Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/sun/java2d/marlin/Curve.java
38918 views
1
/*
2
* Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.java2d.marlin;
27
28
import java.util.Iterator;
29
30
final class Curve {
31
32
float ax, ay, bx, by, cx, cy, dx, dy;
33
float dax, day, dbx, dby;
34
// shared iterator instance
35
private final BreakPtrIterator iterator = new BreakPtrIterator();
36
37
Curve() {
38
}
39
40
void set(float[] points, int type) {
41
switch(type) {
42
case 8:
43
set(points[0], points[1],
44
points[2], points[3],
45
points[4], points[5],
46
points[6], points[7]);
47
return;
48
case 6:
49
set(points[0], points[1],
50
points[2], points[3],
51
points[4], points[5]);
52
return;
53
default:
54
throw new InternalError("Curves can only be cubic or quadratic");
55
}
56
}
57
58
void set(float x1, float y1,
59
float x2, float y2,
60
float x3, float y3,
61
float x4, float y4)
62
{
63
ax = 3f * (x2 - x3) + x4 - x1;
64
ay = 3f * (y2 - y3) + y4 - y1;
65
bx = 3f * (x1 - 2f * x2 + x3);
66
by = 3f * (y1 - 2f * y2 + y3);
67
cx = 3f * (x2 - x1);
68
cy = 3f * (y2 - y1);
69
dx = x1;
70
dy = y1;
71
dax = 3f * ax; day = 3f * ay;
72
dbx = 2f * bx; dby = 2f * by;
73
}
74
75
void set(float x1, float y1,
76
float x2, float y2,
77
float x3, float y3)
78
{
79
ax = 0f; ay = 0f;
80
bx = x1 - 2f * x2 + x3;
81
by = y1 - 2f * y2 + y3;
82
cx = 2f * (x2 - x1);
83
cy = 2f * (y2 - y1);
84
dx = x1;
85
dy = y1;
86
dax = 0f; day = 0f;
87
dbx = 2f * bx; dby = 2f * by;
88
}
89
90
float xat(float t) {
91
return t * (t * (t * ax + bx) + cx) + dx;
92
}
93
float yat(float t) {
94
return t * (t * (t * ay + by) + cy) + dy;
95
}
96
97
float dxat(float t) {
98
return t * (t * dax + dbx) + cx;
99
}
100
101
float dyat(float t) {
102
return t * (t * day + dby) + cy;
103
}
104
105
int dxRoots(float[] roots, int off) {
106
return Helpers.quadraticRoots(dax, dbx, cx, roots, off);
107
}
108
109
int dyRoots(float[] roots, int off) {
110
return Helpers.quadraticRoots(day, dby, cy, roots, off);
111
}
112
113
int infPoints(float[] pts, int off) {
114
// inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
115
// Fortunately, this turns out to be quadratic, so there are at
116
// most 2 inflection points.
117
final float a = dax * dby - dbx * day;
118
final float b = 2f * (cy * dax - day * cx);
119
final float c = cy * dbx - cx * dby;
120
121
return Helpers.quadraticRoots(a, b, c, pts, off);
122
}
123
124
// finds points where the first and second derivative are
125
// perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
126
// * is a dot product). Unfortunately, we have to solve a cubic.
127
private int perpendiculardfddf(float[] pts, int off) {
128
assert pts.length >= off + 4;
129
130
// these are the coefficients of some multiple of g(t) (not g(t),
131
// because the roots of a polynomial are not changed after multiplication
132
// by a constant, and this way we save a few multiplications).
133
final float a = 2f * (dax*dax + day*day);
134
final float b = 3f * (dax*dbx + day*dby);
135
final float c = 2f * (dax*cx + day*cy) + dbx*dbx + dby*dby;
136
final float d = dbx*cx + dby*cy;
137
return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f);
138
}
139
140
// Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
141
// a variant of the false position algorithm to find the roots. False
142
// position requires that 2 initial values x0,x1 be given, and that the
143
// function must have opposite signs at those values. To find such
144
// values, we need the local extrema of the ROC function, for which we
145
// need the roots of its derivative; however, it's harder to find the
146
// roots of the derivative in this case than it is to find the roots
147
// of the original function. So, we find all points where this curve's
148
// first and second derivative are perpendicular, and we pretend these
149
// are our local extrema. There are at most 3 of these, so we will check
150
// at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
151
// points, so roc-w can have at least 6 roots. This shouldn't be a
152
// problem for what we're trying to do (draw a nice looking curve).
153
int rootsOfROCMinusW(float[] roots, int off, final float w, final float err) {
154
// no OOB exception, because by now off<=6, and roots.length >= 10
155
assert off <= 6 && roots.length >= 10;
156
int ret = off;
157
int numPerpdfddf = perpendiculardfddf(roots, off);
158
float t0 = 0, ft0 = ROCsq(t0) - w*w;
159
roots[off + numPerpdfddf] = 1f; // always check interval end points
160
numPerpdfddf++;
161
for (int i = off; i < off + numPerpdfddf; i++) {
162
float t1 = roots[i], ft1 = ROCsq(t1) - w*w;
163
if (ft0 == 0f) {
164
roots[ret++] = t0;
165
} else if (ft1 * ft0 < 0f) { // have opposite signs
166
// (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
167
// ROC(t) >= 0 for all t.
168
roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err);
169
}
170
t0 = t1;
171
ft0 = ft1;
172
}
173
174
return ret - off;
175
}
176
177
private static float eliminateInf(float x) {
178
return (x == Float.POSITIVE_INFINITY ? Float.MAX_VALUE :
179
(x == Float.NEGATIVE_INFINITY ? Float.MIN_VALUE : x));
180
}
181
182
// A slight modification of the false position algorithm on wikipedia.
183
// This only works for the ROCsq-x functions. It might be nice to have
184
// the function as an argument, but that would be awkward in java6.
185
// TODO: It is something to consider for java8 (or whenever lambda
186
// expressions make it into the language), depending on how closures
187
// and turn out. Same goes for the newton's method
188
// algorithm in Helpers.java
189
private float falsePositionROCsqMinusX(float x0, float x1,
190
final float x, final float err)
191
{
192
final int iterLimit = 100;
193
int side = 0;
194
float t = x1, ft = eliminateInf(ROCsq(t) - x);
195
float s = x0, fs = eliminateInf(ROCsq(s) - x);
196
float r = s, fr;
197
for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
198
r = (fs * t - ft * s) / (fs - ft);
199
fr = ROCsq(r) - x;
200
if (sameSign(fr, ft)) {
201
ft = fr; t = r;
202
if (side < 0) {
203
fs /= (1 << (-side));
204
side--;
205
} else {
206
side = -1;
207
}
208
} else if (fr * fs > 0) {
209
fs = fr; s = r;
210
if (side > 0) {
211
ft /= (1 << side);
212
side++;
213
} else {
214
side = 1;
215
}
216
} else {
217
break;
218
}
219
}
220
return r;
221
}
222
223
private static boolean sameSign(float x, float y) {
224
// another way is to test if x*y > 0. This is bad for small x, y.
225
return (x < 0f && y < 0f) || (x > 0f && y > 0f);
226
}
227
228
// returns the radius of curvature squared at t of this curve
229
// see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
230
private float ROCsq(final float t) {
231
// dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency
232
final float dx = t * (t * dax + dbx) + cx;
233
final float dy = t * (t * day + dby) + cy;
234
final float ddx = 2f * dax * t + dbx;
235
final float ddy = 2f * day * t + dby;
236
final float dx2dy2 = dx*dx + dy*dy;
237
final float ddx2ddy2 = ddx*ddx + ddy*ddy;
238
final float ddxdxddydy = ddx*dx + ddy*dy;
239
return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));
240
}
241
242
// curve to be broken should be in pts
243
// this will change the contents of pts but not Ts
244
// TODO: There's no reason for Ts to be an array. All we need is a sequence
245
// of t values at which to subdivide. An array statisfies this condition,
246
// but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.
247
// Doing this will also make dashing easier, since we could easily make
248
// LengthIterator an Iterator<Float> and feed it to this function to simplify
249
// the loop in Dasher.somethingTo.
250
BreakPtrIterator breakPtsAtTs(final float[] pts, final int type,
251
final float[] Ts, final int numTs)
252
{
253
assert pts.length >= 2*type && numTs <= Ts.length;
254
255
// initialize shared iterator:
256
iterator.init(pts, type, Ts, numTs);
257
258
return iterator;
259
}
260
261
static final class BreakPtrIterator {
262
private int nextCurveIdx;
263
private int curCurveOff;
264
private float prevT;
265
private float[] pts;
266
private int type;
267
private float[] ts;
268
private int numTs;
269
270
void init(final float[] pts, final int type,
271
final float[] ts, final int numTs) {
272
this.pts = pts;
273
this.type = type;
274
this.ts = ts;
275
this.numTs = numTs;
276
277
nextCurveIdx = 0;
278
curCurveOff = 0;
279
prevT = 0f;
280
}
281
282
public boolean hasNext() {
283
return nextCurveIdx <= numTs;
284
}
285
286
public int next() {
287
int ret;
288
if (nextCurveIdx < numTs) {
289
float curT = ts[nextCurveIdx];
290
float splitT = (curT - prevT) / (1f - prevT);
291
Helpers.subdivideAt(splitT,
292
pts, curCurveOff,
293
pts, 0,
294
pts, type, type);
295
prevT = curT;
296
ret = 0;
297
curCurveOff = type;
298
} else {
299
ret = curCurveOff;
300
}
301
nextCurveIdx++;
302
return ret;
303
}
304
}
305
}
306
307
308