two digits with a leading
388
* zero as necessary, i.e. {@code 01 - 12}.
389
*
390
* <tr><td valign="top">{@code 'k'}
391
* <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
392
*
393
* <tr><td valign="top">{@code 'l'}
394
* <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
395
*
396
* <tr><td valign="top">{@code 'M'}
397
* <td> Minute within the hour formatted as two digits with a leading zero
398
* as necessary, i.e. {@code 00 - 59}.
399
*
400
* <tr><td valign="top">{@code 'S'}
401
* <td> Seconds within the minute, formatted as two digits with a leading
402
* zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
403
* value required to support leap seconds).
404
*
405
* <tr><td valign="top">{@code 'L'}
406
* <td> Millisecond within the second formatted as three digits with
407
* leading zeros as necessary, i.e. {@code 000 - 999}.
408
*
409
* <tr><td valign="top">{@code 'N'}
410
* <td> Nanosecond within the second, formatted as nine digits with leading
411
* zeros as necessary, i.e. {@code 000000000 - 999999999}.
412
*
413
* <tr><td valign="top">{@code 'p'}
414
* <td> Locale-specific {@linkplain
415
* java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
416
* in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
417
* prefix {@code 'T'} forces this output to upper case.
418
*
419
* <tr><td valign="top">{@code 'z'}
420
* <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
421
* style numeric time zone offset from GMT, e.g. {@code -0800}. This
422
* value will be adjusted as necessary for Daylight Saving Time. For
423
* {@code long}, {@link Long}, and {@link Date} the time zone used is
424
* the {@linkplain TimeZone#getDefault() default time zone} for this
425
* instance of the Java virtual machine.
426
*
427
* <tr><td valign="top">{@code 'Z'}
428
* <td> A string representing the abbreviation for the time zone. This
429
* value will be adjusted as necessary for Daylight Saving Time. For
430
* {@code long}, {@link Long}, and {@link Date} the time zone used is
431
* the {@linkplain TimeZone#getDefault() default time zone} for this
432
* instance of the Java virtual machine. The Formatter's locale will
433
* supersede the locale of the argument (if any).
434
*
435
* <tr><td valign="top">{@code 's'}
436
* <td> Seconds since the beginning of the epoch starting at 1 January 1970
437
* {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
438
* {@code Long.MAX_VALUE/1000}.
439
*
440
* <tr><td valign="top">{@code 'Q'}
441
* <td> Milliseconds since the beginning of the epoch starting at 1 January
442
* 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
443
* {@code Long.MAX_VALUE}.
444
*
445
* </table>
446
*
447
* <p> The following conversion characters are used for formatting dates:
448
*
449
* <table cellpadding=5 summary="date">
450
*
451
* <tr><td valign="top">{@code 'B'}
452
* <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
453
* full month name}, e.g. {@code "January"}, {@code "February"}.
454
*
455
* <tr><td valign="top">{@code 'b'}
456
* <td> Locale-specific {@linkplain
457
* java.text.DateFormatSymbols#getShortMonths abbreviated month name},
458
* e.g. {@code "Jan"}, {@code "Feb"}.
459
*
460
* <tr><td valign="top">{@code 'h'}
461
* <td> Same as {@code 'b'}.
462
*
463
* <tr><td valign="top">{@code 'A'}
464
* <td> Locale-specific full name of the {@linkplain
465
* java.text.DateFormatSymbols#getWeekdays day of the week},
466
* e.g. {@code "Sunday"}, {@code "Monday"}
467
*
468
* <tr><td valign="top">{@code 'a'}
469
* <td> Locale-specific short name of the {@linkplain
470
* java.text.DateFormatSymbols#getShortWeekdays day of the week},
471
* e.g. {@code "Sun"}, {@code "Mon"}
472
*
473
* <tr><td valign="top">{@code 'C'}
474
* <td> Four-digit year divided by {@code 100}, formatted as two digits
475
* with leading zero as necessary, i.e. {@code 00 - 99}
476
*
477
* <tr><td valign="top">{@code 'Y'}
478
* <td> Year, formatted as at least four digits with leading zeros as
479
* necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
480
* calendar.
481
*
482
* <tr><td valign="top">{@code 'y'}
483
* <td> Last two digits of the year, formatted with leading zeros as
484
* necessary, i.e. {@code 00 - 99}.
485
*
486
* <tr><td valign="top">{@code 'j'}
487
* <td> Day of year, formatted as three digits with leading zeros as
488
* necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
489
*
490
* <tr><td valign="top">{@code 'm'}
491
* <td> Month, formatted as two digits with leading zeros as necessary,
492
* i.e. {@code 01 - 13}.
493
*
494
* <tr><td valign="top">{@code 'd'}
495
* <td> Day of month, formatted as two digits with leading zeros as
496
* necessary, i.e. {@code 01 - 31}
497
*
498
* <tr><td valign="top">{@code 'e'}
499
* <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
500
*
501
* </table>
502
*
503
* <p> The following conversion characters are used for formatting common
504
* date/time compositions.
505
*
506
* <table cellpadding=5 summary="composites">
507
*
508
* <tr><td valign="top">{@code 'R'}
509
* <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
510
*
511
* <tr><td valign="top">{@code 'T'}
512
* <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
513
*
514
* <tr><td valign="top">{@code 'r'}
515
* <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
516
* The location of the morning or afternoon marker ({@code '%Tp'}) may be
517
* locale-dependent.
518
*
519
* <tr><td valign="top">{@code 'D'}
520
* <td> Date formatted as {@code "%tm/%td/%ty"}.
521
*
522
* <tr><td valign="top">{@code 'F'}
523
* <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
524
* complete date formatted as {@code "%tY-%tm-%td"}.
525
*
526
* <tr><td valign="top">{@code 'c'}
527
* <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
528
* e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
529
*
530
* </table>
531
*
532
* <p> Any characters not explicitly defined as date/time conversion suffixes
533
* are illegal and are reserved for future extensions.
534
*
535
* <h4> Flags </h4>
536
*
537
* <p> The following table summarizes the supported flags. <i>y</i> means the
538
* flag is supported for the indicated argument types.
539
*
540
* <table cellpadding=5 summary="genConv">
541
*
542
* <tr><th valign="bottom"> Flag <th valign="bottom"> General
543
* <th valign="bottom"> Character <th valign="bottom"> Integral
544
* <th valign="bottom"> Floating Point
545
* <th valign="bottom"> Date/Time
546
* <th valign="bottom"> Description
547
*
548
* <tr><td> '-' <td align="center" valign="top"> y
549
* <td align="center" valign="top"> y
550
* <td align="center" valign="top"> y
551
* <td align="center" valign="top"> y
552
* <td align="center" valign="top"> y
553
* <td> The result will be left-justified.
554
*
555
* <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
556
* <td align="center" valign="top"> -
557
* <td align="center" valign="top"> y<sup>3</sup>
558
* <td align="center" valign="top"> y
559
* <td align="center" valign="top"> -
560
* <td> The result should use a conversion-dependent alternate form
561
*
562
* <tr><td> '+' <td align="center" valign="top"> -
563
* <td align="center" valign="top"> -
564
* <td align="center" valign="top"> y<sup>4</sup>
565
* <td align="center" valign="top"> y
566
* <td align="center" valign="top"> -
567
* <td> The result will always include a sign
568
*
569
* <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> -
570
* <td align="center" valign="top"> -
571
* <td align="center" valign="top"> y<sup>4</sup>
572
* <td align="center" valign="top"> y
573
* <td align="center" valign="top"> -
574
* <td> The result will include a leading space for positive values
575
*
576
* <tr><td> '0' <td align="center" valign="top"> -
577
* <td align="center" valign="top"> -
578
* <td align="center" valign="top"> y
579
* <td align="center" valign="top"> y
580
* <td align="center" valign="top"> -
581
* <td> The result will be zero-padded
582
*
583
* <tr><td> ',' <td align="center" valign="top"> -
584
* <td align="center" valign="top"> -
585
* <td align="center" valign="top"> y<sup>2</sup>
586
* <td align="center" valign="top"> y<sup>5</sup>
587
* <td align="center" valign="top"> -
588
* <td> The result will include locale-specific {@linkplain
589
* java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
590
*
591
* <tr><td> '(' <td align="center" valign="top"> -
592
* <td align="center" valign="top"> -
593
* <td align="center" valign="top"> y<sup>4</sup>
594
* <td align="center" valign="top"> y<sup>5</sup>
595
* <td align="center"> -
596
* <td> The result will enclose negative numbers in parentheses
597
*
598
* </table>
599
*
600
* <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
601
*
602
* <p> <sup>2</sup> For {@code 'd'} conversion only.
603
*
604
* <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
605
* conversions only.
606
*
607
* <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
608
* {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
609
* or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
610
* Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
611
*
612
* <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
613
* {@code 'g'}, and {@code 'G'} conversions only.
614
*
615
* <p> Any characters not explicitly defined as flags are illegal and are
616
* reserved for future extensions.
617
*
618
* <h4> Width </h4>
619
*
620
* <p> The width is the minimum number of characters to be written to the
621
* output. For the line separator conversion, width is not applicable; if it
622
* is provided, an exception will be thrown.
623
*
624
* <h4> Precision </h4>
625
*
626
* <p> For general argument types, the precision is the maximum number of
627
* characters to be written to the output.
628
*
629
* <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
630
* {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
631
* radix point. If the conversion is {@code 'g'} or {@code 'G'}, then the
632
* precision is the total number of digits in the resulting magnitude after
633
* rounding.
634
*
635
* <p> For character, integral, and date/time argument types and the percent
636
* and line separator conversions, the precision is not applicable; if a
637
* precision is provided, an exception will be thrown.
638
*
639
* <h4> Argument Index </h4>
640
*
641
* <p> The argument index is a decimal integer indicating the position of the
642
* argument in the argument list. The first argument is referenced by
643
* "{@code 1$}", the second by "{@code 2$}", etc.
644
*
645
* <p> Another way to reference arguments by position is to use the
646
* {@code '<'} (<tt>'&#92;u003c'</tt>) flag, which causes the argument for
647
* the previous format specifier to be re-used. For example, the following two
648
* statements would produce identical strings:
649
*
650
* <blockquote><pre>
651
* Calendar c = ...;
652
* String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
653
*
654
* String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
655
* </pre></blockquote>
656
*
657
* <hr>
658
* <h3><a name="detail">Details</a></h3>
659
*
660
* <p> This section is intended to provide behavioral details for formatting,
661
* including conditions and exceptions, supported data types, localization, and
662
* interactions between flags, conversions, and data types. For an overview of
663
* formatting concepts, refer to the <a href="#summary">Summary</a>
664
*
665
* <p> Any characters not explicitly defined as conversions, date/time
666
* conversion suffixes, or flags are illegal and are reserved for
667
* future extensions. Use of such a character in a format string will
668
* cause an {@link UnknownFormatConversionException} or {@link
669
* UnknownFormatFlagsException} to be thrown.
670
*
671
* <p> If the format specifier contains a width or precision with an invalid
672
* value or which is otherwise unsupported, then a {@link
673
* IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
674
* respectively will be thrown.
675
*
676
* <p> If a format specifier contains a conversion character that is not
677
* applicable to the corresponding argument, then an {@link
678
* IllegalFormatConversionException} will be thrown.
679
*
680
* <p> All specified exceptions may be thrown by any of the {@code format}
681
* methods of {@code Formatter} as well as by any {@code format} convenience
682
* methods such as {@link String#format(String,Object...) String.format} and
683
* {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
684
*
685
* <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
686
* {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
687
* {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
688
* corresponding lower-case conversion characters except that the result is
689
* converted to upper case according to the rules of the prevailing {@link
690
* java.util.Locale Locale}. The result is equivalent to the following
691
* invocation of {@link String#toUpperCase()}
692
*
693
* <pre>
694
* out.toUpperCase() </pre>
695
*
696
* <h4><a name="dgen">General</a></h4>
697
*
698
* <p> The following general conversions may be applied to any argument type:
699
*
700
* <table cellpadding=5 summary="dgConv">
701
*
702
* <tr><td valign="top"> {@code 'b'}
703
* <td valign="top"> <tt>'&#92;u0062'</tt>
704
* <td> Produces either "{@code true}" or "{@code false}" as returned by
705
* {@link Boolean#toString(boolean)}.
706
*
707
* <p> If the argument is {@code null}, then the result is
708
* "{@code false}". If the argument is a {@code boolean} or {@link
709
* Boolean}, then the result is the string returned by {@link
710
* String#valueOf(boolean) String.valueOf()}. Otherwise, the result is
711
* "{@code true}".
712
*
713
* <p> If the {@code '#'} flag is given, then a {@link
714
* FormatFlagsConversionMismatchException} will be thrown.
715
*
716
* <tr><td valign="top"> {@code 'B'}
717
* <td valign="top"> <tt>'&#92;u0042'</tt>
718
* <td> The upper-case variant of {@code 'b'}.
719
*
720
* <tr><td valign="top"> {@code 'h'}
721
* <td valign="top"> <tt>'&#92;u0068'</tt>
722
* <td> Produces a string representing the hash code value of the object.
723
*
724
* <p> If the argument, <i>arg</i> is {@code null}, then the
725
* result is "{@code null}". Otherwise, the result is obtained
726
* by invoking {@code Integer.toHexString(arg.hashCode())}.
727
*
728
* <p> If the {@code '#'} flag is given, then a {@link
729
* FormatFlagsConversionMismatchException} will be thrown.
730
*
731
* <tr><td valign="top"> {@code 'H'}
732
* <td valign="top"> <tt>'&#92;u0048'</tt>
733
* <td> The upper-case variant of {@code 'h'}.
734
*
735
* <tr><td valign="top"> {@code 's'}
736
* <td valign="top"> <tt>'&#92;u0073'</tt>
737
* <td> Produces a string.
738
*
739
* <p> If the argument is {@code null}, then the result is
740
* "{@code null}". If the argument implements {@link Formattable}, then
741
* its {@link Formattable#formatTo formatTo} method is invoked.
742
* Otherwise, the result is obtained by invoking the argument's
743
* {@code toString()} method.
744
*
745
* <p> If the {@code '#'} flag is given and the argument is not a {@link
746
* Formattable} , then a {@link FormatFlagsConversionMismatchException}
747
* will be thrown.
748
*
749
* <tr><td valign="top"> {@code 'S'}
750
* <td valign="top"> <tt>'&#92;u0053'</tt>
751
* <td> The upper-case variant of {@code 's'}.
752
*
753
* </table>
754
*
755
* <p> The following <a name="dFlags">flags</a> apply to general conversions:
756
*
757
* <table cellpadding=5 summary="dFlags">
758
*
759
* <tr><td valign="top"> {@code '-'}
760
* <td valign="top"> <tt>'&#92;u002d'</tt>
761
* <td> Left justifies the output. Spaces (<tt>'&#92;u0020'</tt>) will be
762
* added at the end of the converted value as required to fill the minimum
763
* width of the field. If the width is not provided, then a {@link
764
* MissingFormatWidthException} will be thrown. If this flag is not given
765
* then the output will be right-justified.
766
*
767
* <tr><td valign="top"> {@code '#'}
768
* <td valign="top"> <tt>'&#92;u0023'</tt>
769
* <td> Requires the output use an alternate form. The definition of the
770
* form is specified by the conversion.
771
*
772
* </table>
773
*
774
* <p> The <a name="genWidth">width</a> is the minimum number of characters to
775
* be written to the
776
* output. If the length of the converted value is less than the width then
777
* the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>'&#92;u0020'</tt>)
778
* until the total number of characters equals the width. The padding is on
779
* the left by default. If the {@code '-'} flag is given, then the padding
780
* will be on the right. If the width is not specified then there is no
781
* minimum.
782
*
783
* <p> The precision is the maximum number of characters to be written to the
784
* output. The precision is applied before the width, thus the output will be
785
* truncated to {@code precision} characters even if the width is greater than
786
* the precision. If the precision is not specified then there is no explicit
787
* limit on the number of characters.
788
*
789
* <h4><a name="dchar">Character</a></h4>
790
*
791
* This conversion may be applied to {@code char} and {@link Character}. It
792
* may also be applied to the types {@code byte}, {@link Byte},
793
* {@code short}, and {@link Short}, {@code int} and {@link Integer} when
794
* {@link Character#isValidCodePoint} returns {@code true}. If it returns
795
* {@code false} then an {@link IllegalFormatCodePointException} will be
796
* thrown.
797
*
798
* <table cellpadding=5 summary="charConv">
799
*
800
* <tr><td valign="top"> {@code 'c'}
801
* <td valign="top"> <tt>'&#92;u0063'</tt>
802
* <td> Formats the argument as a Unicode character as described in <a
803
* href="../lang/Character.html#unicode">Unicode Character
804
* Representation</a>. This may be more than one 16-bit {@code char} in
805
* the case where the argument represents a supplementary character.
806
*
807
* <p> If the {@code '#'} flag is given, then a {@link
808
* FormatFlagsConversionMismatchException} will be thrown.
809
*
810
* <tr><td valign="top"> {@code 'C'}
811
* <td valign="top"> <tt>'&#92;u0043'</tt>
812
* <td> The upper-case variant of {@code 'c'}.
813
*
814
* </table>
815
*
816
* <p> The {@code '-'} flag defined for <a href="#dFlags">General
817
* conversions</a> applies. If the {@code '#'} flag is given, then a {@link
818
* FormatFlagsConversionMismatchException} will be thrown.
819
*
820
* <p> The width is defined as for <a href="#genWidth">General conversions</a>.
821
*
822
* <p> The precision is not applicable. If the precision is specified then an
823
* {@link IllegalFormatPrecisionException} will be thrown.
824
*
825
* <h4><a name="dnum">Numeric</a></h4>
826
*
827
* <p> Numeric conversions are divided into the following categories:
828
*
829
* <ol>
830
*
831
* <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
832
*
833
* <li> <a href="#dnbint"><b>BigInteger</b></a>
834
*
835
* <li> <a href="#dndec"><b>Float and Double</b></a>
836
*
837
* <li> <a href="#dnbdec"><b>BigDecimal</b></a>
838
*
839
* </ol>
840
*
841
* <p> Numeric types will be formatted according to the following algorithm:
842
*
843
* <p><b><a name="L10nAlgorithm"> Number Localization Algorithm</a></b>
844
*
845
* <p> After digits are obtained for the integer part, fractional part, and
846
* exponent (as appropriate for the data type), the following transformation
847
* is applied:
848
*
849
* <ol>
850
*
851
* <li> Each digit character <i>d</i> in the string is replaced by a
852
* locale-specific digit computed relative to the current locale's
853
* {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
854
* <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
855
* <i>&nbsp;+&nbsp;z</i>.
856
*
857
* <li> If a decimal separator is present, a locale-specific {@linkplain
858
* java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
859
* substituted.
860
*
861
* <li> If the {@code ','} (<tt>'&#92;u002c'</tt>)
862
* <a name="L10nGroup">flag</a> is given, then the locale-specific {@linkplain
863
* java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
864
* inserted by scanning the integer part of the string from least significant
865
* to most significant digits and inserting a separator at intervals defined by
866
* the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
867
* size}.
868
*
869
* <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
870
* java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
871
* after the sign character, if any, and before the first non-zero digit, until
872
* the length of the string is equal to the requested field width.
873
*
874
* <li> If the value is negative and the {@code '('} flag is given, then a
875
* {@code '('} (<tt>'&#92;u0028'</tt>) is prepended and a {@code ')'}
876
* (<tt>'&#92;u0029'</tt>) is appended.
877
*
878
* <li> If the value is negative (or floating-point negative zero) and
879
* {@code '('} flag is not given, then a {@code '-'} (<tt>'&#92;u002d'</tt>)
880
* is prepended.
881
*
882
* <li> If the {@code '+'} flag is given and the value is positive or zero (or
883
* floating-point positive zero), then a {@code '+'} (<tt>'&#92;u002b'</tt>)
884
* will be prepended.
885
*
886
* </ol>
887
*
888
* <p> If the value is NaN or positive infinity the literal strings "NaN" or
889
* "Infinity" respectively, will be output. If the value is negative infinity,
890
* then the output will be "(Infinity)" if the {@code '('} flag is given
891
* otherwise the output will be "-Infinity". These values are not localized.
892
*
893
* <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
894
*
895
* <p> The following conversions may be applied to {@code byte}, {@link Byte},
896
* {@code short}, {@link Short}, {@code int} and {@link Integer},
897
* {@code long}, and {@link Long}.
898
*
899
* <table cellpadding=5 summary="IntConv">
900
*
901
* <tr><td valign="top"> {@code 'd'}
902
* <td valign="top"> <tt>'&#92;u0064'</tt>
903
* <td> Formats the argument as a decimal integer. The <a
904
* href="#L10nAlgorithm">localization algorithm</a> is applied.
905
*
906
* <p> If the {@code '0'} flag is given and the value is negative, then
907
* the zero padding will occur after the sign.
908
*
909
* <p> If the {@code '#'} flag is given then a {@link
910
* FormatFlagsConversionMismatchException} will be thrown.
911
*
912
* <tr><td valign="top"> {@code 'o'}
913
* <td valign="top"> <tt>'&#92;u006f'</tt>
914
* <td> Formats the argument as an integer in base eight. No localization
915
* is applied.
916
*
917
* <p> If <i>x</i> is negative then the result will be an unsigned value
918
* generated by adding 2<sup>n</sup> to the value where {@code n} is the
919
* number of bits in the type as returned by the static {@code SIZE} field
920
* in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
921
* {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
922
* classes as appropriate.
923
*
924
* <p> If the {@code '#'} flag is given then the output will always begin
925
* with the radix indicator {@code '0'}.
926
*
927
* <p> If the {@code '0'} flag is given then the output will be padded
928
* with leading zeros to the field width following any indication of sign.
929
*
930
* <p> If {@code '('}, {@code '+'}, '&nbsp;&nbsp;', or {@code ','} flags
931
* are given then a {@link FormatFlagsConversionMismatchException} will be
932
* thrown.
933
*
934
* <tr><td valign="top"> {@code 'x'}
935
* <td valign="top"> <tt>'&#92;u0078'</tt>
936
* <td> Formats the argument as an integer in base sixteen. No
937
* localization is applied.
938
*
939
* <p> If <i>x</i> is negative then the result will be an unsigned value
940
* generated by adding 2<sup>n</sup> to the value where {@code n} is the
941
* number of bits in the type as returned by the static {@code SIZE} field
942
* in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
943
* {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
944
* classes as appropriate.
945
*
946
* <p> If the {@code '#'} flag is given then the output will always begin
947
* with the radix indicator {@code "0x"}.
948
*
949
* <p> If the {@code '0'} flag is given then the output will be padded to
950
* the field width with leading zeros after the radix indicator or sign (if
951
* present).
952
*
953
* <p> If {@code '('}, <tt>'&nbsp;&nbsp;'</tt>, {@code '+'}, or
954
* {@code ','} flags are given then a {@link
955
* FormatFlagsConversionMismatchException} will be thrown.
956
*
957
* <tr><td valign="top"> {@code 'X'}
958
* <td valign="top"> <tt>'&#92;u0058'</tt>
959
* <td> The upper-case variant of {@code 'x'}. The entire string
960
* representing the number will be converted to {@linkplain
961
* String#toUpperCase upper case} including the {@code 'x'} (if any) and
962
* all hexadecimal digits {@code 'a'} - {@code 'f'}
963
* (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
964
*
965
* </table>
966
*
967
* <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
968
* both the {@code '#'} and the {@code '0'} flags are given, then result will
969
* contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
970
* {@code "0X"} for hexadecimal), some number of zeros (based on the width),
971
* and the value.
972
*
973
* <p> If the {@code '-'} flag is not given, then the space padding will occur
974
* before the sign.
975
*
976
* <p> The following <a name="intFlags">flags</a> apply to numeric integral
977
* conversions:
978
*
979
* <table cellpadding=5 summary="intFlags">
980
*
981
* <tr><td valign="top"> {@code '+'}
982
* <td valign="top"> <tt>'&#92;u002b'</tt>
983
* <td> Requires the output to include a positive sign for all positive
984
* numbers. If this flag is not given then only negative values will
985
* include a sign.
986
*
987
* <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
988
* then an {@link IllegalFormatFlagsException} will be thrown.
989
*
990
* <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt>
991
* <td valign="top"> <tt>'&#92;u0020'</tt>
992
* <td> Requires the output to include a single extra space
993
* (<tt>'&#92;u0020'</tt>) for non-negative values.
994
*
995
* <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
996
* then an {@link IllegalFormatFlagsException} will be thrown.
997
*
998
* <tr><td valign="top"> {@code '0'}
999
* <td valign="top"> <tt>'&#92;u0030'</tt>
1000
* <td> Requires the output to be padded with leading {@linkplain
1001
* java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
1002
* width following any sign or radix indicator except when converting NaN
1003
* or infinity. If the width is not provided, then a {@link
1004
* MissingFormatWidthException} will be thrown.
1005
*
1006
* <p> If both the {@code '-'} and {@code '0'} flags are given then an
1007
* {@link IllegalFormatFlagsException} will be thrown.
1008
*
1009
* <tr><td valign="top"> {@code ','}
1010
* <td valign="top"> <tt>'&#92;u002c'</tt>
1011
* <td> Requires the output to include the locale-specific {@linkplain
1012
* java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1013
* described in the <a href="#L10nGroup">"group" section</a> of the
1014
* localization algorithm.
1015
*
1016
* <tr><td valign="top"> {@code '('}
1017
* <td valign="top"> <tt>'&#92;u0028'</tt>
1018
* <td> Requires the output to prepend a {@code '('}
1019
* (<tt>'&#92;u0028'</tt>) and append a {@code ')'}
1020
* (<tt>'&#92;u0029'</tt>) to negative values.
1021
*
1022
* </table>
1023
*
1024
* <p> If no <a name="intdFlags">flags</a> are given the default formatting is
1025
* as follows:
1026
*
1027
* <ul>
1028
*
1029
* <li> The output is right-justified within the {@code width}
1030
*
1031
* <li> Negative numbers begin with a {@code '-'} (<tt>'&#92;u002d'</tt>)
1032
*
1033
* <li> Positive numbers and zero do not include a sign or extra leading
1034
* space
1035
*
1036
* <li> No grouping separators are included
1037
*
1038
* </ul>
1039
*
1040
* <p> The <a name="intWidth">width</a> is the minimum number of characters to
1041
* be written to the output. This includes any signs, digits, grouping
1042
* separators, radix indicator, and parentheses. If the length of the
1043
* converted value is less than the width then the output will be padded by
1044
* spaces (<tt>'&#92;u0020'</tt>) until the total number of characters equals
1045
* width. The padding is on the left by default. If {@code '-'} flag is
1046
* given then the padding will be on the right. If width is not specified then
1047
* there is no minimum.
1048
*
1049
* <p> The precision is not applicable. If precision is specified then an
1050
* {@link IllegalFormatPrecisionException} will be thrown.
1051
*
1052
* <p><a name="dnbint"><b> BigInteger </b></a>
1053
*
1054
* <p> The following conversions may be applied to {@link
1055
* java.math.BigInteger}.
1056
*
1057
* <table cellpadding=5 summary="BIntConv">
1058
*
1059
* <tr><td valign="top"> {@code 'd'}
1060
* <td valign="top"> <tt>'&#92;u0064'</tt>
1061
* <td> Requires the output to be formatted as a decimal integer. The <a
1062
* href="#L10nAlgorithm">localization algorithm</a> is applied.
1063
*
1064
* <p> If the {@code '#'} flag is given {@link
1065
* FormatFlagsConversionMismatchException} will be thrown.
1066
*
1067
* <tr><td valign="top"> {@code 'o'}
1068
* <td valign="top"> <tt>'&#92;u006f'</tt>
1069
* <td> Requires the output to be formatted as an integer in base eight.
1070
* No localization is applied.
1071
*
1072
* <p> If <i>x</i> is negative then the result will be a signed value
1073
* beginning with {@code '-'} (<tt>'&#92;u002d'</tt>). Signed output is
1074
* allowed for this type because unlike the primitive types it is not
1075
* possible to create an unsigned equivalent without assuming an explicit
1076
* data-type size.
1077
*
1078
* <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1079
* then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1080
*
1081
* <p> If the {@code '#'} flag is given then the output will always begin
1082
* with {@code '0'} prefix.
1083
*
1084
* <p> If the {@code '0'} flag is given then the output will be padded
1085
* with leading zeros to the field width following any indication of sign.
1086
*
1087
* <p> If the {@code ','} flag is given then a {@link
1088
* FormatFlagsConversionMismatchException} will be thrown.
1089
*
1090
* <tr><td valign="top"> {@code 'x'}
1091
* <td valign="top"> <tt>'&#92;u0078'</tt>
1092
* <td> Requires the output to be formatted as an integer in base
1093
* sixteen. No localization is applied.
1094
*
1095
* <p> If <i>x</i> is negative then the result will be a signed value
1096
* beginning with {@code '-'} (<tt>'&#92;u002d'</tt>). Signed output is
1097
* allowed for this type because unlike the primitive types it is not
1098
* possible to create an unsigned equivalent without assuming an explicit
1099
* data-type size.
1100
*
1101
* <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1102
* then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1103
*
1104
* <p> If the {@code '#'} flag is given then the output will always begin
1105
* with the radix indicator {@code "0x"}.
1106
*
1107
* <p> If the {@code '0'} flag is given then the output will be padded to
1108
* the field width with leading zeros after the radix indicator or sign (if
1109
* present).
1110
*
1111
* <p> If the {@code ','} flag is given then a {@link
1112
* FormatFlagsConversionMismatchException} will be thrown.
1113
*
1114
* <tr><td valign="top"> {@code 'X'}
1115
* <td valign="top"> <tt>'&#92;u0058'</tt>
1116
* <td> The upper-case variant of {@code 'x'}. The entire string
1117
* representing the number will be converted to {@linkplain
1118
* String#toUpperCase upper case} including the {@code 'x'} (if any) and
1119
* all hexadecimal digits {@code 'a'} - {@code 'f'}
1120
* (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1121
*
1122
* </table>
1123
*
1124
* <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1125
* both the {@code '#'} and the {@code '0'} flags are given, then result will
1126
* contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1127
* {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1128
* and the value.
1129
*
1130
* <p> If the {@code '0'} flag is given and the value is negative, then the
1131
* zero padding will occur after the sign.
1132
*
1133
* <p> If the {@code '-'} flag is not given, then the space padding will occur
1134
* before the sign.
1135
*
1136
* <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1137
* Long apply. The <a href="#intdFlags">default behavior</a> when no flags are
1138
* given is the same as for Byte, Short, Integer, and Long.
1139
*
1140
* <p> The specification of <a href="#intWidth">width</a> is the same as
1141
* defined for Byte, Short, Integer, and Long.
1142
*
1143
* <p> The precision is not applicable. If precision is specified then an
1144
* {@link IllegalFormatPrecisionException} will be thrown.
1145
*
1146
* <p><a name="dndec"><b> Float and Double</b></a>
1147
*
1148
* <p> The following conversions may be applied to {@code float}, {@link
1149
* Float}, {@code double} and {@link Double}.
1150
*
1151
* <table cellpadding=5 summary="floatConv">
1152
*
1153
* <tr><td valign="top"> {@code 'e'}
1154
* <td valign="top"> <tt>'&#92;u0065'</tt>
1155
* <td> Requires the output to be formatted using <a
1156
* name="scientific">computerized scientific notation</a>. The <a
1157
* href="#L10nAlgorithm">localization algorithm</a> is applied.
1158
*
1159
* <p> The formatting of the magnitude <i>m</i> depends upon its value.
1160
*
1161
* <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1162
* "Infinity", respectively, will be output. These values are not
1163
* localized.
1164
*
1165
* <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1166
* will be {@code "+00"}.
1167
*
1168
* <p> Otherwise, the result is a string that represents the sign and
1169
* magnitude (absolute value) of the argument. The formatting of the sign
1170
* is described in the <a href="#L10nAlgorithm">localization
1171
* algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1172
* value.
1173
*
1174
* <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1175
* &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1176
* mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1177
* that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1178
* integer part of <i>a</i>, as a single decimal digit, followed by the
1179
* decimal separator followed by decimal digits representing the fractional
1180
* part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1181
* (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1182
* by a representation of <i>n</i> as a decimal integer, as produced by the
1183
* method {@link Long#toString(long, int)}, and zero-padded to include at
1184
* least two digits.
1185
*
1186
* <p> The number of digits in the result for the fractional part of
1187
* <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1188
* specified then the default value is {@code 6}. If the precision is less
1189
* than the number of digits which would appear after the decimal point in
1190
* the string returned by {@link Float#toString(float)} or {@link
1191
* Double#toString(double)} respectively, then the value will be rounded
1192
* using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1193
* algorithm}. Otherwise, zeros may be appended to reach the precision.
1194
* For a canonical representation of the value, use {@link
1195
* Float#toString(float)} or {@link Double#toString(double)} as
1196
* appropriate.
1197
*
1198
* <p>If the {@code ','} flag is given, then an {@link
1199
* FormatFlagsConversionMismatchException} will be thrown.
1200
*
1201
* <tr><td valign="top"> {@code 'E'}
1202
* <td valign="top"> <tt>'&#92;u0045'</tt>
1203
* <td> The upper-case variant of {@code 'e'}. The exponent symbol
1204
* will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1205
*
1206
* <tr><td valign="top"> {@code 'g'}
1207
* <td valign="top"> <tt>'&#92;u0067'</tt>
1208
* <td> Requires the output to be formatted in general scientific notation
1209
* as described below. The <a href="#L10nAlgorithm">localization
1210
* algorithm</a> is applied.
1211
*
1212
* <p> After rounding for the precision, the formatting of the resulting
1213
* magnitude <i>m</i> depends on its value.
1214
*
1215
* <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1216
* than 10<sup>precision</sup> then it is represented in <i><a
1217
* href="#decimal">decimal format</a></i>.
1218
*
1219
* <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1220
* 10<sup>precision</sup>, then it is represented in <i><a
1221
* href="#scientific">computerized scientific notation</a></i>.
1222
*
1223
* <p> The total number of significant digits in <i>m</i> is equal to the
1224
* precision. If the precision is not specified, then the default value is
1225
* {@code 6}. If the precision is {@code 0}, then it is taken to be
1226
* {@code 1}.
1227
*
1228
* <p> If the {@code '#'} flag is given then an {@link
1229
* FormatFlagsConversionMismatchException} will be thrown.
1230
*
1231
* <tr><td valign="top"> {@code 'G'}
1232
* <td valign="top"> <tt>'&#92;u0047'</tt>
1233
* <td> The upper-case variant of {@code 'g'}.
1234
*
1235
* <tr><td valign="top"> {@code 'f'}
1236
* <td valign="top"> <tt>'&#92;u0066'</tt>
1237
* <td> Requires the output to be formatted using <a name="decimal">decimal
1238
* format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is
1239
* applied.
1240
*
1241
* <p> The result is a string that represents the sign and magnitude
1242
* (absolute value) of the argument. The formatting of the sign is
1243
* described in the <a href="#L10nAlgorithm">localization
1244
* algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1245
* value.
1246
*
1247
* <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1248
* "Infinity", respectively, will be output. These values are not
1249
* localized.
1250
*
1251
* <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1252
* leading zeroes, followed by the decimal separator followed by one or
1253
* more decimal digits representing the fractional part of <i>m</i>.
1254
*
1255
* <p> The number of digits in the result for the fractional part of
1256
* <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1257
* specified then the default value is {@code 6}. If the precision is less
1258
* than the number of digits which would appear after the decimal point in
1259
* the string returned by {@link Float#toString(float)} or {@link
1260
* Double#toString(double)} respectively, then the value will be rounded
1261
* using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1262
* algorithm}. Otherwise, zeros may be appended to reach the precision.
1263
* For a canonical representation of the value, use {@link
1264
* Float#toString(float)} or {@link Double#toString(double)} as
1265
* appropriate.
1266
*
1267
* <tr><td valign="top"> {@code 'a'}
1268
* <td valign="top"> <tt>'&#92;u0061'</tt>
1269
* <td> Requires the output to be formatted in hexadecimal exponential
1270
* form. No localization is applied.
1271
*
1272
* <p> The result is a string that represents the sign and magnitude
1273
* (absolute value) of the argument <i>x</i>.
1274
*
1275
* <p> If <i>x</i> is negative or a negative-zero value then the result
1276
* will begin with {@code '-'} (<tt>'&#92;u002d'</tt>).
1277
*
1278
* <p> If <i>x</i> is positive or a positive-zero value and the
1279
* {@code '+'} flag is given then the result will begin with {@code '+'}
1280
* (<tt>'&#92;u002b'</tt>).
1281
*
1282
* <p> The formatting of the magnitude <i>m</i> depends upon its value.
1283
*
1284
* <ul>
1285
*
1286
* <li> If the value is NaN or infinite, the literal strings "NaN" or
1287
* "Infinity", respectively, will be output.
1288
*
1289
* <li> If <i>m</i> is zero then it is represented by the string
1290
* {@code "0x0.0p0"}.
1291
*
1292
* <li> If <i>m</i> is a {@code double} value with a normalized
1293
* representation then substrings are used to represent the significand and
1294
* exponent fields. The significand is represented by the characters
1295
* {@code "0x1."} followed by the hexadecimal representation of the rest
1296
* of the significand as a fraction. The exponent is represented by
1297
* {@code 'p'} (<tt>'&#92;u0070'</tt>) followed by a decimal string of the
1298
* unbiased exponent as if produced by invoking {@link
1299
* Integer#toString(int) Integer.toString} on the exponent value. If the
1300
* precision is specified, the value is rounded to the given number of
1301
* hexadecimal digits.
1302
*
1303
* <li> If <i>m</i> is a {@code double} value with a subnormal
1304
* representation then, unless the precision is specified to be in the range
1305
* 1 through 12, inclusive, the significand is represented by the characters
1306
* {@code '0x0.'} followed by the hexadecimal representation of the rest of
1307
* the significand as a fraction, and the exponent represented by
1308
* {@code 'p-1022'}. If the precision is in the interval
1309
* [1,&nbsp;12], the subnormal value is normalized such that it
1310
* begins with the characters {@code '0x1.'}, rounded to the number of
1311
* hexadecimal digits of precision, and the exponent adjusted
1312
* accordingly. Note that there must be at least one nonzero digit in a
1313
* subnormal significand.
1314
*
1315
* </ul>
1316
*
1317
* <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1318
* FormatFlagsConversionMismatchException} will be thrown.
1319
*
1320
* <tr><td valign="top"> {@code 'A'}
1321
* <td valign="top"> <tt>'&#92;u0041'</tt>
1322
* <td> The upper-case variant of {@code 'a'}. The entire string
1323
* representing the number will be converted to upper case including the
1324
* {@code 'x'} (<tt>'&#92;u0078'</tt>) and {@code 'p'}
1325
* (<tt>'&#92;u0070'</tt> and all hexadecimal digits {@code 'a'} -
1326
* {@code 'f'} (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1327
*
1328
* </table>
1329
*
1330
* <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1331
* Long apply.
1332
*
1333
* <p> If the {@code '#'} flag is given, then the decimal separator will
1334
* always be present.
1335
*
1336
* <p> If no <a name="floatdFlags">flags</a> are given the default formatting
1337
* is as follows:
1338
*
1339
* <ul>
1340
*
1341
* <li> The output is right-justified within the {@code width}
1342
*
1343
* <li> Negative numbers begin with a {@code '-'}
1344
*
1345
* <li> Positive numbers and positive zero do not include a sign or extra
1346
* leading space
1347
*
1348
* <li> No grouping separators are included
1349
*
1350
* <li> The decimal separator will only appear if a digit follows it
1351
*
1352
* </ul>
1353
*
1354
* <p> The <a name="floatDWidth">width</a> is the minimum number of characters
1355
* to be written to the output. This includes any signs, digits, grouping
1356
* separators, decimal separators, exponential symbol, radix indicator,
1357
* parentheses, and strings representing infinity and NaN as applicable. If
1358
* the length of the converted value is less than the width then the output
1359
* will be padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1360
* characters equals width. The padding is on the left by default. If the
1361
* {@code '-'} flag is given then the padding will be on the right. If width
1362
* is not specified then there is no minimum.
1363
*
1364
* <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'},
1365
* {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1366
* after the decimal separator. If the precision is not specified, then it is
1367
* assumed to be {@code 6}.
1368
*
1369
* <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1370
* the total number of significant digits in the resulting magnitude after
1371
* rounding. If the precision is not specified, then the default value is
1372
* {@code 6}. If the precision is {@code 0}, then it is taken to be
1373
* {@code 1}.
1374
*
1375
* <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1376
* is the number of hexadecimal digits after the radix point. If the
1377
* precision is not provided, then all of the digits as returned by {@link
1378
* Double#toHexString(double)} will be output.
1379
*
1380
* <p><a name="dnbdec"><b> BigDecimal </b></a>
1381
*
1382
* <p> The following conversions may be applied {@link java.math.BigDecimal
1383
* BigDecimal}.
1384
*
1385
* <table cellpadding=5 summary="floatConv">
1386
*
1387
* <tr><td valign="top"> {@code 'e'}
1388
* <td valign="top"> <tt>'&#92;u0065'</tt>
1389
* <td> Requires the output to be formatted using <a
1390
* name="bscientific">computerized scientific notation</a>. The <a
1391
* href="#L10nAlgorithm">localization algorithm</a> is applied.
1392
*
1393
* <p> The formatting of the magnitude <i>m</i> depends upon its value.
1394
*
1395
* <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1396
* will be {@code "+00"}.
1397
*
1398
* <p> Otherwise, the result is a string that represents the sign and
1399
* magnitude (absolute value) of the argument. The formatting of the sign
1400
* is described in the <a href="#L10nAlgorithm">localization
1401
* algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1402
* value.
1403
*
1404
* <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1405
* &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1406
* mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1407
* that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1408
* integer part of <i>a</i>, as a single decimal digit, followed by the
1409
* decimal separator followed by decimal digits representing the fractional
1410
* part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1411
* (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1412
* by a representation of <i>n</i> as a decimal integer, as produced by the
1413
* method {@link Long#toString(long, int)}, and zero-padded to include at
1414
* least two digits.
1415
*
1416
* <p> The number of digits in the result for the fractional part of
1417
* <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1418
* specified then the default value is {@code 6}. If the precision is
1419
* less than the number of digits to the right of the decimal point then
1420
* the value will be rounded using the
1421
* {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1422
* algorithm}. Otherwise, zeros may be appended to reach the precision.
1423
* For a canonical representation of the value, use {@link
1424
* BigDecimal#toString()}.
1425
*
1426
* <p> If the {@code ','} flag is given, then an {@link
1427
* FormatFlagsConversionMismatchException} will be thrown.
1428
*
1429
* <tr><td valign="top"> {@code 'E'}
1430
* <td valign="top"> <tt>'&#92;u0045'</tt>
1431
* <td> The upper-case variant of {@code 'e'}. The exponent symbol
1432
* will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1433
*
1434
* <tr><td valign="top"> {@code 'g'}
1435
* <td valign="top"> <tt>'&#92;u0067'</tt>
1436
* <td> Requires the output to be formatted in general scientific notation
1437
* as described below. The <a href="#L10nAlgorithm">localization
1438
* algorithm</a> is applied.
1439
*
1440
* <p> After rounding for the precision, the formatting of the resulting
1441
* magnitude <i>m</i> depends on its value.
1442
*
1443
* <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1444
* than 10<sup>precision</sup> then it is represented in <i><a
1445
* href="#bdecimal">decimal format</a></i>.
1446
*
1447
* <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1448
* 10<sup>precision</sup>, then it is represented in <i><a
1449
* href="#bscientific">computerized scientific notation</a></i>.
1450
*
1451
* <p> The total number of significant digits in <i>m</i> is equal to the
1452
* precision. If the precision is not specified, then the default value is
1453
* {@code 6}. If the precision is {@code 0}, then it is taken to be
1454
* {@code 1}.
1455
*
1456
* <p> If the {@code '#'} flag is given then an {@link
1457
* FormatFlagsConversionMismatchException} will be thrown.
1458
*
1459
* <tr><td valign="top"> {@code 'G'}
1460
* <td valign="top"> <tt>'&#92;u0047'</tt>
1461
* <td> The upper-case variant of {@code 'g'}.
1462
*
1463
* <tr><td valign="top"> {@code 'f'}
1464
* <td valign="top"> <tt>'&#92;u0066'</tt>
1465
* <td> Requires the output to be formatted using <a name="bdecimal">decimal
1466
* format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is
1467
* applied.
1468
*
1469
* <p> The result is a string that represents the sign and magnitude
1470
* (absolute value) of the argument. The formatting of the sign is
1471
* described in the <a href="#L10nAlgorithm">localization
1472
* algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1473
* value.
1474
*
1475
* <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1476
* leading zeroes, followed by the decimal separator followed by one or
1477
* more decimal digits representing the fractional part of <i>m</i>.
1478
*
1479
* <p> The number of digits in the result for the fractional part of
1480
* <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1481
* specified then the default value is {@code 6}. If the precision is
1482
* less than the number of digits to the right of the decimal point
1483
* then the value will be rounded using the
1484
* {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1485
* algorithm}. Otherwise, zeros may be appended to reach the precision.
1486
* For a canonical representation of the value, use {@link
1487
* BigDecimal#toString()}.
1488
*
1489
* </table>
1490
*
1491
* <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1492
* Long apply.
1493
*
1494
* <p> If the {@code '#'} flag is given, then the decimal separator will
1495
* always be present.
1496
*
1497
* <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1498
* given is the same as for Float and Double.
1499
*
1500
* <p> The specification of <a href="#floatDWidth">width</a> and <a
1501
* href="#floatDPrec">precision</a> is the same as defined for Float and
1502
* Double.
1503
*
1504
* <h4><a name="ddt">Date/Time</a></h4>
1505
*
1506
* <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1507
* Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
1508
*
1509
* <table cellpadding=5 summary="DTConv">
1510
*
1511
* <tr><td valign="top"> {@code 't'}
1512
* <td valign="top"> <tt>'&#92;u0074'</tt>
1513
* <td> Prefix for date and time conversion characters.
1514
* <tr><td valign="top"> {@code 'T'}
1515
* <td valign="top"> <tt>'&#92;u0054'</tt>
1516
* <td> The upper-case variant of {@code 't'}.
1517
*
1518
* </table>
1519
*
1520
* <p> The following date and time conversion character suffixes are defined
1521
* for the {@code 't'} and {@code 'T'} conversions. The types are similar to
1522
* but not completely identical to those defined by GNU {@code date} and
1523
* POSIX {@code strftime(3c)}. Additional conversion types are provided to
1524
* access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1525
* within the second).
1526
*
1527
* <p> The following conversion characters are used for formatting times:
1528
*
1529
* <table cellpadding=5 summary="time">
1530
*
1531
* <tr><td valign="top"> {@code 'H'}
1532
* <td valign="top"> <tt>'&#92;u0048'</tt>
1533
* <td> Hour of the day for the 24-hour clock, formatted as two digits with
1534
* a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1535
* corresponds to midnight.
1536
*
1537
* <tr><td valign="top">{@code 'I'}
1538
* <td valign="top"> <tt>'&#92;u0049'</tt>
1539
* <td> Hour for the 12-hour clock, formatted as two digits with a leading
1540
* zero as necessary, i.e. {@code 01 - 12}. {@code 01} corresponds to
1541
* one o'clock (either morning or afternoon).
1542
*
1543
* <tr><td valign="top">{@code 'k'}
1544
* <td valign="top"> <tt>'&#92;u006b'</tt>
1545
* <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1546
* {@code 0} corresponds to midnight.
1547
*
1548
* <tr><td valign="top">{@code 'l'}
1549
* <td valign="top"> <tt>'&#92;u006c'</tt>
1550
* <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}. {@code 1}
1551
* corresponds to one o'clock (either morning or afternoon).
1552
*
1553
* <tr><td valign="top">{@code 'M'}
1554
* <td valign="top"> <tt>'&#92;u004d'</tt>
1555
* <td> Minute within the hour formatted as two digits with a leading zero
1556
* as necessary, i.e. {@code 00 - 59}.
1557
*
1558
* <tr><td valign="top">{@code 'S'}
1559
* <td valign="top"> <tt>'&#92;u0053'</tt>
1560
* <td> Seconds within the minute, formatted as two digits with a leading
1561
* zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1562
* value required to support leap seconds).
1563
*
1564
* <tr><td valign="top">{@code 'L'}
1565
* <td valign="top"> <tt>'&#92;u004c'</tt>
1566
* <td> Millisecond within the second formatted as three digits with
1567
* leading zeros as necessary, i.e. {@code 000 - 999}.
1568
*
1569
* <tr><td valign="top">{@code 'N'}
1570
* <td valign="top"> <tt>'&#92;u004e'</tt>
1571
* <td> Nanosecond within the second, formatted as nine digits with leading
1572
* zeros as necessary, i.e. {@code 000000000 - 999999999}. The precision
1573
* of this value is limited by the resolution of the underlying operating
1574
* system or hardware.
1575
*
1576
* <tr><td valign="top">{@code 'p'}
1577
* <td valign="top"> <tt>'&#92;u0070'</tt>
1578
* <td> Locale-specific {@linkplain
1579
* java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1580
* in lower case, e.g."{@code am}" or "{@code pm}". Use of the
1581
* conversion prefix {@code 'T'} forces this output to upper case. (Note
1582
* that {@code 'p'} produces lower-case output. This is different from
1583
* GNU {@code date} and POSIX {@code strftime(3c)} which produce
1584
* upper-case output.)
1585
*
1586
* <tr><td valign="top">{@code 'z'}
1587
* <td valign="top"> <tt>'&#92;u007a'</tt>
1588
* <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1589
* style numeric time zone offset from GMT, e.g. {@code -0800}. This
1590
* value will be adjusted as necessary for Daylight Saving Time. For
1591
* {@code long}, {@link Long}, and {@link Date} the time zone used is
1592
* the {@linkplain TimeZone#getDefault() default time zone} for this
1593
* instance of the Java virtual machine.
1594
*
1595
* <tr><td valign="top">{@code 'Z'}
1596
* <td valign="top"> <tt>'&#92;u005a'</tt>
1597
* <td> A string representing the abbreviation for the time zone. This
1598
* value will be adjusted as necessary for Daylight Saving Time. For
1599
* {@code long}, {@link Long}, and {@link Date} the time zone used is
1600
* the {@linkplain TimeZone#getDefault() default time zone} for this
1601
* instance of the Java virtual machine. The Formatter's locale will
1602
* supersede the locale of the argument (if any).
1603
*
1604
* <tr><td valign="top">{@code 's'}
1605
* <td valign="top"> <tt>'&#92;u0073'</tt>
1606
* <td> Seconds since the beginning of the epoch starting at 1 January 1970
1607
* {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1608
* {@code Long.MAX_VALUE/1000}.
1609
*
1610
* <tr><td valign="top">{@code 'Q'}
1611
* <td valign="top"> <tt>'&#92;u004f'</tt>
1612
* <td> Milliseconds since the beginning of the epoch starting at 1 January
1613
* 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1614
* {@code Long.MAX_VALUE}. The precision of this value is limited by
1615
* the resolution of the underlying operating system or hardware.
1616
*
1617
* </table>
1618
*
1619
* <p> The following conversion characters are used for formatting dates:
1620
*
1621
* <table cellpadding=5 summary="date">
1622
*
1623
* <tr><td valign="top">{@code 'B'}
1624
* <td valign="top"> <tt>'&#92;u0042'</tt>
1625
* <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1626
* full month name}, e.g. {@code "January"}, {@code "February"}.
1627
*
1628
* <tr><td valign="top">{@code 'b'}
1629
* <td valign="top"> <tt>'&#92;u0062'</tt>
1630
* <td> Locale-specific {@linkplain
1631
* java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1632
* e.g. {@code "Jan"}, {@code "Feb"}.
1633
*
1634
* <tr><td valign="top">{@code 'h'}
1635
* <td valign="top"> <tt>'&#92;u0068'</tt>
1636
* <td> Same as {@code 'b'}.
1637
*
1638
* <tr><td valign="top">{@code 'A'}
1639
* <td valign="top"> <tt>'&#92;u0041'</tt>
1640
* <td> Locale-specific full name of the {@linkplain
1641
* java.text.DateFormatSymbols#getWeekdays day of the week},
1642
* e.g. {@code "Sunday"}, {@code "Monday"}
1643
*
1644
* <tr><td valign="top">{@code 'a'}
1645
* <td valign="top"> <tt>'&#92;u0061'</tt>
1646
* <td> Locale-specific short name of the {@linkplain
1647
* java.text.DateFormatSymbols#getShortWeekdays day of the week},
1648
* e.g. {@code "Sun"}, {@code "Mon"}
1649
*
1650
* <tr><td valign="top">{@code 'C'}
1651
* <td valign="top"> <tt>'&#92;u0043'</tt>
1652
* <td> Four-digit year divided by {@code 100}, formatted as two digits
1653
* with leading zero as necessary, i.e. {@code 00 - 99}
1654
*
1655
* <tr><td valign="top">{@code 'Y'}
1656
* <td valign="top"> <tt>'&#92;u0059'</tt> <td> Year, formatted to at least
1657
* four digits with leading zeros as necessary, e.g. {@code 0092} equals
1658
* {@code 92} CE for the Gregorian calendar.
1659
*
1660
* <tr><td valign="top">{@code 'y'}
1661
* <td valign="top"> <tt>'&#92;u0079'</tt>
1662
* <td> Last two digits of the year, formatted with leading zeros as
1663
* necessary, i.e. {@code 00 - 99}.
1664
*
1665
* <tr><td valign="top">{@code 'j'}
1666
* <td valign="top"> <tt>'&#92;u006a'</tt>
1667
* <td> Day of year, formatted as three digits with leading zeros as
1668
* necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1669
* {@code 001} corresponds to the first day of the year.
1670
*
1671
* <tr><td valign="top">{@code 'm'}
1672
* <td valign="top"> <tt>'&#92;u006d'</tt>
1673
* <td> Month, formatted as two digits with leading zeros as necessary,
1674
* i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1675
* year and ("{@code 13}" is a special value required to support lunar
1676
* calendars).
1677
*
1678
* <tr><td valign="top">{@code 'd'}
1679
* <td valign="top"> <tt>'&#92;u0064'</tt>
1680
* <td> Day of month, formatted as two digits with leading zeros as
1681
* necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1682
* of the month.
1683
*
1684
* <tr><td valign="top">{@code 'e'}
1685
* <td valign="top"> <tt>'&#92;u0065'</tt>
1686
* <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1687
* "{@code 1}" is the first day of the month.
1688
*
1689
* </table>
1690
*
1691
* <p> The following conversion characters are used for formatting common
1692
* date/time compositions.
1693
*
1694
* <table cellpadding=5 summary="composites">
1695
*
1696
* <tr><td valign="top">{@code 'R'}
1697
* <td valign="top"> <tt>'&#92;u0052'</tt>
1698
* <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1699
*
1700
* <tr><td valign="top">{@code 'T'}
1701
* <td valign="top"> <tt>'&#92;u0054'</tt>
1702
* <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1703
*
1704
* <tr><td valign="top">{@code 'r'}
1705
* <td valign="top"> <tt>'&#92;u0072'</tt>
1706
* <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1707
* %Tp"}. The location of the morning or afternoon marker
1708
* ({@code '%Tp'}) may be locale-dependent.
1709
*
1710
* <tr><td valign="top">{@code 'D'}
1711
* <td valign="top"> <tt>'&#92;u0044'</tt>
1712
* <td> Date formatted as {@code "%tm/%td/%ty"}.
1713
*
1714
* <tr><td valign="top">{@code 'F'}
1715
* <td valign="top"> <tt>'&#92;u0046'</tt>
1716
* <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1717
* complete date formatted as {@code "%tY-%tm-%td"}.
1718
*
1719
* <tr><td valign="top">{@code 'c'}
1720
* <td valign="top"> <tt>'&#92;u0063'</tt>
1721
* <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1722
* e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1723
*
1724
* </table>
1725
*
1726
* <p> The {@code '-'} flag defined for <a href="#dFlags">General
1727
* conversions</a> applies. If the {@code '#'} flag is given, then a {@link
1728
* FormatFlagsConversionMismatchException} will be thrown.
1729
*
1730
* <p> The width is the minimum number of characters to
1731
* be written to the output. If the length of the converted value is less than
1732
* the {@code width} then the output will be padded by spaces
1733
* (<tt>'&#92;u0020'</tt>) until the total number of characters equals width.
1734
* The padding is on the left by default. If the {@code '-'} flag is given
1735
* then the padding will be on the right. If width is not specified then there
1736
* is no minimum.
1737
*
1738
* <p> The precision is not applicable. If the precision is specified then an
1739
* {@link IllegalFormatPrecisionException} will be thrown.
1740
*
1741
* <h4><a name="dper">Percent</a></h4>
1742
*
1743
* <p> The conversion does not correspond to any argument.
1744
*
1745
* <table cellpadding=5 summary="DTConv">
1746
*
1747
* <tr><td valign="top">{@code '%'}
1748
* <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
1749
*
1750
* <p> The width is the minimum number of characters to
1751
* be written to the output including the {@code '%'}. If the length of the
1752
* converted value is less than the {@code width} then the output will be
1753
* padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1754
* characters equals width. The padding is on the left. If width is not
1755
* specified then just the {@code '%'} is output.
1756
*
1757
* <p> The {@code '-'} flag defined for <a href="#dFlags">General
1758
* conversions</a> applies. If any other flags are provided, then a
1759
* {@link FormatFlagsConversionMismatchException} will be thrown.
1760
*
1761
* <p> The precision is not applicable. If the precision is specified an
1762
* {@link IllegalFormatPrecisionException} will be thrown.
1763
*
1764
* </table>
1765
*
1766
* <h4><a name="dls">Line Separator</a></h4>
1767
*
1768
* <p> The conversion does not correspond to any argument.
1769
*
1770
* <table cellpadding=5 summary="DTConv">
1771
*
1772
* <tr><td valign="top">{@code 'n'}
1773
* <td> the platform-specific line separator as returned by {@link
1774
* System#getProperty System.getProperty("line.separator")}.
1775
*
1776
* </table>
1777
*
1778
* <p> Flags, width, and precision are not applicable. If any are provided an
1779
* {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1780
* and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1781
*
1782
* <h4><a name="dpos">Argument Index</a></h4>
1783
*
1784
* <p> Format specifiers can reference arguments in three ways:
1785
*
1786
* <ul>
1787
*
1788
* <li> <i>Explicit indexing</i> is used when the format specifier contains an
1789
* argument index. The argument index is a decimal integer indicating the
1790
* position of the argument in the argument list. The first argument is
1791
* referenced by "{@code 1$}", the second by "{@code 2$}", etc. An argument
1792
* may be referenced more than once.
1793
*
1794
* <p> For example:
1795
*
1796
* <blockquote><pre>
1797
* formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1798
* "a", "b", "c", "d")
1799
* // -&gt; "d c b a d c b a"
1800
* </pre></blockquote>
1801
*
1802
* <li> <i>Relative indexing</i> is used when the format specifier contains a
1803
* {@code '<'} (<tt>'&#92;u003c'</tt>) flag which causes the argument for
1804
* the previous format specifier to be re-used. If there is no previous
1805
* argument, then a {@link MissingFormatArgumentException} is thrown.
1806
*
1807
* <blockquote><pre>
1808
* formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1809
* // -&gt; "a b b b"
1810
* // "c" and "d" are ignored because they are not referenced
1811
* </pre></blockquote>
1812
*
1813
* <li> <i>Ordinary indexing</i> is used when the format specifier contains
1814
* neither an argument index nor a {@code '<'} flag. Each format specifier
1815
* which uses ordinary indexing is assigned a sequential implicit index into
1816
* argument list which is independent of the indices used by explicit or
1817
* relative indexing.
1818
*
1819
* <blockquote><pre>
1820
* formatter.format("%s %s %s %s", "a", "b", "c", "d")
1821
* // -&gt; "a b c d"
1822
* </pre></blockquote>
1823
*
1824
* </ul>
1825
*
1826
* <p> It is possible to have a format string which uses all forms of indexing,
1827
* for example:
1828
*
1829
* <blockquote><pre>
1830
* formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1831
* // -&gt; "b a a b"
1832
* // "c" and "d" are ignored because they are not referenced
1833
* </pre></blockquote>
1834
*
1835
* <p> The maximum number of arguments is limited by the maximum dimension of a
1836
* Java array as defined by
1837
* <cite>The Java&trade; Virtual Machine Specification</cite>.
1838
* If the argument index is does not correspond to an
1839
* available argument, then a {@link MissingFormatArgumentException} is thrown.
1840
*
1841
* <p> If there are more arguments than format specifiers, the extra arguments
1842
* are ignored.
1843
*
1844
* <p> Unless otherwise specified, passing a {@code null} argument to any
1845
* method or constructor in this class will cause a {@link
1846
* NullPointerException} to be thrown.
1847
*
1848
* @author Iris Clark
1849
* @since 1.5
1850
*/
1851
public final class Formatter implements Closeable, Flushable {
1852
private Appendable a;
1853
private final Locale l;
1854
1855
private IOException lastException;
1856
1857
private final char zero;
1858
private static double scaleUp;
1859
1860
// 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1861
// + 3 (max # exp digits) + 4 (error) = 30
1862
private static final int MAX_FD_CHARS = 30;
1863
1864
/**
1865
* Returns a charset object for the given charset name.
1866
* @throws NullPointerException is csn is null
1867
* @throws UnsupportedEncodingException if the charset is not supported
1868
*/
1869
private static Charset toCharset(String csn)
1870
throws UnsupportedEncodingException
1871
{
1872
Objects.requireNonNull(csn, "charsetName");
1873
try {
1874
return Charset.forName(csn);
1875
} catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1876
// UnsupportedEncodingException should be thrown
1877
throw new UnsupportedEncodingException(csn);
1878
}
1879
}
1880
1881
private static final Appendable nonNullAppendable(Appendable a) {
1882
if (a == null)
1883
return new StringBuilder();
1884
1885
return a;
1886
}
1887
1888
/* Private constructors */
1889
private Formatter(Locale l, Appendable a) {
1890
this.a = a;
1891
this.l = l;
1892
this.zero = getZero(l);
1893
}
1894
1895
private Formatter(Charset charset, Locale l, File file)
1896
throws FileNotFoundException
1897
{
1898
this(l,
1899
new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1900
}
1901
1902
/**
1903
* Constructs a new formatter.
1904
*
1905
* <p> The destination of the formatted output is a {@link StringBuilder}
1906
* which may be retrieved by invoking {@link #out out()} and whose
1907
* current content may be converted into a string by invoking {@link
1908
* #toString toString()}. The locale used is the {@linkplain
1909
* Locale#getDefault(Locale.Category) default locale} for
1910
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1911
* virtual machine.
1912
*/
1913
public Formatter() {
1914
this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1915
}
1916
1917
/**
1918
* Constructs a new formatter with the specified destination.
1919
*
1920
* <p> The locale used is the {@linkplain
1921
* Locale#getDefault(Locale.Category) default locale} for
1922
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1923
* virtual machine.
1924
*
1925
* @param a
1926
* Destination for the formatted output. If {@code a} is
1927
* {@code null} then a {@link StringBuilder} will be created.
1928
*/
1929
public Formatter(Appendable a) {
1930
this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1931
}
1932
1933
/**
1934
* Constructs a new formatter with the specified locale.
1935
*
1936
* <p> The destination of the formatted output is a {@link StringBuilder}
1937
* which may be retrieved by invoking {@link #out out()} and whose current
1938
* content may be converted into a string by invoking {@link #toString
1939
* toString()}.
1940
*
1941
* @param l
1942
* The {@linkplain java.util.Locale locale} to apply during
1943
* formatting. If {@code l} is {@code null} then no localization
1944
* is applied.
1945
*/
1946
public Formatter(Locale l) {
1947
this(l, new StringBuilder());
1948
}
1949
1950
/**
1951
* Constructs a new formatter with the specified destination and locale.
1952
*
1953
* @param a
1954
* Destination for the formatted output. If {@code a} is
1955
* {@code null} then a {@link StringBuilder} will be created.
1956
*
1957
* @param l
1958
* The {@linkplain java.util.Locale locale} to apply during
1959
* formatting. If {@code l} is {@code null} then no localization
1960
* is applied.
1961
*/
1962
public Formatter(Appendable a, Locale l) {
1963
this(l, nonNullAppendable(a));
1964
}
1965
1966
/**
1967
* Constructs a new formatter with the specified file name.
1968
*
1969
* <p> The charset used is the {@linkplain
1970
* java.nio.charset.Charset#defaultCharset() default charset} for this
1971
* instance of the Java virtual machine.
1972
*
1973
* <p> The locale used is the {@linkplain
1974
* Locale#getDefault(Locale.Category) default locale} for
1975
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1976
* virtual machine.
1977
*
1978
* @param fileName
1979
* The name of the file to use as the destination of this
1980
* formatter. If the file exists then it will be truncated to
1981
* zero size; otherwise, a new file will be created. The output
1982
* will be written to the file and is buffered.
1983
*
1984
* @throws SecurityException
1985
* If a security manager is present and {@link
1986
* SecurityManager#checkWrite checkWrite(fileName)} denies write
1987
* access to the file
1988
*
1989
* @throws FileNotFoundException
1990
* If the given file name does not denote an existing, writable
1991
* regular file and a new regular file of that name cannot be
1992
* created, or if some other error occurs while opening or
1993
* creating the file
1994
*/
1995
public Formatter(String fileName) throws FileNotFoundException {
1996
this(Locale.getDefault(Locale.Category.FORMAT),
1997
new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
1998
}
1999
2000
/**
2001
* Constructs a new formatter with the specified file name and charset.
2002
*
2003
* <p> The locale used is the {@linkplain
2004
* Locale#getDefault(Locale.Category) default locale} for
2005
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2006
* virtual machine.
2007
*
2008
* @param fileName
2009
* The name of the file to use as the destination of this
2010
* formatter. If the file exists then it will be truncated to
2011
* zero size; otherwise, a new file will be created. The output
2012
* will be written to the file and is buffered.
2013
*
2014
* @param csn
2015
* The name of a supported {@linkplain java.nio.charset.Charset
2016
* charset}
2017
*
2018
* @throws FileNotFoundException
2019
* If the given file name does not denote an existing, writable
2020
* regular file and a new regular file of that name cannot be
2021
* created, or if some other error occurs while opening or
2022
* creating the file
2023
*
2024
* @throws SecurityException
2025
* If a security manager is present and {@link
2026
* SecurityManager#checkWrite checkWrite(fileName)} denies write
2027
* access to the file
2028
*
2029
* @throws UnsupportedEncodingException
2030
* If the named charset is not supported
2031
*/
2032
public Formatter(String fileName, String csn)
2033
throws FileNotFoundException, UnsupportedEncodingException
2034
{
2035
this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2036
}
2037
2038
/**
2039
* Constructs a new formatter with the specified file name, charset, and
2040
* locale.
2041
*
2042
* @param fileName
2043
* The name of the file to use as the destination of this
2044
* formatter. If the file exists then it will be truncated to
2045
* zero size; otherwise, a new file will be created. The output
2046
* will be written to the file and is buffered.
2047
*
2048
* @param csn
2049
* The name of a supported {@linkplain java.nio.charset.Charset
2050
* charset}
2051
*
2052
* @param l
2053
* The {@linkplain java.util.Locale locale} to apply during
2054
* formatting. If {@code l} is {@code null} then no localization
2055
* is applied.
2056
*
2057
* @throws FileNotFoundException
2058
* If the given file name does not denote an existing, writable
2059
* regular file and a new regular file of that name cannot be
2060
* created, or if some other error occurs while opening or
2061
* creating the file
2062
*
2063
* @throws SecurityException
2064
* If a security manager is present and {@link
2065
* SecurityManager#checkWrite checkWrite(fileName)} denies write
2066
* access to the file
2067
*
2068
* @throws UnsupportedEncodingException
2069
* If the named charset is not supported
2070
*/
2071
public Formatter(String fileName, String csn, Locale l)
2072
throws FileNotFoundException, UnsupportedEncodingException
2073
{
2074
this(toCharset(csn), l, new File(fileName));
2075
}
2076
2077
/**
2078
* Constructs a new formatter with the specified file.
2079
*
2080
* <p> The charset used is the {@linkplain
2081
* java.nio.charset.Charset#defaultCharset() default charset} for this
2082
* instance of the Java virtual machine.
2083
*
2084
* <p> The locale used is the {@linkplain
2085
* Locale#getDefault(Locale.Category) default locale} for
2086
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2087
* virtual machine.
2088
*
2089
* @param file
2090
* The file to use as the destination of this formatter. If the
2091
* file exists then it will be truncated to zero size; otherwise,
2092
* a new file will be created. The output will be written to the
2093
* file and is buffered.
2094
*
2095
* @throws SecurityException
2096
* If a security manager is present and {@link
2097
* SecurityManager#checkWrite checkWrite(file.getPath())} denies
2098
* write access to the file
2099
*
2100
* @throws FileNotFoundException
2101
* If the given file object does not denote an existing, writable
2102
* regular file and a new regular file of that name cannot be
2103
* created, or if some other error occurs while opening or
2104
* creating the file
2105
*/
2106
public Formatter(File file) throws FileNotFoundException {
2107
this(Locale.getDefault(Locale.Category.FORMAT),
2108
new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2109
}
2110
2111
/**
2112
* Constructs a new formatter with the specified file and charset.
2113
*
2114
* <p> The locale used is the {@linkplain
2115
* Locale#getDefault(Locale.Category) default locale} for
2116
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2117
* virtual machine.
2118
*
2119
* @param file
2120
* The file to use as the destination of this formatter. If the
2121
* file exists then it will be truncated to zero size; otherwise,
2122
* a new file will be created. The output will be written to the
2123
* file and is buffered.
2124
*
2125
* @param csn
2126
* The name of a supported {@linkplain java.nio.charset.Charset
2127
* charset}
2128
*
2129
* @throws FileNotFoundException
2130
* If the given file object does not denote an existing, writable
2131
* regular file and a new regular file of that name cannot be
2132
* created, or if some other error occurs while opening or
2133
* creating the file
2134
*
2135
* @throws SecurityException
2136
* If a security manager is present and {@link
2137
* SecurityManager#checkWrite checkWrite(file.getPath())} denies
2138
* write access to the file
2139
*
2140
* @throws UnsupportedEncodingException
2141
* If the named charset is not supported
2142
*/
2143
public Formatter(File file, String csn)
2144
throws FileNotFoundException, UnsupportedEncodingException
2145
{
2146
this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2147
}
2148
2149
/**
2150
* Constructs a new formatter with the specified file, charset, and
2151
* locale.
2152
*
2153
* @param file
2154
* The file to use as the destination of this formatter. If the
2155
* file exists then it will be truncated to zero size; otherwise,
2156
* a new file will be created. The output will be written to the
2157
* file and is buffered.
2158
*
2159
* @param csn
2160
* The name of a supported {@linkplain java.nio.charset.Charset
2161
* charset}
2162
*
2163
* @param l
2164
* The {@linkplain java.util.Locale locale} to apply during
2165
* formatting. If {@code l} is {@code null} then no localization
2166
* is applied.
2167
*
2168
* @throws FileNotFoundException
2169
* If the given file object does not denote an existing, writable
2170
* regular file and a new regular file of that name cannot be
2171
* created, or if some other error occurs while opening or
2172
* creating the file
2173
*
2174
* @throws SecurityException
2175
* If a security manager is present and {@link
2176
* SecurityManager#checkWrite checkWrite(file.getPath())} denies
2177
* write access to the file
2178
*
2179
* @throws UnsupportedEncodingException
2180
* If the named charset is not supported
2181
*/
2182
public Formatter(File file, String csn, Locale l)
2183
throws FileNotFoundException, UnsupportedEncodingException
2184
{
2185
this(toCharset(csn), l, file);
2186
}
2187
2188
/**
2189
* Constructs a new formatter with the specified print stream.
2190
*
2191
* <p> The locale used is the {@linkplain
2192
* Locale#getDefault(Locale.Category) default locale} for
2193
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2194
* virtual machine.
2195
*
2196
* <p> Characters are written to the given {@link java.io.PrintStream
2197
* PrintStream} object and are therefore encoded using that object's
2198
* charset.
2199
*
2200
* @param ps
2201
* The stream to use as the destination of this formatter.
2202
*/
2203
public Formatter(PrintStream ps) {
2204
this(Locale.getDefault(Locale.Category.FORMAT),
2205
(Appendable)Objects.requireNonNull(ps));
2206
}
2207
2208
/**
2209
* Constructs a new formatter with the specified output stream.
2210
*
2211
* <p> The charset used is the {@linkplain
2212
* java.nio.charset.Charset#defaultCharset() default charset} for this
2213
* instance of the Java virtual machine.
2214
*
2215
* <p> The locale used is the {@linkplain
2216
* Locale#getDefault(Locale.Category) default locale} for
2217
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2218
* virtual machine.
2219
*
2220
* @param os
2221
* The output stream to use as the destination of this formatter.
2222
* The output will be buffered.
2223
*/
2224
public Formatter(OutputStream os) {
2225
this(Locale.getDefault(Locale.Category.FORMAT),
2226
new BufferedWriter(new OutputStreamWriter(os)));
2227
}
2228
2229
/**
2230
* Constructs a new formatter with the specified output stream and
2231
* charset.
2232
*
2233
* <p> The locale used is the {@linkplain
2234
* Locale#getDefault(Locale.Category) default locale} for
2235
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2236
* virtual machine.
2237
*
2238
* @param os
2239
* The output stream to use as the destination of this formatter.
2240
* The output will be buffered.
2241
*
2242
* @param csn
2243
* The name of a supported {@linkplain java.nio.charset.Charset
2244
* charset}
2245
*
2246
* @throws UnsupportedEncodingException
2247
* If the named charset is not supported
2248
*/
2249
public Formatter(OutputStream os, String csn)
2250
throws UnsupportedEncodingException
2251
{
2252
this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2253
}
2254
2255
/**
2256
* Constructs a new formatter with the specified output stream, charset,
2257
* and locale.
2258
*
2259
* @param os
2260
* The output stream to use as the destination of this formatter.
2261
* The output will be buffered.
2262
*
2263
* @param csn
2264
* The name of a supported {@linkplain java.nio.charset.Charset
2265
* charset}
2266
*
2267
* @param l
2268
* The {@linkplain java.util.Locale locale} to apply during
2269
* formatting. If {@code l} is {@code null} then no localization
2270
* is applied.
2271
*
2272
* @throws UnsupportedEncodingException
2273
* If the named charset is not supported
2274
*/
2275
public Formatter(OutputStream os, String csn, Locale l)
2276
throws UnsupportedEncodingException
2277
{
2278
this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2279
}
2280
2281
private static char getZero(Locale l) {
2282
if ((l != null) && !l.equals(Locale.US)) {
2283
DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2284
return dfs.getZeroDigit();
2285
} else {
2286
return '0';
2287
}
2288
}
2289
2290
/**
2291
* Returns the locale set by the construction of this formatter.
2292
*
2293
* <p> The {@link #format(java.util.Locale,String,Object...) format} method
2294
* for this object which has a locale argument does not change this value.
2295
*
2296
* @return {@code null} if no localization is applied, otherwise a
2297
* locale
2298
*
2299
* @throws FormatterClosedException
2300
* If this formatter has been closed by invoking its {@link
2301
* #close()} method
2302
*/
2303
public Locale locale() {
2304
ensureOpen();
2305
return l;
2306
}
2307
2308
/**
2309
* Returns the destination for the output.
2310
*
2311
* @return The destination for the output
2312
*
2313
* @throws FormatterClosedException
2314
* If this formatter has been closed by invoking its {@link
2315
* #close()} method
2316
*/
2317
public Appendable out() {
2318
ensureOpen();
2319
return a;
2320
}
2321
2322
/**
2323
* Returns the result of invoking {@code toString()} on the destination
2324
* for the output. For example, the following code formats text into a
2325
* {@link StringBuilder} then retrieves the resultant string:
2326
*
2327
* <blockquote><pre>
2328
* Formatter f = new Formatter();
2329
* f.format("Last reboot at %tc", lastRebootDate);
2330
* String s = f.toString();
2331
* // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2332
* </pre></blockquote>
2333
*
2334
* <p> An invocation of this method behaves in exactly the same way as the
2335
* invocation
2336
*
2337
* <pre>
2338
* out().toString() </pre>
2339
*
2340
* <p> Depending on the specification of {@code toString} for the {@link
2341
* Appendable}, the returned string may or may not contain the characters
2342
* written to the destination. For instance, buffers typically return
2343
* their contents in {@code toString()}, but streams cannot since the
2344
* data is discarded.
2345
*
2346
* @return The result of invoking {@code toString()} on the destination
2347
* for the output
2348
*
2349
* @throws FormatterClosedException
2350
* If this formatter has been closed by invoking its {@link
2351
* #close()} method
2352
*/
2353
public String toString() {
2354
ensureOpen();
2355
return a.toString();
2356
}
2357
2358
/**
2359
* Flushes this formatter. If the destination implements the {@link
2360
* java.io.Flushable} interface, its {@code flush} method will be invoked.
2361
*
2362
* <p> Flushing a formatter writes any buffered output in the destination
2363
* to the underlying stream.
2364
*
2365
* @throws FormatterClosedException
2366
* If this formatter has been closed by invoking its {@link
2367
* #close()} method
2368
*/
2369
public void flush() {
2370
ensureOpen();
2371
if (a instanceof Flushable) {
2372
try {
2373
((Flushable)a).flush();
2374
} catch (IOException ioe) {
2375
lastException = ioe;
2376
}
2377
}
2378
}
2379
2380
/**
2381
* Closes this formatter. If the destination implements the {@link
2382
* java.io.Closeable} interface, its {@code close} method will be invoked.
2383
*
2384
* <p> Closing a formatter allows it to release resources it may be holding
2385
* (such as open files). If the formatter is already closed, then invoking
2386
* this method has no effect.
2387
*
2388
* <p> Attempting to invoke any methods except {@link #ioException()} in
2389
* this formatter after it has been closed will result in a {@link
2390
* FormatterClosedException}.
2391
*/
2392
public void close() {
2393
if (a == null)
2394
return;
2395
try {
2396
if (a instanceof Closeable)
2397
((Closeable)a).close();
2398
} catch (IOException ioe) {
2399
lastException = ioe;
2400
} finally {
2401
a = null;
2402
}
2403
}
2404
2405
private void ensureOpen() {
2406
if (a == null)
2407
throw new FormatterClosedException();
2408
}
2409
2410
/**
2411
* Returns the {@code IOException} last thrown by this formatter's {@link
2412
* Appendable}.
2413
*
2414
* <p> If the destination's {@code append()} method never throws
2415
* {@code IOException}, then this method will always return {@code null}.
2416
*
2417
* @return The last exception thrown by the Appendable or {@code null} if
2418
* no such exception exists.
2419
*/
2420
public IOException ioException() {
2421
return lastException;
2422
}
2423
2424
/**
2425
* Writes a formatted string to this object's destination using the
2426
* specified format string and arguments. The locale used is the one
2427
* defined during the construction of this formatter.
2428
*
2429
* @param format
2430
* A format string as described in <a href="#syntax">Format string
2431
* syntax</a>.
2432
*
2433
* @param args
2434
* Arguments referenced by the format specifiers in the format
2435
* string. If there are more arguments than format specifiers, the
2436
* extra arguments are ignored. The maximum number of arguments is
2437
* limited by the maximum dimension of a Java array as defined by
2438
* <cite>The Java&trade; Virtual Machine Specification</cite>.
2439
*
2440
* @throws IllegalFormatException
2441
* If a format string contains an illegal syntax, a format
2442
* specifier that is incompatible with the given arguments,
2443
* insufficient arguments given the format string, or other
2444
* illegal conditions. For specification of all possible
2445
* formatting errors, see the <a href="#detail">Details</a>
2446
* section of the formatter class specification.
2447
*
2448
* @throws FormatterClosedException
2449
* If this formatter has been closed by invoking its {@link
2450
* #close()} method
2451
*
2452
* @return This formatter
2453
*/
2454
public Formatter format(String format, Object ... args) {
2455
return format(l, format, args);
2456
}
2457
2458
/**
2459
* Writes a formatted string to this object's destination using the
2460
* specified locale, format string, and arguments.
2461
*
2462
* @param l
2463
* The {@linkplain java.util.Locale locale} to apply during
2464
* formatting. If {@code l} is {@code null} then no localization
2465
* is applied. This does not change this object's locale that was
2466
* set during construction.
2467
*
2468
* @param format
2469
* A format string as described in <a href="#syntax">Format string
2470
* syntax</a>
2471
*
2472
* @param args
2473
* Arguments referenced by the format specifiers in the format
2474
* string. If there are more arguments than format specifiers, the
2475
* extra arguments are ignored. The maximum number of arguments is
2476
* limited by the maximum dimension of a Java array as defined by
2477
* <cite>The Java&trade; Virtual Machine Specification</cite>.
2478
*
2479
* @throws IllegalFormatException
2480
* If a format string contains an illegal syntax, a format
2481
* specifier that is incompatible with the given arguments,
2482
* insufficient arguments given the format string, or other
2483
* illegal conditions. For specification of all possible
2484
* formatting errors, see the <a href="#detail">Details</a>
2485
* section of the formatter class specification.
2486
*
2487
* @throws FormatterClosedException
2488
* If this formatter has been closed by invoking its {@link
2489
* #close()} method
2490
*
2491
* @return This formatter
2492
*/
2493
public Formatter format(Locale l, String format, Object ... args) {
2494
ensureOpen();
2495
2496
// index of last argument referenced
2497
int last = -1;
2498
// last ordinary index
2499
int lasto = -1;
2500
2501
FormatString[] fsa = parse(format);
2502
for (int i = 0; i < fsa.length; i++) {
2503
FormatString fs = fsa[i];
2504
int index = fs.index();
2505
try {
2506
switch (index) {
2507
case -2: // fixed string, "%n", or "%%"
2508
fs.print(null, l);
2509
break;
2510
case -1: // relative index
2511
if (last < 0 || (args != null && last > args.length - 1))
2512
throw new MissingFormatArgumentException(fs.toString());
2513
fs.print((args == null ? null : args[last]), l);
2514
break;
2515
case 0: // ordinary index
2516
lasto++;
2517
last = lasto;
2518
if (args != null && lasto > args.length - 1)
2519
throw new MissingFormatArgumentException(fs.toString());
2520
fs.print((args == null ? null : args[lasto]), l);
2521
break;
2522
default: // explicit index
2523
last = index - 1;
2524
if (args != null && last > args.length - 1)
2525
throw new MissingFormatArgumentException(fs.toString());
2526
fs.print((args == null ? null : args[last]), l);
2527
break;
2528
}
2529
} catch (IOException x) {
2530
lastException = x;
2531
}
2532
}
2533
return this;
2534
}
2535
2536
// %[argument_index$][flags][width][.precision][t]conversion
2537
private static final String formatSpecifier
2538
= "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2539
2540
private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2541
2542
/**
2543
* Finds format specifiers in the format string.
2544
*/
2545
private FormatString[] parse(String s) {
2546
ArrayList<FormatString> al = new ArrayList<>();
2547
Matcher m = fsPattern.matcher(s);
2548
for (int i = 0, len = s.length(); i < len; ) {
2549
if (m.find(i)) {
2550
// Anything between the start of the string and the beginning
2551
// of the format specifier is either fixed text or contains
2552
// an invalid format string.
2553
if (m.start() != i) {
2554
// Make sure we didn't miss any invalid format specifiers
2555
checkText(s, i, m.start());
2556
// Assume previous characters were fixed text
2557
al.add(new FixedString(s.substring(i, m.start())));
2558
}
2559
2560
al.add(new FormatSpecifier(m));
2561
i = m.end();
2562
} else {
2563
// No more valid format specifiers. Check for possible invalid
2564
// format specifiers.
2565
checkText(s, i, len);
2566
// The rest of the string is fixed text
2567
al.add(new FixedString(s.substring(i)));
2568
break;
2569
}
2570
}
2571
return al.toArray(new FormatString[al.size()]);
2572
}
2573
2574
private static void checkText(String s, int start, int end) {
2575
for (int i = start; i < end; i++) {
2576
// Any '%' found in the region starts an invalid format specifier.
2577
if (s.charAt(i) == '%') {
2578
char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2579
throw new UnknownFormatConversionException(String.valueOf(c));
2580
}
2581
}
2582
}
2583
2584
private interface FormatString {
2585
int index();
2586
void print(Object arg, Locale l) throws IOException;
2587
String toString();
2588
}
2589
2590
private class FixedString implements FormatString {
2591
private String s;
2592
FixedString(String s) { this.s = s; }
2593
public int index() { return -2; }
2594
public void print(Object arg, Locale l)
2595
throws IOException { a.append(s); }
2596
public String toString() { return s; }
2597
}
2598
2599
/**
2600
* Enum for {@code BigDecimal} formatting.
2601
*/
2602
public enum BigDecimalLayoutForm {
2603
/**
2604
* Format the {@code BigDecimal} in computerized scientific notation.
2605
*/
2606
SCIENTIFIC,
2607
2608
/**
2609
* Format the {@code BigDecimal} as a decimal number.
2610
*/
2611
DECIMAL_FLOAT
2612
};
2613
2614
private class FormatSpecifier implements FormatString {
2615
private int index = -1;
2616
private Flags f = Flags.NONE;
2617
private int width;
2618
private int precision;
2619
private boolean dt = false;
2620
private char c;
2621
2622
private int index(String s) {
2623
if (s != null) {
2624
try {
2625
index = Integer.parseInt(s.substring(0, s.length() - 1));
2626
} catch (NumberFormatException x) {
2627
assert(false);
2628
}
2629
} else {
2630
index = 0;
2631
}
2632
return index;
2633
}
2634
2635
public int index() {
2636
return index;
2637
}
2638
2639
private Flags flags(String s) {
2640
f = Flags.parse(s);
2641
if (f.contains(Flags.PREVIOUS))
2642
index = -1;
2643
return f;
2644
}
2645
2646
Flags flags() {
2647
return f;
2648
}
2649
2650
private int width(String s) {
2651
width = -1;
2652
if (s != null) {
2653
try {
2654
width = Integer.parseInt(s);
2655
if (width < 0)
2656
throw new IllegalFormatWidthException(width);
2657
} catch (NumberFormatException x) {
2658
assert(false);
2659
}
2660
}
2661
return width;
2662
}
2663
2664
int width() {
2665
return width;
2666
}
2667
2668
private int precision(String s) {
2669
precision = -1;
2670
if (s != null) {
2671
try {
2672
// remove the '.'
2673
precision = Integer.parseInt(s.substring(1));
2674
if (precision < 0)
2675
throw new IllegalFormatPrecisionException(precision);
2676
} catch (NumberFormatException x) {
2677
assert(false);
2678
}
2679
}
2680
return precision;
2681
}
2682
2683
int precision() {
2684
return precision;
2685
}
2686
2687
private char conversion(String s) {
2688
c = s.charAt(0);
2689
if (!dt) {
2690
if (!Conversion.isValid(c))
2691
throw new UnknownFormatConversionException(String.valueOf(c));
2692
if (Character.isUpperCase(c))
2693
f.add(Flags.UPPERCASE);
2694
c = Character.toLowerCase(c);
2695
if (Conversion.isText(c))
2696
index = -2;
2697
}
2698
return c;
2699
}
2700
2701
private char conversion() {
2702
return c;
2703
}
2704
2705
FormatSpecifier(Matcher m) {
2706
int idx = 1;
2707
2708
index(m.group(idx++));
2709
flags(m.group(idx++));
2710
width(m.group(idx++));
2711
precision(m.group(idx++));
2712
2713
String tT = m.group(idx++);
2714
if (tT != null) {
2715
dt = true;
2716
if (tT.equals("T"))
2717
f.add(Flags.UPPERCASE);
2718
}
2719
2720
conversion(m.group(idx));
2721
2722
if (dt)
2723
checkDateTime();
2724
else if (Conversion.isGeneral(c))
2725
checkGeneral();
2726
else if (Conversion.isCharacter(c))
2727
checkCharacter();
2728
else if (Conversion.isInteger(c))
2729
checkInteger();
2730
else if (Conversion.isFloat(c))
2731
checkFloat();
2732
else if (Conversion.isText(c))
2733
checkText();
2734
else
2735
throw new UnknownFormatConversionException(String.valueOf(c));
2736
}
2737
2738
public void print(Object arg, Locale l) throws IOException {
2739
if (dt) {
2740
printDateTime(arg, l);
2741
return;
2742
}
2743
switch(c) {
2744
case Conversion.DECIMAL_INTEGER:
2745
case Conversion.OCTAL_INTEGER:
2746
case Conversion.HEXADECIMAL_INTEGER:
2747
printInteger(arg, l);
2748
break;
2749
case Conversion.SCIENTIFIC:
2750
case Conversion.GENERAL:
2751
case Conversion.DECIMAL_FLOAT:
2752
case Conversion.HEXADECIMAL_FLOAT:
2753
printFloat(arg, l);
2754
break;
2755
case Conversion.CHARACTER:
2756
case Conversion.CHARACTER_UPPER:
2757
printCharacter(arg);
2758
break;
2759
case Conversion.BOOLEAN:
2760
printBoolean(arg);
2761
break;
2762
case Conversion.STRING:
2763
printString(arg, l);
2764
break;
2765
case Conversion.HASHCODE:
2766
printHashCode(arg);
2767
break;
2768
case Conversion.LINE_SEPARATOR:
2769
a.append(System.lineSeparator());
2770
break;
2771
case Conversion.PERCENT_SIGN:
2772
a.append('%');
2773
break;
2774
default:
2775
assert false;
2776
}
2777
}
2778
2779
private void printInteger(Object arg, Locale l) throws IOException {
2780
if (arg == null)
2781
print("null");
2782
else if (arg instanceof Byte)
2783
print(((Byte)arg).byteValue(), l);
2784
else if (arg instanceof Short)
2785
print(((Short)arg).shortValue(), l);
2786
else if (arg instanceof Integer)
2787
print(((Integer)arg).intValue(), l);
2788
else if (arg instanceof Long)
2789
print(((Long)arg).longValue(), l);
2790
else if (arg instanceof BigInteger)
2791
print(((BigInteger)arg), l);
2792
else
2793
failConversion(c, arg);
2794
}
2795
2796
private void printFloat(Object arg, Locale l) throws IOException {
2797
if (arg == null)
2798
print("null");
2799
else if (arg instanceof Float)
2800
print(((Float)arg).floatValue(), l);
2801
else if (arg instanceof Double)
2802
print(((Double)arg).doubleValue(), l);
2803
else if (arg instanceof BigDecimal)
2804
print(((BigDecimal)arg), l);
2805
else
2806
failConversion(c, arg);
2807
}
2808
2809
private void printDateTime(Object arg, Locale l) throws IOException {
2810
if (arg == null) {
2811
print("null");
2812
return;
2813
}
2814
Calendar cal = null;
2815
2816
// Instead of Calendar.setLenient(true), perhaps we should
2817
// wrap the IllegalArgumentException that might be thrown?
2818
if (arg instanceof Long) {
2819
// Note that the following method uses an instance of the
2820
// default time zone (TimeZone.getDefaultRef().
2821
cal = Calendar.getInstance(l == null ? Locale.US : l);
2822
cal.setTimeInMillis((Long)arg);
2823
} else if (arg instanceof Date) {
2824
// Note that the following method uses an instance of the
2825
// default time zone (TimeZone.getDefaultRef().
2826
cal = Calendar.getInstance(l == null ? Locale.US : l);
2827
cal.setTime((Date)arg);
2828
} else if (arg instanceof Calendar) {
2829
cal = (Calendar) ((Calendar) arg).clone();
2830
cal.setLenient(true);
2831
} else if (arg instanceof TemporalAccessor) {
2832
print((TemporalAccessor) arg, c, l);
2833
return;
2834
} else {
2835
failConversion(c, arg);
2836
}
2837
// Use the provided locale so that invocations of
2838
// localizedMagnitude() use optimizations for null.
2839
print(cal, c, l);
2840
}
2841
2842
private void printCharacter(Object arg) throws IOException {
2843
if (arg == null) {
2844
print("null");
2845
return;
2846
}
2847
String s = null;
2848
if (arg instanceof Character) {
2849
s = ((Character)arg).toString();
2850
} else if (arg instanceof Byte) {
2851
byte i = ((Byte)arg).byteValue();
2852
if (Character.isValidCodePoint(i))
2853
s = new String(Character.toChars(i));
2854
else
2855
throw new IllegalFormatCodePointException(i);
2856
} else if (arg instanceof Short) {
2857
short i = ((Short)arg).shortValue();
2858
if (Character.isValidCodePoint(i))
2859
s = new String(Character.toChars(i));
2860
else
2861
throw new IllegalFormatCodePointException(i);
2862
} else if (arg instanceof Integer) {
2863
int i = ((Integer)arg).intValue();
2864
if (Character.isValidCodePoint(i))
2865
s = new String(Character.toChars(i));
2866
else
2867
throw new IllegalFormatCodePointException(i);
2868
} else {
2869
failConversion(c, arg);
2870
}
2871
print(s);
2872
}
2873
2874
private void printString(Object arg, Locale l) throws IOException {
2875
if (arg instanceof Formattable) {
2876
Formatter fmt = Formatter.this;
2877
if (fmt.locale() != l)
2878
fmt = new Formatter(fmt.out(), l);
2879
((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2880
} else {
2881
if (f.contains(Flags.ALTERNATE))
2882
failMismatch(Flags.ALTERNATE, 's');
2883
if (arg == null)
2884
print("null");
2885
else
2886
print(arg.toString());
2887
}
2888
}
2889
2890
private void printBoolean(Object arg) throws IOException {
2891
String s;
2892
if (arg != null)
2893
s = ((arg instanceof Boolean)
2894
? ((Boolean)arg).toString()
2895
: Boolean.toString(true));
2896
else
2897
s = Boolean.toString(false);
2898
print(s);
2899
}
2900
2901
private void printHashCode(Object arg) throws IOException {
2902
String s = (arg == null
2903
? "null"
2904
: Integer.toHexString(arg.hashCode()));
2905
print(s);
2906
}
2907
2908
private void print(String s) throws IOException {
2909
if (precision != -1 && precision < s.length())
2910
s = s.substring(0, precision);
2911
if (f.contains(Flags.UPPERCASE))
2912
s = s.toUpperCase();
2913
a.append(justify(s));
2914
}
2915
2916
private String justify(String s) {
2917
if (width == -1)
2918
return s;
2919
StringBuilder sb = new StringBuilder();
2920
boolean pad = f.contains(Flags.LEFT_JUSTIFY);
2921
int sp = width - s.length();
2922
if (!pad)
2923
for (int i = 0; i < sp; i++) sb.append(' ');
2924
sb.append(s);
2925
if (pad)
2926
for (int i = 0; i < sp; i++) sb.append(' ');
2927
return sb.toString();
2928
}
2929
2930
public String toString() {
2931
StringBuilder sb = new StringBuilder("%");
2932
// Flags.UPPERCASE is set internally for legal conversions.
2933
Flags dupf = f.dup().remove(Flags.UPPERCASE);
2934
sb.append(dupf.toString());
2935
if (index > 0)
2936
sb.append(index).append('$');
2937
if (width != -1)
2938
sb.append(width);
2939
if (precision != -1)
2940
sb.append('.').append(precision);
2941
if (dt)
2942
sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
2943
sb.append(f.contains(Flags.UPPERCASE)
2944
? Character.toUpperCase(c) : c);
2945
return sb.toString();
2946
}
2947
2948
private void checkGeneral() {
2949
if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
2950
&& f.contains(Flags.ALTERNATE))
2951
failMismatch(Flags.ALTERNATE, c);
2952
// '-' requires a width
2953
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2954
throw new MissingFormatWidthException(toString());
2955
checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
2956
Flags.GROUP, Flags.PARENTHESES);
2957
}
2958
2959
private void checkDateTime() {
2960
if (precision != -1)
2961
throw new IllegalFormatPrecisionException(precision);
2962
if (!DateTime.isValid(c))
2963
throw new UnknownFormatConversionException("t" + c);
2964
checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2965
Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2966
// '-' requires a width
2967
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2968
throw new MissingFormatWidthException(toString());
2969
}
2970
2971
private void checkCharacter() {
2972
if (precision != -1)
2973
throw new IllegalFormatPrecisionException(precision);
2974
checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2975
Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2976
// '-' requires a width
2977
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2978
throw new MissingFormatWidthException(toString());
2979
}
2980
2981
private void checkInteger() {
2982
checkNumeric();
2983
if (precision != -1)
2984
throw new IllegalFormatPrecisionException(precision);
2985
2986
if (c == Conversion.DECIMAL_INTEGER)
2987
checkBadFlags(Flags.ALTERNATE);
2988
else if (c == Conversion.OCTAL_INTEGER)
2989
checkBadFlags(Flags.GROUP);
2990
else
2991
checkBadFlags(Flags.GROUP);
2992
}
2993
2994
private void checkBadFlags(Flags ... badFlags) {
2995
for (int i = 0; i < badFlags.length; i++)
2996
if (f.contains(badFlags[i]))
2997
failMismatch(badFlags[i], c);
2998
}
2999
3000
private void checkFloat() {
3001
checkNumeric();
3002
if (c == Conversion.DECIMAL_FLOAT) {
3003
} else if (c == Conversion.HEXADECIMAL_FLOAT) {
3004
checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3005
} else if (c == Conversion.SCIENTIFIC) {
3006
checkBadFlags(Flags.GROUP);
3007
} else if (c == Conversion.GENERAL) {
3008
checkBadFlags(Flags.ALTERNATE);
3009
}
3010
}
3011
3012
private void checkNumeric() {
3013
if (width != -1 && width < 0)
3014
throw new IllegalFormatWidthException(width);
3015
3016
if (precision != -1 && precision < 0)
3017
throw new IllegalFormatPrecisionException(precision);
3018
3019
// '-' and '0' require a width
3020
if (width == -1
3021
&& (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3022
throw new MissingFormatWidthException(toString());
3023
3024
// bad combination
3025
if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3026
|| (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3027
throw new IllegalFormatFlagsException(f.toString());
3028
}
3029
3030
private void checkText() {
3031
if (precision != -1)
3032
throw new IllegalFormatPrecisionException(precision);
3033
switch (c) {
3034
case Conversion.PERCENT_SIGN:
3035
if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3036
&& f.valueOf() != Flags.NONE.valueOf())
3037
throw new IllegalFormatFlagsException(f.toString());
3038
// '-' requires a width
3039
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3040
throw new MissingFormatWidthException(toString());
3041
break;
3042
case Conversion.LINE_SEPARATOR:
3043
if (width != -1)
3044
throw new IllegalFormatWidthException(width);
3045
if (f.valueOf() != Flags.NONE.valueOf())
3046
throw new IllegalFormatFlagsException(f.toString());
3047
break;
3048
default:
3049
assert false;
3050
}
3051
}
3052
3053
private void print(byte value, Locale l) throws IOException {
3054
long v = value;
3055
if (value < 0
3056
&& (c == Conversion.OCTAL_INTEGER
3057
|| c == Conversion.HEXADECIMAL_INTEGER)) {
3058
v += (1L << 8);
3059
assert v >= 0 : v;
3060
}
3061
print(v, l);
3062
}
3063
3064
private void print(short value, Locale l) throws IOException {
3065
long v = value;
3066
if (value < 0
3067
&& (c == Conversion.OCTAL_INTEGER
3068
|| c == Conversion.HEXADECIMAL_INTEGER)) {
3069
v += (1L << 16);
3070
assert v >= 0 : v;
3071
}
3072
print(v, l);
3073
}
3074
3075
private void print(int value, Locale l) throws IOException {
3076
long v = value;
3077
if (value < 0
3078
&& (c == Conversion.OCTAL_INTEGER
3079
|| c == Conversion.HEXADECIMAL_INTEGER)) {
3080
v += (1L << 32);
3081
assert v >= 0 : v;
3082
}
3083
print(v, l);
3084
}
3085
3086
private void print(long value, Locale l) throws IOException {
3087
3088
StringBuilder sb = new StringBuilder();
3089
3090
if (c == Conversion.DECIMAL_INTEGER) {
3091
boolean neg = value < 0;
3092
char[] va;
3093
if (value < 0)
3094
va = Long.toString(value, 10).substring(1).toCharArray();
3095
else
3096
va = Long.toString(value, 10).toCharArray();
3097
3098
// leading sign indicator
3099
leadingSign(sb, neg);
3100
3101
// the value
3102
localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3103
3104
// trailing sign indicator
3105
trailingSign(sb, neg);
3106
} else if (c == Conversion.OCTAL_INTEGER) {
3107
checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3108
Flags.PLUS);
3109
String s = Long.toOctalString(value);
3110
int len = (f.contains(Flags.ALTERNATE)
3111
? s.length() + 1
3112
: s.length());
3113
3114
// apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3115
if (f.contains(Flags.ALTERNATE))
3116
sb.append('0');
3117
if (f.contains(Flags.ZERO_PAD))
3118
for (int i = 0; i < width - len; i++) sb.append('0');
3119
sb.append(s);
3120
} else if (c == Conversion.HEXADECIMAL_INTEGER) {
3121
checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3122
Flags.PLUS);
3123
String s = Long.toHexString(value);
3124
int len = (f.contains(Flags.ALTERNATE)
3125
? s.length() + 2
3126
: s.length());
3127
3128
// apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3129
if (f.contains(Flags.ALTERNATE))
3130
sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3131
if (f.contains(Flags.ZERO_PAD))
3132
for (int i = 0; i < width - len; i++) sb.append('0');
3133
if (f.contains(Flags.UPPERCASE))
3134
s = s.toUpperCase();
3135
sb.append(s);
3136
}
3137
3138
// justify based on width
3139
a.append(justify(sb.toString()));
3140
}
3141
3142
// neg := val < 0
3143
private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3144
if (!neg) {
3145
if (f.contains(Flags.PLUS)) {
3146
sb.append('+');
3147
} else if (f.contains(Flags.LEADING_SPACE)) {
3148
sb.append(' ');
3149
}
3150
} else {
3151
if (f.contains(Flags.PARENTHESES))
3152
sb.append('(');
3153
else
3154
sb.append('-');
3155
}
3156
return sb;
3157
}
3158
3159
// neg := val < 0
3160
private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3161
if (neg && f.contains(Flags.PARENTHESES))
3162
sb.append(')');
3163
return sb;
3164
}
3165
3166
private void print(BigInteger value, Locale l) throws IOException {
3167
StringBuilder sb = new StringBuilder();
3168
boolean neg = value.signum() == -1;
3169
BigInteger v = value.abs();
3170
3171
// leading sign indicator
3172
leadingSign(sb, neg);
3173
3174
// the value
3175
if (c == Conversion.DECIMAL_INTEGER) {
3176
char[] va = v.toString().toCharArray();
3177
localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3178
} else if (c == Conversion.OCTAL_INTEGER) {
3179
String s = v.toString(8);
3180
3181
int len = s.length() + sb.length();
3182
if (neg && f.contains(Flags.PARENTHESES))
3183
len++;
3184
3185
// apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3186
if (f.contains(Flags.ALTERNATE)) {
3187
len++;
3188
sb.append('0');
3189
}
3190
if (f.contains(Flags.ZERO_PAD)) {
3191
for (int i = 0; i < width - len; i++)
3192
sb.append('0');
3193
}
3194
sb.append(s);
3195
} else if (c == Conversion.HEXADECIMAL_INTEGER) {
3196
String s = v.toString(16);
3197
3198
int len = s.length() + sb.length();
3199
if (neg && f.contains(Flags.PARENTHESES))
3200
len++;
3201
3202
// apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3203
if (f.contains(Flags.ALTERNATE)) {
3204
len += 2;
3205
sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3206
}
3207
if (f.contains(Flags.ZERO_PAD))
3208
for (int i = 0; i < width - len; i++)
3209
sb.append('0');
3210
if (f.contains(Flags.UPPERCASE))
3211
s = s.toUpperCase();
3212
sb.append(s);
3213
}
3214
3215
// trailing sign indicator
3216
trailingSign(sb, (value.signum() == -1));
3217
3218
// justify based on width
3219
a.append(justify(sb.toString()));
3220
}
3221
3222
private void print(float value, Locale l) throws IOException {
3223
print((double) value, l);
3224
}
3225
3226
private void print(double value, Locale l) throws IOException {
3227
StringBuilder sb = new StringBuilder();
3228
boolean neg = Double.compare(value, 0.0) == -1;
3229
3230
if (!Double.isNaN(value)) {
3231
double v = Math.abs(value);
3232
3233
// leading sign indicator
3234
leadingSign(sb, neg);
3235
3236
// the value
3237
if (!Double.isInfinite(v))
3238
print(sb, v, l, f, c, precision, neg);
3239
else
3240
sb.append(f.contains(Flags.UPPERCASE)
3241
? "INFINITY" : "Infinity");
3242
3243
// trailing sign indicator
3244
trailingSign(sb, neg);
3245
} else {
3246
sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3247
}
3248
3249
// justify based on width
3250
a.append(justify(sb.toString()));
3251
}
3252
3253
// !Double.isInfinite(value) && !Double.isNaN(value)
3254
private void print(StringBuilder sb, double value, Locale l,
3255
Flags f, char c, int precision, boolean neg)
3256
throws IOException
3257
{
3258
if (c == Conversion.SCIENTIFIC) {
3259
// Create a new FormattedFloatingDecimal with the desired
3260
// precision.
3261
int prec = (precision == -1 ? 6 : precision);
3262
3263
FormattedFloatingDecimal fd
3264
= FormattedFloatingDecimal.valueOf(value, prec,
3265
FormattedFloatingDecimal.Form.SCIENTIFIC);
3266
3267
char[] mant = addZeros(fd.getMantissa(), prec);
3268
3269
// If the precision is zero and the '#' flag is set, add the
3270
// requested decimal point.
3271
if (f.contains(Flags.ALTERNATE) && (prec == 0))
3272
mant = addDot(mant);
3273
3274
char[] exp = (value == 0.0)
3275
? new char[] {'+','0','0'} : fd.getExponent();
3276
3277
int newW = width;
3278
if (width != -1)
3279
newW = adjustWidth(width - exp.length - 1, f, neg);
3280
localizedMagnitude(sb, mant, f, newW, l);
3281
3282
sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3283
3284
Flags flags = f.dup().remove(Flags.GROUP);
3285
char sign = exp[0];
3286
assert(sign == '+' || sign == '-');
3287
sb.append(sign);
3288
3289
char[] tmp = new char[exp.length - 1];
3290
System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3291
sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3292
} else if (c == Conversion.DECIMAL_FLOAT) {
3293
// Create a new FormattedFloatingDecimal with the desired
3294
// precision.
3295
int prec = (precision == -1 ? 6 : precision);
3296
3297
FormattedFloatingDecimal fd
3298
= FormattedFloatingDecimal.valueOf(value, prec,
3299
FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3300
3301
char[] mant = addZeros(fd.getMantissa(), prec);
3302
3303
// If the precision is zero and the '#' flag is set, add the
3304
// requested decimal point.
3305
if (f.contains(Flags.ALTERNATE) && (prec == 0))
3306
mant = addDot(mant);
3307
3308
int newW = width;
3309
if (width != -1)
3310
newW = adjustWidth(width, f, neg);
3311
localizedMagnitude(sb, mant, f, newW, l);
3312
} else if (c == Conversion.GENERAL) {
3313
int prec = precision;
3314
if (precision == -1)
3315
prec = 6;
3316
else if (precision == 0)
3317
prec = 1;
3318
3319
char[] exp;
3320
char[] mant;
3321
int expRounded;
3322
if (value == 0.0) {
3323
exp = null;
3324
mant = new char[] {'0'};
3325
expRounded = 0;
3326
} else {
3327
FormattedFloatingDecimal fd
3328
= FormattedFloatingDecimal.valueOf(value, prec,
3329
FormattedFloatingDecimal.Form.GENERAL);
3330
exp = fd.getExponent();
3331
mant = fd.getMantissa();
3332
expRounded = fd.getExponentRounded();
3333
}
3334
3335
if (exp != null) {
3336
prec -= 1;
3337
} else {
3338
prec -= expRounded + 1;
3339
}
3340
3341
mant = addZeros(mant, prec);
3342
// If the precision is zero and the '#' flag is set, add the
3343
// requested decimal point.
3344
if (f.contains(Flags.ALTERNATE) && (prec == 0))
3345
mant = addDot(mant);
3346
3347
int newW = width;
3348
if (width != -1) {
3349
if (exp != null)
3350
newW = adjustWidth(width - exp.length - 1, f, neg);
3351
else
3352
newW = adjustWidth(width, f, neg);
3353
}
3354
localizedMagnitude(sb, mant, f, newW, l);
3355
3356
if (exp != null) {
3357
sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3358
3359
Flags flags = f.dup().remove(Flags.GROUP);
3360
char sign = exp[0];
3361
assert(sign == '+' || sign == '-');
3362
sb.append(sign);
3363
3364
char[] tmp = new char[exp.length - 1];
3365
System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3366
sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3367
}
3368
} else if (c == Conversion.HEXADECIMAL_FLOAT) {
3369
int prec = precision;
3370
if (precision == -1)
3371
// assume that we want all of the digits
3372
prec = 0;
3373
else if (precision == 0)
3374
prec = 1;
3375
3376
String s = hexDouble(value, prec);
3377
3378
char[] va;
3379
boolean upper = f.contains(Flags.UPPERCASE);
3380
sb.append(upper ? "0X" : "0x");
3381
3382
if (f.contains(Flags.ZERO_PAD))
3383
for (int i = 0; i < width - s.length() - 2; i++)
3384
sb.append('0');
3385
3386
int idx = s.indexOf('p');
3387
va = s.substring(0, idx).toCharArray();
3388
if (upper) {
3389
String tmp = new String(va);
3390
// don't localize hex
3391
tmp = tmp.toUpperCase(Locale.US);
3392
va = tmp.toCharArray();
3393
}
3394
sb.append(prec != 0 ? addZeros(va, prec) : va);
3395
sb.append(upper ? 'P' : 'p');
3396
sb.append(s.substring(idx+1));
3397
}
3398
}
3399
3400
// Add zeros to the requested precision.
3401
private char[] addZeros(char[] v, int prec) {
3402
// Look for the dot. If we don't find one, the we'll need to add
3403
// it before we add the zeros.
3404
int i;
3405
for (i = 0; i < v.length; i++) {
3406
if (v[i] == '.')
3407
break;
3408
}
3409
boolean needDot = false;
3410
if (i == v.length) {
3411
needDot = true;
3412
}
3413
3414
// Determine existing precision.
3415
int outPrec = v.length - i - (needDot ? 0 : 1);
3416
assert (outPrec <= prec);
3417
if (outPrec == prec)
3418
return v;
3419
3420
// Create new array with existing contents.
3421
char[] tmp
3422
= new char[v.length + prec - outPrec + (needDot ? 1 : 0)];
3423
System.arraycopy(v, 0, tmp, 0, v.length);
3424
3425
// Add dot if previously determined to be necessary.
3426
int start = v.length;
3427
if (needDot) {
3428
tmp[v.length] = '.';
3429
start++;
3430
}
3431
3432
// Add zeros.
3433
for (int j = start; j < tmp.length; j++)
3434
tmp[j] = '0';
3435
3436
return tmp;
3437
}
3438
3439
// Method assumes that d > 0.
3440
private String hexDouble(double d, int prec) {
3441
// Let Double.toHexString handle simple cases
3442
if(!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13)
3443
// remove "0x"
3444
return Double.toHexString(d).substring(2);
3445
else {
3446
assert(prec >= 1 && prec <= 12);
3447
3448
int exponent = Math.getExponent(d);
3449
boolean subnormal
3450
= (exponent == DoubleConsts.MIN_EXPONENT - 1);
3451
3452
// If this is subnormal input so normalize (could be faster to
3453
// do as integer operation).
3454
if (subnormal) {
3455
scaleUp = Math.scalb(1.0, 54);
3456
d *= scaleUp;
3457
// Calculate the exponent. This is not just exponent + 54
3458
// since the former is not the normalized exponent.
3459
exponent = Math.getExponent(d);
3460
assert exponent >= DoubleConsts.MIN_EXPONENT &&
3461
exponent <= DoubleConsts.MAX_EXPONENT: exponent;
3462
}
3463
3464
int precision = 1 + prec*4;
3465
int shiftDistance
3466
= DoubleConsts.SIGNIFICAND_WIDTH - precision;
3467
assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3468
3469
long doppel = Double.doubleToLongBits(d);
3470
// Deterime the number of bits to keep.
3471
long newSignif
3472
= (doppel & (DoubleConsts.EXP_BIT_MASK
3473
| DoubleConsts.SIGNIF_BIT_MASK))
3474
>> shiftDistance;
3475
// Bits to round away.
3476
long roundingBits = doppel & ~(~0L << shiftDistance);
3477
3478
// To decide how to round, look at the low-order bit of the
3479
// working significand, the highest order discarded bit (the
3480
// round bit) and whether any of the lower order discarded bits
3481
// are nonzero (the sticky bit).
3482
3483
boolean leastZero = (newSignif & 0x1L) == 0L;
3484
boolean round
3485
= ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3486
boolean sticky = shiftDistance > 1 &&
3487
(~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3488
if((leastZero && round && sticky) || (!leastZero && round)) {
3489
newSignif++;
3490
}
3491
3492
long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3493
newSignif = signBit | (newSignif << shiftDistance);
3494
double result = Double.longBitsToDouble(newSignif);
3495
3496
if (Double.isInfinite(result) ) {
3497
// Infinite result generated by rounding
3498
return "1.0p1024";
3499
} else {
3500
String res = Double.toHexString(result).substring(2);
3501
if (!subnormal)
3502
return res;
3503
else {
3504
// Create a normalized subnormal string.
3505
int idx = res.indexOf('p');
3506
if (idx == -1) {
3507
// No 'p' character in hex string.
3508
assert false;
3509
return null;
3510
} else {
3511
// Get exponent and append at the end.
3512
String exp = res.substring(idx + 1);
3513
int iexp = Integer.parseInt(exp) -54;
3514
return res.substring(0, idx) + "p"
3515
+ Integer.toString(iexp);
3516
}
3517
}
3518
}
3519
}
3520
}
3521
3522
private void print(BigDecimal value, Locale l) throws IOException {
3523
if (c == Conversion.HEXADECIMAL_FLOAT)
3524
failConversion(c, value);
3525
StringBuilder sb = new StringBuilder();
3526
boolean neg = value.signum() == -1;
3527
BigDecimal v = value.abs();
3528
// leading sign indicator
3529
leadingSign(sb, neg);
3530
3531
// the value
3532
print(sb, v, l, f, c, precision, neg);
3533
3534
// trailing sign indicator
3535
trailingSign(sb, neg);
3536
3537
// justify based on width
3538
a.append(justify(sb.toString()));
3539
}
3540
3541
// value > 0
3542
private void print(StringBuilder sb, BigDecimal value, Locale l,
3543
Flags f, char c, int precision, boolean neg)
3544
throws IOException
3545
{
3546
if (c == Conversion.SCIENTIFIC) {
3547
// Create a new BigDecimal with the desired precision.
3548
int prec = (precision == -1 ? 6 : precision);
3549
int scale = value.scale();
3550
int origPrec = value.precision();
3551
int nzeros = 0;
3552
int compPrec;
3553
3554
if (prec > origPrec - 1) {
3555
compPrec = origPrec;
3556
nzeros = prec - (origPrec - 1);
3557
} else {
3558
compPrec = prec + 1;
3559
}
3560
3561
MathContext mc = new MathContext(compPrec);
3562
BigDecimal v
3563
= new BigDecimal(value.unscaledValue(), scale, mc);
3564
3565
BigDecimalLayout bdl
3566
= new BigDecimalLayout(v.unscaledValue(), v.scale(),
3567
BigDecimalLayoutForm.SCIENTIFIC);
3568
3569
char[] mant = bdl.mantissa();
3570
3571
// Add a decimal point if necessary. The mantissa may not
3572
// contain a decimal point if the scale is zero (the internal
3573
// representation has no fractional part) or the original
3574
// precision is one. Append a decimal point if '#' is set or if
3575
// we require zero padding to get to the requested precision.
3576
if ((origPrec == 1 || !bdl.hasDot())
3577
&& (nzeros > 0 || (f.contains(Flags.ALTERNATE))))
3578
mant = addDot(mant);
3579
3580
// Add trailing zeros in the case precision is greater than
3581
// the number of available digits after the decimal separator.
3582
mant = trailingZeros(mant, nzeros);
3583
3584
char[] exp = bdl.exponent();
3585
int newW = width;
3586
if (width != -1)
3587
newW = adjustWidth(width - exp.length - 1, f, neg);
3588
localizedMagnitude(sb, mant, f, newW, l);
3589
3590
sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3591
3592
Flags flags = f.dup().remove(Flags.GROUP);
3593
char sign = exp[0];
3594
assert(sign == '+' || sign == '-');
3595
sb.append(exp[0]);
3596
3597
char[] tmp = new char[exp.length - 1];
3598
System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3599
sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3600
} else if (c == Conversion.DECIMAL_FLOAT) {
3601
// Create a new BigDecimal with the desired precision.
3602
int prec = (precision == -1 ? 6 : precision);
3603
int scale = value.scale();
3604
3605
if (scale > prec) {
3606
// more "scale" digits than the requested "precision"
3607
int compPrec = value.precision();
3608
if (compPrec <= scale) {
3609
// case of 0.xxxxxx
3610
value = value.setScale(prec, RoundingMode.HALF_UP);
3611
} else {
3612
compPrec -= (scale - prec);
3613
value = new BigDecimal(value.unscaledValue(),
3614
scale,
3615
new MathContext(compPrec));
3616
}
3617
}
3618
BigDecimalLayout bdl = new BigDecimalLayout(
3619
value.unscaledValue(),
3620
value.scale(),
3621
BigDecimalLayoutForm.DECIMAL_FLOAT);
3622
3623
char mant[] = bdl.mantissa();
3624
int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3625
3626
// Add a decimal point if necessary. The mantissa may not
3627
// contain a decimal point if the scale is zero (the internal
3628
// representation has no fractional part). Append a decimal
3629
// point if '#' is set or we require zero padding to get to the
3630
// requested precision.
3631
if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0))
3632
mant = addDot(bdl.mantissa());
3633
3634
// Add trailing zeros if the precision is greater than the
3635
// number of available digits after the decimal separator.
3636
mant = trailingZeros(mant, nzeros);
3637
3638
localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l);
3639
} else if (c == Conversion.GENERAL) {
3640
int prec = precision;
3641
if (precision == -1)
3642
prec = 6;
3643
else if (precision == 0)
3644
prec = 1;
3645
3646
BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3647
BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3648
if ((value.equals(BigDecimal.ZERO))
3649
|| ((value.compareTo(tenToTheNegFour) != -1)
3650
&& (value.compareTo(tenToThePrec) == -1))) {
3651
3652
int e = - value.scale()
3653
+ (value.unscaledValue().toString().length() - 1);
3654
3655
// xxx.yyy
3656
// g precision (# sig digits) = #x + #y
3657
// f precision = #y
3658
// exponent = #x - 1
3659
// => f precision = g precision - exponent - 1
3660
// 0.000zzz
3661
// g precision (# sig digits) = #z
3662
// f precision = #0 (after '.') + #z
3663
// exponent = - #0 (after '.') - 1
3664
// => f precision = g precision - exponent - 1
3665
prec = prec - e - 1;
3666
3667
print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3668
neg);
3669
} else {
3670
print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3671
}
3672
} else if (c == Conversion.HEXADECIMAL_FLOAT) {
3673
// This conversion isn't supported. The error should be
3674
// reported earlier.
3675
assert false;
3676
}
3677
}
3678
3679
private class BigDecimalLayout {
3680
private StringBuilder mant;
3681
private StringBuilder exp;
3682
private boolean dot = false;
3683
private int scale;
3684
3685
public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3686
layout(intVal, scale, form);
3687
}
3688
3689
public boolean hasDot() {
3690
return dot;
3691
}
3692
3693
public int scale() {
3694
return scale;
3695
}
3696
3697
// char[] with canonical string representation
3698
public char[] layoutChars() {
3699
StringBuilder sb = new StringBuilder(mant);
3700
if (exp != null) {
3701
sb.append('E');
3702
sb.append(exp);
3703
}
3704
return toCharArray(sb);
3705
}
3706
3707
public char[] mantissa() {
3708
return toCharArray(mant);
3709
}
3710
3711
// The exponent will be formatted as a sign ('+' or '-') followed
3712
// by the exponent zero-padded to include at least two digits.
3713
public char[] exponent() {
3714
return toCharArray(exp);
3715
}
3716
3717
private char[] toCharArray(StringBuilder sb) {
3718
if (sb == null)
3719
return null;
3720
char[] result = new char[sb.length()];
3721
sb.getChars(0, result.length, result, 0);
3722
return result;
3723
}
3724
3725
private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3726
char coeff[] = intVal.toString().toCharArray();
3727
this.scale = scale;
3728
3729
// Construct a buffer, with sufficient capacity for all cases.
3730
// If E-notation is needed, length will be: +1 if negative, +1
3731
// if '.' needed, +2 for "E+", + up to 10 for adjusted
3732
// exponent. Otherwise it could have +1 if negative, plus
3733
// leading "0.00000"
3734
mant = new StringBuilder(coeff.length + 14);
3735
3736
if (scale == 0) {
3737
int len = coeff.length;
3738
if (len > 1) {
3739
mant.append(coeff[0]);
3740
if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3741
mant.append('.');
3742
dot = true;
3743
mant.append(coeff, 1, len - 1);
3744
exp = new StringBuilder("+");
3745
if (len < 10)
3746
exp.append("0").append(len - 1);
3747
else
3748
exp.append(len - 1);
3749
} else {
3750
mant.append(coeff, 1, len - 1);
3751
}
3752
} else {
3753
mant.append(coeff);
3754
if (form == BigDecimalLayoutForm.SCIENTIFIC)
3755
exp = new StringBuilder("+00");
3756
}
3757
return;
3758
}
3759
long adjusted = -(long) scale + (coeff.length - 1);
3760
if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3761
// count of padding zeros
3762
int pad = scale - coeff.length;
3763
if (pad >= 0) {
3764
// 0.xxx form
3765
mant.append("0.");
3766
dot = true;
3767
for (; pad > 0 ; pad--) mant.append('0');
3768
mant.append(coeff);
3769
} else {
3770
if (-pad < coeff.length) {
3771
// xx.xx form
3772
mant.append(coeff, 0, -pad);
3773
mant.append('.');
3774
dot = true;
3775
mant.append(coeff, -pad, scale);
3776
} else {
3777
// xx form
3778
mant.append(coeff, 0, coeff.length);
3779
for (int i = 0; i < -scale; i++)
3780
mant.append('0');
3781
this.scale = 0;
3782
}
3783
}
3784
} else {
3785
// x.xxx form
3786
mant.append(coeff[0]);
3787
if (coeff.length > 1) {
3788
mant.append('.');
3789
dot = true;
3790
mant.append(coeff, 1, coeff.length-1);
3791
}
3792
exp = new StringBuilder();
3793
if (adjusted != 0) {
3794
long abs = Math.abs(adjusted);
3795
// require sign
3796
exp.append(adjusted < 0 ? '-' : '+');
3797
if (abs < 10)
3798
exp.append('0');
3799
exp.append(abs);
3800
} else {
3801
exp.append("+00");
3802
}
3803
}
3804
}
3805
}
3806
3807
private int adjustWidth(int width, Flags f, boolean neg) {
3808
int newW = width;
3809
if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3810
newW--;
3811
return newW;
3812
}
3813
3814
// Add a '.' to th mantissa if required
3815
private char[] addDot(char[] mant) {
3816
char[] tmp = mant;
3817
tmp = new char[mant.length + 1];
3818
System.arraycopy(mant, 0, tmp, 0, mant.length);
3819
tmp[tmp.length - 1] = '.';
3820
return tmp;
3821
}
3822
3823
// Add trailing zeros in the case precision is greater than the number
3824
// of available digits after the decimal separator.
3825
private char[] trailingZeros(char[] mant, int nzeros) {
3826
char[] tmp = mant;
3827
if (nzeros > 0) {
3828
tmp = new char[mant.length + nzeros];
3829
System.arraycopy(mant, 0, tmp, 0, mant.length);
3830
for (int i = mant.length; i < tmp.length; i++)
3831
tmp[i] = '0';
3832
}
3833
return tmp;
3834
}
3835
3836
private void print(Calendar t, char c, Locale l) throws IOException
3837
{
3838
StringBuilder sb = new StringBuilder();
3839
print(sb, t, c, l);
3840
3841
// justify based on width
3842
String s = justify(sb.toString());
3843
if (f.contains(Flags.UPPERCASE))
3844
s = s.toUpperCase();
3845
3846
a.append(s);
3847
}
3848
3849
private Appendable print(StringBuilder sb, Calendar t, char c,
3850
Locale l)
3851
throws IOException
3852
{
3853
if (sb == null)
3854
sb = new StringBuilder();
3855
switch (c) {
3856
case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3857
case DateTime.HOUR_0: // 'I' (01 - 12)
3858
case DateTime.HOUR_OF_DAY: // 'k' (0 - 23) -- like H
3859
case DateTime.HOUR: { // 'l' (1 - 12) -- like I
3860
int i = t.get(Calendar.HOUR_OF_DAY);
3861
if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3862
i = (i == 0 || i == 12 ? 12 : i % 12);
3863
Flags flags = (c == DateTime.HOUR_OF_DAY_0
3864
|| c == DateTime.HOUR_0
3865
? Flags.ZERO_PAD
3866
: Flags.NONE);
3867
sb.append(localizedMagnitude(null, i, flags, 2, l));
3868
break;
3869
}
3870
case DateTime.MINUTE: { // 'M' (00 - 59)
3871
int i = t.get(Calendar.MINUTE);
3872
Flags flags = Flags.ZERO_PAD;
3873
sb.append(localizedMagnitude(null, i, flags, 2, l));
3874
break;
3875
}
3876
case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
3877
int i = t.get(Calendar.MILLISECOND) * 1000000;
3878
Flags flags = Flags.ZERO_PAD;
3879
sb.append(localizedMagnitude(null, i, flags, 9, l));
3880
break;
3881
}
3882
case DateTime.MILLISECOND: { // 'L' (000 - 999)
3883
int i = t.get(Calendar.MILLISECOND);
3884
Flags flags = Flags.ZERO_PAD;
3885
sb.append(localizedMagnitude(null, i, flags, 3, l));
3886
break;
3887
}
3888
case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3889
long i = t.getTimeInMillis();
3890
Flags flags = Flags.NONE;
3891
sb.append(localizedMagnitude(null, i, flags, width, l));
3892
break;
3893
}
3894
case DateTime.AM_PM: { // 'p' (am or pm)
3895
// Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3896
String[] ampm = { "AM", "PM" };
3897
if (l != null && l != Locale.US) {
3898
DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3899
ampm = dfs.getAmPmStrings();
3900
}
3901
String s = ampm[t.get(Calendar.AM_PM)];
3902
sb.append(s.toLowerCase(l != null ? l : Locale.US));
3903
break;
3904
}
3905
case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3906
long i = t.getTimeInMillis() / 1000;
3907
Flags flags = Flags.NONE;
3908
sb.append(localizedMagnitude(null, i, flags, width, l));
3909
break;
3910
}
3911
case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
3912
int i = t.get(Calendar.SECOND);
3913
Flags flags = Flags.ZERO_PAD;
3914
sb.append(localizedMagnitude(null, i, flags, 2, l));
3915
break;
3916
}
3917
case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3918
int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3919
boolean neg = i < 0;
3920
sb.append(neg ? '-' : '+');
3921
if (neg)
3922
i = -i;
3923
int min = i / 60000;
3924
// combine minute and hour into a single integer
3925
int offset = (min / 60) * 100 + (min % 60);
3926
Flags flags = Flags.ZERO_PAD;
3927
3928
sb.append(localizedMagnitude(null, offset, flags, 4, l));
3929
break;
3930
}
3931
case DateTime.ZONE: { // 'Z' (symbol)
3932
TimeZone tz = t.getTimeZone();
3933
sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
3934
TimeZone.SHORT,
3935
(l == null) ? Locale.US : l));
3936
break;
3937
}
3938
3939
// Date
3940
case DateTime.NAME_OF_DAY_ABBREV: // 'a'
3941
case DateTime.NAME_OF_DAY: { // 'A'
3942
int i = t.get(Calendar.DAY_OF_WEEK);
3943
Locale lt = ((l == null) ? Locale.US : l);
3944
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3945
if (c == DateTime.NAME_OF_DAY)
3946
sb.append(dfs.getWeekdays()[i]);
3947
else
3948
sb.append(dfs.getShortWeekdays()[i]);
3949
break;
3950
}
3951
case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
3952
case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
3953
case DateTime.NAME_OF_MONTH: { // 'B'
3954
int i = t.get(Calendar.MONTH);
3955
Locale lt = ((l == null) ? Locale.US : l);
3956
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3957
if (c == DateTime.NAME_OF_MONTH)
3958
sb.append(dfs.getMonths()[i]);
3959
else
3960
sb.append(dfs.getShortMonths()[i]);
3961
break;
3962
}
3963
case DateTime.CENTURY: // 'C' (00 - 99)
3964
case DateTime.YEAR_2: // 'y' (00 - 99)
3965
case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
3966
int i = t.get(Calendar.YEAR);
3967
int size = 2;
3968
switch (c) {
3969
case DateTime.CENTURY:
3970
i /= 100;
3971
break;
3972
case DateTime.YEAR_2:
3973
i %= 100;
3974
break;
3975
case DateTime.YEAR_4:
3976
size = 4;
3977
break;
3978
}
3979
Flags flags = Flags.ZERO_PAD;
3980
sb.append(localizedMagnitude(null, i, flags, size, l));
3981
break;
3982
}
3983
case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
3984
case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
3985
int i = t.get(Calendar.DATE);
3986
Flags flags = (c == DateTime.DAY_OF_MONTH_0
3987
? Flags.ZERO_PAD
3988
: Flags.NONE);
3989
sb.append(localizedMagnitude(null, i, flags, 2, l));
3990
break;
3991
}
3992
case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
3993
int i = t.get(Calendar.DAY_OF_YEAR);
3994
Flags flags = Flags.ZERO_PAD;
3995
sb.append(localizedMagnitude(null, i, flags, 3, l));
3996
break;
3997
}
3998
case DateTime.MONTH: { // 'm' (01 - 12)
3999
int i = t.get(Calendar.MONTH) + 1;
4000
Flags flags = Flags.ZERO_PAD;
4001
sb.append(localizedMagnitude(null, i, flags, 2, l));
4002
break;
4003
}
4004
4005
// Composites
4006
case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4007
case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
4008
char sep = ':';
4009
print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4010
print(sb, t, DateTime.MINUTE, l);
4011
if (c == DateTime.TIME) {
4012
sb.append(sep);
4013
print(sb, t, DateTime.SECOND, l);
4014
}
4015
break;
4016
}
4017
case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
4018
char sep = ':';
4019
print(sb, t, DateTime.HOUR_0, l).append(sep);
4020
print(sb, t, DateTime.MINUTE, l).append(sep);
4021
print(sb, t, DateTime.SECOND, l).append(' ');
4022
// this may be in wrong place for some locales
4023
StringBuilder tsb = new StringBuilder();
4024
print(tsb, t, DateTime.AM_PM, l);
4025
sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4026
break;
4027
}
4028
case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4029
char sep = ' ';
4030
print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4031
print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4032
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4033
print(sb, t, DateTime.TIME, l).append(sep);
4034
print(sb, t, DateTime.ZONE, l).append(sep);
4035
print(sb, t, DateTime.YEAR_4, l);
4036
break;
4037
}
4038
case DateTime.DATE: { // 'D' (mm/dd/yy)
4039
char sep = '/';
4040
print(sb, t, DateTime.MONTH, l).append(sep);
4041
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4042
print(sb, t, DateTime.YEAR_2, l);
4043
break;
4044
}
4045
case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4046
char sep = '-';
4047
print(sb, t, DateTime.YEAR_4, l).append(sep);
4048
print(sb, t, DateTime.MONTH, l).append(sep);
4049
print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4050
break;
4051
}
4052
default:
4053
assert false;
4054
}
4055
return sb;
4056
}
4057
4058
private void print(TemporalAccessor t, char c, Locale l) throws IOException {
4059
StringBuilder sb = new StringBuilder();
4060
print(sb, t, c, l);
4061
// justify based on width
4062
String s = justify(sb.toString());
4063
if (f.contains(Flags.UPPERCASE))
4064
s = s.toUpperCase();
4065
a.append(s);
4066
}
4067
4068
private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
4069
Locale l) throws IOException {
4070
if (sb == null)
4071
sb = new StringBuilder();
4072
try {
4073
switch (c) {
4074
case DateTime.HOUR_OF_DAY_0: { // 'H' (00 - 23)
4075
int i = t.get(ChronoField.HOUR_OF_DAY);
4076
sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4077
break;
4078
}
4079
case DateTime.HOUR_OF_DAY: { // 'k' (0 - 23) -- like H
4080
int i = t.get(ChronoField.HOUR_OF_DAY);
4081
sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4082
break;
4083
}
4084
case DateTime.HOUR_0: { // 'I' (01 - 12)
4085
int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4086
sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4087
break;
4088
}
4089
case DateTime.HOUR: { // 'l' (1 - 12) -- like I
4090
int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4091
sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4092
break;
4093
}
4094
case DateTime.MINUTE: { // 'M' (00 - 59)
4095
int i = t.get(ChronoField.MINUTE_OF_HOUR);
4096
Flags flags = Flags.ZERO_PAD;
4097
sb.append(localizedMagnitude(null, i, flags, 2, l));
4098
break;
4099
}
4100
case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
4101
int i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
4102
Flags flags = Flags.ZERO_PAD;
4103
sb.append(localizedMagnitude(null, i, flags, 9, l));
4104
break;
4105
}
4106
case DateTime.MILLISECOND: { // 'L' (000 - 999)
4107
int i = t.get(ChronoField.MILLI_OF_SECOND);
4108
Flags flags = Flags.ZERO_PAD;
4109
sb.append(localizedMagnitude(null, i, flags, 3, l));
4110
break;
4111
}
4112
case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4113
long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
4114
t.getLong(ChronoField.MILLI_OF_SECOND);
4115
Flags flags = Flags.NONE;
4116
sb.append(localizedMagnitude(null, i, flags, width, l));
4117
break;
4118
}
4119
case DateTime.AM_PM: { // 'p' (am or pm)
4120
// Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4121
String[] ampm = { "AM", "PM" };
4122
if (l != null && l != Locale.US) {
4123
DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4124
ampm = dfs.getAmPmStrings();
4125
}
4126
String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
4127
sb.append(s.toLowerCase(l != null ? l : Locale.US));
4128
break;
4129
}
4130
case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4131
long i = t.getLong(ChronoField.INSTANT_SECONDS);
4132
Flags flags = Flags.NONE;
4133
sb.append(localizedMagnitude(null, i, flags, width, l));
4134
break;
4135
}
4136
case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
4137
int i = t.get(ChronoField.SECOND_OF_MINUTE);
4138
Flags flags = Flags.ZERO_PAD;
4139
sb.append(localizedMagnitude(null, i, flags, 2, l));
4140
break;
4141
}
4142
case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4143
int i = t.get(ChronoField.OFFSET_SECONDS);
4144
boolean neg = i < 0;
4145
sb.append(neg ? '-' : '+');
4146
if (neg)
4147
i = -i;
4148
int min = i / 60;
4149
// combine minute and hour into a single integer
4150
int offset = (min / 60) * 100 + (min % 60);
4151
Flags flags = Flags.ZERO_PAD;
4152
sb.append(localizedMagnitude(null, offset, flags, 4, l));
4153
break;
4154
}
4155
case DateTime.ZONE: { // 'Z' (symbol)
4156
ZoneId zid = t.query(TemporalQueries.zone());
4157
if (zid == null) {
4158
throw new IllegalFormatConversionException(c, t.getClass());
4159
}
4160
if (!(zid instanceof ZoneOffset) &&
4161
t.isSupported(ChronoField.INSTANT_SECONDS)) {
4162
Instant instant = Instant.from(t);
4163
sb.append(TimeZone.getTimeZone(zid.getId())
4164
.getDisplayName(zid.getRules().isDaylightSavings(instant),
4165
TimeZone.SHORT,
4166
(l == null) ? Locale.US : l));
4167
break;
4168
}
4169
sb.append(zid.getId());
4170
break;
4171
}
4172
// Date
4173
case DateTime.NAME_OF_DAY_ABBREV: // 'a'
4174
case DateTime.NAME_OF_DAY: { // 'A'
4175
int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
4176
Locale lt = ((l == null) ? Locale.US : l);
4177
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4178
if (c == DateTime.NAME_OF_DAY)
4179
sb.append(dfs.getWeekdays()[i]);
4180
else
4181
sb.append(dfs.getShortWeekdays()[i]);
4182
break;
4183
}
4184
case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
4185
case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4186
case DateTime.NAME_OF_MONTH: { // 'B'
4187
int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
4188
Locale lt = ((l == null) ? Locale.US : l);
4189
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4190
if (c == DateTime.NAME_OF_MONTH)
4191
sb.append(dfs.getMonths()[i]);
4192
else
4193
sb.append(dfs.getShortMonths()[i]);
4194
break;
4195
}
4196
case DateTime.CENTURY: // 'C' (00 - 99)
4197
case DateTime.YEAR_2: // 'y' (00 - 99)
4198
case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
4199
int i = t.get(ChronoField.YEAR_OF_ERA);
4200
int size = 2;
4201
switch (c) {
4202
case DateTime.CENTURY:
4203
i /= 100;
4204
break;
4205
case DateTime.YEAR_2:
4206
i %= 100;
4207
break;
4208
case DateTime.YEAR_4:
4209
size = 4;
4210
break;
4211
}
4212
Flags flags = Flags.ZERO_PAD;
4213
sb.append(localizedMagnitude(null, i, flags, size, l));
4214
break;
4215
}
4216
case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
4217
case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
4218
int i = t.get(ChronoField.DAY_OF_MONTH);
4219
Flags flags = (c == DateTime.DAY_OF_MONTH_0
4220
? Flags.ZERO_PAD
4221
: Flags.NONE);
4222
sb.append(localizedMagnitude(null, i, flags, 2, l));
4223
break;
4224
}
4225
case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
4226
int i = t.get(ChronoField.DAY_OF_YEAR);
4227
Flags flags = Flags.ZERO_PAD;
4228
sb.append(localizedMagnitude(null, i, flags, 3, l));
4229
break;
4230
}
4231
case DateTime.MONTH: { // 'm' (01 - 12)
4232
int i = t.get(ChronoField.MONTH_OF_YEAR);
4233
Flags flags = Flags.ZERO_PAD;
4234
sb.append(localizedMagnitude(null, i, flags, 2, l));
4235
break;
4236
}
4237
4238
// Composites
4239
case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4240
case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
4241
char sep = ':';
4242
print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4243
print(sb, t, DateTime.MINUTE, l);
4244
if (c == DateTime.TIME) {
4245
sb.append(sep);
4246
print(sb, t, DateTime.SECOND, l);
4247
}
4248
break;
4249
}
4250
case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
4251
char sep = ':';
4252
print(sb, t, DateTime.HOUR_0, l).append(sep);
4253
print(sb, t, DateTime.MINUTE, l).append(sep);
4254
print(sb, t, DateTime.SECOND, l).append(' ');
4255
// this may be in wrong place for some locales
4256
StringBuilder tsb = new StringBuilder();
4257
print(tsb, t, DateTime.AM_PM, l);
4258
sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4259
break;
4260
}
4261
case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4262
char sep = ' ';
4263
print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4264
print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4265
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4266
print(sb, t, DateTime.TIME, l).append(sep);
4267
print(sb, t, DateTime.ZONE, l).append(sep);
4268
print(sb, t, DateTime.YEAR_4, l);
4269
break;
4270
}
4271
case DateTime.DATE: { // 'D' (mm/dd/yy)
4272
char sep = '/';
4273
print(sb, t, DateTime.MONTH, l).append(sep);
4274
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4275
print(sb, t, DateTime.YEAR_2, l);
4276
break;
4277
}
4278
case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4279
char sep = '-';
4280
print(sb, t, DateTime.YEAR_4, l).append(sep);
4281
print(sb, t, DateTime.MONTH, l).append(sep);
4282
print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4283
break;
4284
}
4285
default:
4286
assert false;
4287
}
4288
} catch (DateTimeException x) {
4289
throw new IllegalFormatConversionException(c, t.getClass());
4290
}
4291
return sb;
4292
}
4293
4294
// -- Methods to support throwing exceptions --
4295
4296
private void failMismatch(Flags f, char c) {
4297
String fs = f.toString();
4298
throw new FormatFlagsConversionMismatchException(fs, c);
4299
}
4300
4301
private void failConversion(char c, Object arg) {
4302
throw new IllegalFormatConversionException(c, arg.getClass());
4303
}
4304
4305
private char getZero(Locale l) {
4306
if ((l != null) && !l.equals(locale())) {
4307
DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4308
return dfs.getZeroDigit();
4309
}
4310
return zero;
4311
}
4312
4313
private StringBuilder
4314
localizedMagnitude(StringBuilder sb, long value, Flags f,
4315
int width, Locale l)
4316
{
4317
char[] va = Long.toString(value, 10).toCharArray();
4318
return localizedMagnitude(sb, va, f, width, l);
4319
}
4320
4321
private StringBuilder
4322
localizedMagnitude(StringBuilder sb, char[] value, Flags f,
4323
int width, Locale l)
4324
{
4325
if (sb == null)
4326
sb = new StringBuilder();
4327
int begin = sb.length();
4328
4329
char zero = getZero(l);
4330
4331
// determine localized grouping separator and size
4332
char grpSep = '\0';
4333
int grpSize = -1;
4334
char decSep = '\0';
4335
4336
int len = value.length;
4337
int dot = len;
4338
for (int j = 0; j < len; j++) {
4339
if (value[j] == '.') {
4340
dot = j;
4341
break;
4342
}
4343
}
4344
4345
if (dot < len) {
4346
if (l == null || l.equals(Locale.US)) {
4347
decSep = '.';
4348
} else {
4349
DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4350
decSep = dfs.getDecimalSeparator();
4351
}
4352
}
4353
4354
if (f.contains(Flags.GROUP)) {
4355
if (l == null || l.equals(Locale.US)) {
4356
grpSep = ',';
4357
grpSize = 3;
4358
} else {
4359
DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4360
grpSep = dfs.getGroupingSeparator();
4361
DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4362
grpSize = df.getGroupingSize();
4363
}
4364
}
4365
4366
// localize the digits inserting group separators as necessary
4367
for (int j = 0; j < len; j++) {
4368
if (j == dot) {
4369
sb.append(decSep);
4370
// no more group separators after the decimal separator
4371
grpSep = '\0';
4372
continue;
4373
}
4374
4375
char c = value[j];
4376
sb.append((char) ((c - '0') + zero));
4377
if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1))
4378
sb.append(grpSep);
4379
}
4380
4381
// apply zero padding
4382
len = sb.length();
4383
if (width != -1 && f.contains(Flags.ZERO_PAD))
4384
for (int k = 0; k < width - len; k++)
4385
sb.insert(begin, zero);
4386
4387
return sb;
4388
}
4389
}
4390
4391
private static class Flags {
4392
private int flags;
4393
4394
static final Flags NONE = new Flags(0); // ''
4395
4396
// duplicate declarations from Formattable.java
4397
static final Flags LEFT_JUSTIFY = new Flags(1<<0); // '-'
4398
static final Flags UPPERCASE = new Flags(1<<1); // '^'
4399
static final Flags ALTERNATE = new Flags(1<<2); // '#'
4400
4401
// numerics
4402
static final Flags PLUS = new Flags(1<<3); // '+'
4403
static final Flags LEADING_SPACE = new Flags(1<<4); // ' '
4404
static final Flags ZERO_PAD = new Flags(1<<5); // '0'
4405
static final Flags GROUP = new Flags(1<<6); // ','
4406
static final Flags PARENTHESES = new Flags(1<<7); // '('
4407
4408
// indexing
4409
static final Flags PREVIOUS = new Flags(1<<8); // '<'
4410
4411
private Flags(int f) {
4412
flags = f;
4413
}
4414
4415
public int valueOf() {
4416
return flags;
4417
}
4418
4419
public boolean contains(Flags f) {
4420
return (flags & f.valueOf()) == f.valueOf();
4421
}
4422
4423
public Flags dup() {
4424
return new Flags(flags);
4425
}
4426
4427
private Flags add(Flags f) {
4428
flags |= f.valueOf();
4429
return this;
4430
}
4431
4432
public Flags remove(Flags f) {
4433
flags &= ~f.valueOf();
4434
return this;
4435
}
4436
4437
public static Flags parse(String s) {
4438
char[] ca = s.toCharArray();
4439
Flags f = new Flags(0);
4440
for (int i = 0; i < ca.length; i++) {
4441
Flags v = parse(ca[i]);
4442
if (f.contains(v))
4443
throw new DuplicateFormatFlagsException(v.toString());
4444
f.add(v);
4445
}
4446
return f;
4447
}
4448
4449
// parse those flags which may be provided by users
4450
private static Flags parse(char c) {
4451
switch (c) {
4452
case '-': return LEFT_JUSTIFY;
4453
case '#': return ALTERNATE;
4454
case '+': return PLUS;
4455
case ' ': return LEADING_SPACE;
4456
case '0': return ZERO_PAD;
4457
case ',': return GROUP;
4458
case '(': return PARENTHESES;
4459
case '<': return PREVIOUS;
4460
default:
4461
throw new UnknownFormatFlagsException(String.valueOf(c));
4462
}
4463
}
4464
4465
// Returns a string representation of the current {@code Flags}.
4466
public static String toString(Flags f) {
4467
return f.toString();
4468
}
4469
4470
public String toString() {
4471
StringBuilder sb = new StringBuilder();
4472
if (contains(LEFT_JUSTIFY)) sb.append('-');
4473
if (contains(UPPERCASE)) sb.append('^');
4474
if (contains(ALTERNATE)) sb.append('#');
4475
if (contains(PLUS)) sb.append('+');
4476
if (contains(LEADING_SPACE)) sb.append(' ');
4477
if (contains(ZERO_PAD)) sb.append('0');
4478
if (contains(GROUP)) sb.append(',');
4479
if (contains(PARENTHESES)) sb.append('(');
4480
if (contains(PREVIOUS)) sb.append('<');
4481
return sb.toString();
4482
}
4483
}
4484
4485
private static class Conversion {
4486
// Byte, Short, Integer, Long, BigInteger
4487
// (and associated primitives due to autoboxing)
4488
static final char DECIMAL_INTEGER = 'd';
4489
static final char OCTAL_INTEGER = 'o';
4490
static final char HEXADECIMAL_INTEGER = 'x';
4491
static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4492
4493
// Float, Double, BigDecimal
4494
// (and associated primitives due to autoboxing)
4495
static final char SCIENTIFIC = 'e';
4496
static final char SCIENTIFIC_UPPER = 'E';
4497
static final char GENERAL = 'g';
4498
static final char GENERAL_UPPER = 'G';
4499
static final char DECIMAL_FLOAT = 'f';
4500
static final char HEXADECIMAL_FLOAT = 'a';
4501
static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4502
4503
// Character, Byte, Short, Integer
4504
// (and associated primitives due to autoboxing)
4505
static final char CHARACTER = 'c';
4506
static final char CHARACTER_UPPER = 'C';
4507
4508
// java.util.Date, java.util.Calendar, long
4509
static final char DATE_TIME = 't';
4510
static final char DATE_TIME_UPPER = 'T';
4511
4512
// if (arg.TYPE != boolean) return boolean
4513
// if (arg != null) return true; else return false;
4514
static final char BOOLEAN = 'b';
4515
static final char BOOLEAN_UPPER = 'B';
4516
// if (arg instanceof Formattable) arg.formatTo()
4517
// else arg.toString();
4518
static final char STRING = 's';
4519
static final char STRING_UPPER = 'S';
4520
// arg.hashCode()
4521
static final char HASHCODE = 'h';
4522
static final char HASHCODE_UPPER = 'H';
4523
4524
static final char LINE_SEPARATOR = 'n';
4525
static final char PERCENT_SIGN = '%';
4526
4527
static boolean isValid(char c) {
4528
return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4529
|| c == 't' || isCharacter(c));
4530
}
4531
4532
// Returns true iff the Conversion is applicable to all objects.
4533
static boolean isGeneral(char c) {
4534
switch (c) {
4535
case BOOLEAN:
4536
case BOOLEAN_UPPER:
4537
case STRING:
4538
case STRING_UPPER:
4539
case HASHCODE:
4540
case HASHCODE_UPPER:
4541
return true;
4542
default:
4543
return false;
4544
}
4545
}
4546
4547
// Returns true iff the Conversion is applicable to character.
4548
static boolean isCharacter(char c) {
4549
switch (c) {
4550
case CHARACTER:
4551
case CHARACTER_UPPER:
4552
return true;
4553
default:
4554
return false;
4555
}
4556
}
4557
4558
// Returns true iff the Conversion is an integer type.
4559
static boolean isInteger(char c) {
4560
switch (c) {
4561
case DECIMAL_INTEGER:
4562
case OCTAL_INTEGER:
4563
case HEXADECIMAL_INTEGER:
4564
case HEXADECIMAL_INTEGER_UPPER:
4565
return true;
4566
default:
4567
return false;
4568
}
4569
}
4570
4571
// Returns true iff the Conversion is a floating-point type.
4572
static boolean isFloat(char c) {
4573
switch (c) {
4574
case SCIENTIFIC:
4575
case SCIENTIFIC_UPPER:
4576
case GENERAL:
4577
case GENERAL_UPPER:
4578
case DECIMAL_FLOAT:
4579
case HEXADECIMAL_FLOAT:
4580
case HEXADECIMAL_FLOAT_UPPER:
4581
return true;
4582
default:
4583
return false;
4584
}
4585
}
4586
4587
// Returns true iff the Conversion does not require an argument
4588
static boolean isText(char c) {
4589
switch (c) {
4590
case LINE_SEPARATOR:
4591
case PERCENT_SIGN:
4592
return true;
4593
default:
4594
return false;
4595
}
4596
}
4597
}
4598
4599
private static class DateTime {
4600
static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4601
static final char HOUR_0 = 'I'; // (01 - 12)
4602
static final char HOUR_OF_DAY = 'k'; // (0 - 23) -- like H
4603
static final char HOUR = 'l'; // (1 - 12) -- like I
4604
static final char MINUTE = 'M'; // (00 - 59)
4605
static final char NANOSECOND = 'N'; // (000000000 - 999999999)
4606
static final char MILLISECOND = 'L'; // jdk, not in gnu (000 - 999)
4607
static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4608
static final char AM_PM = 'p'; // (am or pm)
4609
static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4610
static final char SECOND = 'S'; // (00 - 60 - leap second)
4611
static final char TIME = 'T'; // (24 hour hh:mm:ss)
4612
static final char ZONE_NUMERIC = 'z'; // (-1200 - +1200) - ls minus?
4613
static final char ZONE = 'Z'; // (symbol)
4614
4615
// Date
4616
static final char NAME_OF_DAY_ABBREV = 'a'; // 'a'
4617
static final char NAME_OF_DAY = 'A'; // 'A'
4618
static final char NAME_OF_MONTH_ABBREV = 'b'; // 'b'
4619
static final char NAME_OF_MONTH = 'B'; // 'B'
4620
static final char CENTURY = 'C'; // (00 - 99)
4621
static final char DAY_OF_MONTH_0 = 'd'; // (01 - 31)
4622
static final char DAY_OF_MONTH = 'e'; // (1 - 31) -- like d
4623
// * static final char ISO_WEEK_OF_YEAR_2 = 'g'; // cross %y %V
4624
// * static final char ISO_WEEK_OF_YEAR_4 = 'G'; // cross %Y %V
4625
static final char NAME_OF_MONTH_ABBREV_X = 'h'; // -- same b
4626
static final char DAY_OF_YEAR = 'j'; // (001 - 366)
4627
static final char MONTH = 'm'; // (01 - 12)
4628
// * static final char DAY_OF_WEEK_1 = 'u'; // (1 - 7) Monday
4629
// * static final char WEEK_OF_YEAR_SUNDAY = 'U'; // (0 - 53) Sunday+
4630
// * static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4631
// * static final char DAY_OF_WEEK_0 = 'w'; // (0 - 6) Sunday
4632
// * static final char WEEK_OF_YEAR_MONDAY = 'W'; // (00 - 53) Monday
4633
static final char YEAR_2 = 'y'; // (00 - 99)
4634
static final char YEAR_4 = 'Y'; // (0000 - 9999)
4635
4636
// Composites
4637
static final char TIME_12_HOUR = 'r'; // (hh:mm:ss [AP]M)
4638
static final char TIME_24_HOUR = 'R'; // (hh:mm same as %H:%M)
4639
// * static final char LOCALE_TIME = 'X'; // (%H:%M:%S) - parse format?
4640
static final char DATE_TIME = 'c';
4641
// (Sat Nov 04 12:02:33 EST 1999)
4642
static final char DATE = 'D'; // (mm/dd/yy)
4643
static final char ISO_STANDARD_DATE = 'F'; // (%Y-%m-%d)
4644
// * static final char LOCALE_DATE = 'x'; // (mm/dd/yy)
4645
4646
static boolean isValid(char c) {
4647
switch (c) {
4648
case HOUR_OF_DAY_0:
4649
case HOUR_0:
4650
case HOUR_OF_DAY:
4651
case HOUR:
4652
case MINUTE:
4653
case NANOSECOND:
4654
case MILLISECOND:
4655
case MILLISECOND_SINCE_EPOCH:
4656
case AM_PM:
4657
case SECONDS_SINCE_EPOCH:
4658
case SECOND:
4659
case TIME:
4660
case ZONE_NUMERIC:
4661
case ZONE:
4662
4663
// Date
4664
case NAME_OF_DAY_ABBREV:
4665
case NAME_OF_DAY:
4666
case NAME_OF_MONTH_ABBREV:
4667
case NAME_OF_MONTH:
4668
case CENTURY:
4669
case DAY_OF_MONTH_0:
4670
case DAY_OF_MONTH:
4671
// * case ISO_WEEK_OF_YEAR_2:
4672
// * case ISO_WEEK_OF_YEAR_4:
4673
case NAME_OF_MONTH_ABBREV_X:
4674
case DAY_OF_YEAR:
4675
case MONTH:
4676
// * case DAY_OF_WEEK_1:
4677
// * case WEEK_OF_YEAR_SUNDAY:
4678
// * case WEEK_OF_YEAR_MONDAY_01:
4679
// * case DAY_OF_WEEK_0:
4680
// * case WEEK_OF_YEAR_MONDAY:
4681
case YEAR_2:
4682
case YEAR_4:
4683
4684
// Composites
4685
case TIME_12_HOUR:
4686
case TIME_24_HOUR:
4687
// * case LOCALE_TIME:
4688
case DATE_TIME:
4689
case DATE:
4690
case ISO_STANDARD_DATE:
4691
// * case LOCALE_DATE:
4692
return true;
4693
default:
4694
return false;
4695
}
4696
}
4697
}
4698
}
4699
4700