Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/sun/java2d/marlin/Dasher.java
38918 views
1
/*
2
* Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.java2d.marlin;
27
28
import java.util.Arrays;
29
import sun.awt.geom.PathConsumer2D;
30
31
/**
32
* The <code>Dasher</code> class takes a series of linear commands
33
* (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
34
* <code>end</code>) and breaks them into smaller segments according to a
35
* dash pattern array and a starting dash phase.
36
*
37
* <p> Issues: in J2Se, a zero length dash segment as drawn as a very
38
* short dash, whereas Pisces does not draw anything. The PostScript
39
* semantics are unclear.
40
*
41
*/
42
final class Dasher implements sun.awt.geom.PathConsumer2D, MarlinConst {
43
44
static final int recLimit = 4;
45
static final float ERR = 0.01f;
46
static final float minTincrement = 1f / (1 << recLimit);
47
48
private PathConsumer2D out;
49
private float[] dash;
50
private int dashLen;
51
private float startPhase;
52
private boolean startDashOn;
53
private int startIdx;
54
55
private boolean starting;
56
private boolean needsMoveTo;
57
58
private int idx;
59
private boolean dashOn;
60
private float phase;
61
62
private float sx, sy;
63
private float x0, y0;
64
65
// temporary storage for the current curve
66
private final float[] curCurvepts;
67
68
// per-thread renderer context
69
final RendererContext rdrCtx;
70
71
// dashes array (dirty)
72
final float[] dashes_initial = new float[INITIAL_ARRAY];
73
74
// flag to recycle dash array copy
75
boolean recycleDashes;
76
77
// per-thread initial arrays (large enough to satisfy most usages
78
// +1 to avoid recycling in Helpers.widenArray()
79
private final float[] firstSegmentsBuffer_initial = new float[INITIAL_ARRAY + 1];
80
81
/**
82
* Constructs a <code>Dasher</code>.
83
* @param rdrCtx per-thread renderer context
84
*/
85
Dasher(final RendererContext rdrCtx) {
86
this.rdrCtx = rdrCtx;
87
88
firstSegmentsBuffer = firstSegmentsBuffer_initial;
89
90
// we need curCurvepts to be able to contain 2 curves because when
91
// dashing curves, we need to subdivide it
92
curCurvepts = new float[8 * 2];
93
}
94
95
/**
96
* Initialize the <code>Dasher</code>.
97
*
98
* @param out an output <code>PathConsumer2D</code>.
99
* @param dash an array of <code>float</code>s containing the dash pattern
100
* @param dashLen length of the given dash array
101
* @param phase a <code>float</code> containing the dash phase
102
* @param recycleDashes true to indicate to recycle the given dash array
103
* @return this instance
104
*/
105
Dasher init(final PathConsumer2D out, float[] dash, int dashLen,
106
float phase, boolean recycleDashes)
107
{
108
if (phase < 0f) {
109
throw new IllegalArgumentException("phase < 0 !");
110
}
111
this.out = out;
112
113
// Normalize so 0 <= phase < dash[0]
114
int idx = 0;
115
dashOn = true;
116
float d;
117
while (phase >= (d = dash[idx])) {
118
phase -= d;
119
idx = (idx + 1) % dashLen;
120
dashOn = !dashOn;
121
}
122
123
this.dash = dash;
124
this.dashLen = dashLen;
125
this.startPhase = this.phase = phase;
126
this.startDashOn = dashOn;
127
this.startIdx = idx;
128
this.starting = true;
129
needsMoveTo = false;
130
firstSegidx = 0;
131
132
this.recycleDashes = recycleDashes;
133
134
return this; // fluent API
135
}
136
137
/**
138
* Disposes this dasher:
139
* clean up before reusing this instance
140
*/
141
void dispose() {
142
if (doCleanDirty) {
143
// Force zero-fill dirty arrays:
144
Arrays.fill(curCurvepts, 0f);
145
Arrays.fill(firstSegmentsBuffer, 0f);
146
}
147
// Return arrays:
148
if (recycleDashes && dash != dashes_initial) {
149
rdrCtx.putDirtyFloatArray(dash);
150
dash = null;
151
}
152
153
if (firstSegmentsBuffer != firstSegmentsBuffer_initial) {
154
rdrCtx.putDirtyFloatArray(firstSegmentsBuffer);
155
firstSegmentsBuffer = firstSegmentsBuffer_initial;
156
}
157
}
158
159
@Override
160
public void moveTo(float x0, float y0) {
161
if (firstSegidx > 0) {
162
out.moveTo(sx, sy);
163
emitFirstSegments();
164
}
165
needsMoveTo = true;
166
this.idx = startIdx;
167
this.dashOn = this.startDashOn;
168
this.phase = this.startPhase;
169
this.sx = this.x0 = x0;
170
this.sy = this.y0 = y0;
171
this.starting = true;
172
}
173
174
private void emitSeg(float[] buf, int off, int type) {
175
switch (type) {
176
case 8:
177
out.curveTo(buf[off+0], buf[off+1],
178
buf[off+2], buf[off+3],
179
buf[off+4], buf[off+5]);
180
return;
181
case 6:
182
out.quadTo(buf[off+0], buf[off+1],
183
buf[off+2], buf[off+3]);
184
return;
185
case 4:
186
out.lineTo(buf[off], buf[off+1]);
187
return;
188
default:
189
}
190
}
191
192
private void emitFirstSegments() {
193
final float[] fSegBuf = firstSegmentsBuffer;
194
195
for (int i = 0; i < firstSegidx; ) {
196
int type = (int)fSegBuf[i];
197
emitSeg(fSegBuf, i + 1, type);
198
i += (type - 1);
199
}
200
firstSegidx = 0;
201
}
202
// We don't emit the first dash right away. If we did, caps would be
203
// drawn on it, but we need joins to be drawn if there's a closePath()
204
// So, we store the path elements that make up the first dash in the
205
// buffer below.
206
private float[] firstSegmentsBuffer; // dynamic array
207
private int firstSegidx;
208
209
// precondition: pts must be in relative coordinates (relative to x0,y0)
210
// fullCurve is true iff the curve in pts has not been split.
211
private void goTo(float[] pts, int off, final int type) {
212
float x = pts[off + type - 4];
213
float y = pts[off + type - 3];
214
if (dashOn) {
215
if (starting) {
216
int len = type - 2 + 1;
217
int segIdx = firstSegidx;
218
float[] buf = firstSegmentsBuffer;
219
if (segIdx + len > buf.length) {
220
if (doStats) {
221
RendererContext.stats.stat_array_dasher_firstSegmentsBuffer
222
.add(segIdx + len);
223
}
224
firstSegmentsBuffer = buf
225
= rdrCtx.widenDirtyFloatArray(buf, segIdx, segIdx + len);
226
}
227
buf[segIdx++] = type;
228
len--;
229
// small arraycopy (2, 4 or 6) but with offset:
230
System.arraycopy(pts, off, buf, segIdx, len);
231
segIdx += len;
232
firstSegidx = segIdx;
233
} else {
234
if (needsMoveTo) {
235
out.moveTo(x0, y0);
236
needsMoveTo = false;
237
}
238
emitSeg(pts, off, type);
239
}
240
} else {
241
starting = false;
242
needsMoveTo = true;
243
}
244
this.x0 = x;
245
this.y0 = y;
246
}
247
248
@Override
249
public void lineTo(float x1, float y1) {
250
float dx = x1 - x0;
251
float dy = y1 - y0;
252
253
float len = dx*dx + dy*dy;
254
if (len == 0f) {
255
return;
256
}
257
len = (float) Math.sqrt(len);
258
259
// The scaling factors needed to get the dx and dy of the
260
// transformed dash segments.
261
final float cx = dx / len;
262
final float cy = dy / len;
263
264
final float[] _curCurvepts = curCurvepts;
265
final float[] _dash = dash;
266
267
float leftInThisDashSegment;
268
float dashdx, dashdy, p;
269
270
while (true) {
271
leftInThisDashSegment = _dash[idx] - phase;
272
273
if (len <= leftInThisDashSegment) {
274
_curCurvepts[0] = x1;
275
_curCurvepts[1] = y1;
276
goTo(_curCurvepts, 0, 4);
277
278
// Advance phase within current dash segment
279
phase += len;
280
// TODO: compare float values using epsilon:
281
if (len == leftInThisDashSegment) {
282
phase = 0f;
283
idx = (idx + 1) % dashLen;
284
dashOn = !dashOn;
285
}
286
return;
287
}
288
289
dashdx = _dash[idx] * cx;
290
dashdy = _dash[idx] * cy;
291
292
if (phase == 0f) {
293
_curCurvepts[0] = x0 + dashdx;
294
_curCurvepts[1] = y0 + dashdy;
295
} else {
296
p = leftInThisDashSegment / _dash[idx];
297
_curCurvepts[0] = x0 + p * dashdx;
298
_curCurvepts[1] = y0 + p * dashdy;
299
}
300
301
goTo(_curCurvepts, 0, 4);
302
303
len -= leftInThisDashSegment;
304
// Advance to next dash segment
305
idx = (idx + 1) % dashLen;
306
dashOn = !dashOn;
307
phase = 0f;
308
}
309
}
310
311
// shared instance in Dasher
312
private final LengthIterator li = new LengthIterator();
313
314
// preconditions: curCurvepts must be an array of length at least 2 * type,
315
// that contains the curve we want to dash in the first type elements
316
private void somethingTo(int type) {
317
if (pointCurve(curCurvepts, type)) {
318
return;
319
}
320
li.initializeIterationOnCurve(curCurvepts, type);
321
322
// initially the current curve is at curCurvepts[0...type]
323
int curCurveoff = 0;
324
float lastSplitT = 0f;
325
float t;
326
float leftInThisDashSegment = dash[idx] - phase;
327
328
while ((t = li.next(leftInThisDashSegment)) < 1f) {
329
if (t != 0f) {
330
Helpers.subdivideAt((t - lastSplitT) / (1f - lastSplitT),
331
curCurvepts, curCurveoff,
332
curCurvepts, 0,
333
curCurvepts, type, type);
334
lastSplitT = t;
335
goTo(curCurvepts, 2, type);
336
curCurveoff = type;
337
}
338
// Advance to next dash segment
339
idx = (idx + 1) % dashLen;
340
dashOn = !dashOn;
341
phase = 0f;
342
leftInThisDashSegment = dash[idx];
343
}
344
goTo(curCurvepts, curCurveoff+2, type);
345
phase += li.lastSegLen();
346
if (phase >= dash[idx]) {
347
phase = 0f;
348
idx = (idx + 1) % dashLen;
349
dashOn = !dashOn;
350
}
351
// reset LengthIterator:
352
li.reset();
353
}
354
355
private static boolean pointCurve(float[] curve, int type) {
356
for (int i = 2; i < type; i++) {
357
if (curve[i] != curve[i-2]) {
358
return false;
359
}
360
}
361
return true;
362
}
363
364
// Objects of this class are used to iterate through curves. They return
365
// t values where the left side of the curve has a specified length.
366
// It does this by subdividing the input curve until a certain error
367
// condition has been met. A recursive subdivision procedure would
368
// return as many as 1<<limit curves, but this is an iterator and we
369
// don't need all the curves all at once, so what we carry out a
370
// lazy inorder traversal of the recursion tree (meaning we only move
371
// through the tree when we need the next subdivided curve). This saves
372
// us a lot of memory because at any one time we only need to store
373
// limit+1 curves - one for each level of the tree + 1.
374
// NOTE: the way we do things here is not enough to traverse a general
375
// tree; however, the trees we are interested in have the property that
376
// every non leaf node has exactly 2 children
377
static final class LengthIterator {
378
private enum Side {LEFT, RIGHT};
379
// Holds the curves at various levels of the recursion. The root
380
// (i.e. the original curve) is at recCurveStack[0] (but then it
381
// gets subdivided, the left half is put at 1, so most of the time
382
// only the right half of the original curve is at 0)
383
private final float[][] recCurveStack; // dirty
384
// sides[i] indicates whether the node at level i+1 in the path from
385
// the root to the current leaf is a left or right child of its parent.
386
private final Side[] sides; // dirty
387
private int curveType;
388
// lastT and nextT delimit the current leaf.
389
private float nextT;
390
private float lenAtNextT;
391
private float lastT;
392
private float lenAtLastT;
393
private float lenAtLastSplit;
394
private float lastSegLen;
395
// the current level in the recursion tree. 0 is the root. limit
396
// is the deepest possible leaf.
397
private int recLevel;
398
private boolean done;
399
400
// the lengths of the lines of the control polygon. Only its first
401
// curveType/2 - 1 elements are valid. This is an optimization. See
402
// next(float) for more detail.
403
private final float[] curLeafCtrlPolyLengths = new float[3];
404
405
LengthIterator() {
406
this.recCurveStack = new float[recLimit + 1][8];
407
this.sides = new Side[recLimit];
408
// if any methods are called without first initializing this object
409
// on a curve, we want it to fail ASAP.
410
this.nextT = Float.MAX_VALUE;
411
this.lenAtNextT = Float.MAX_VALUE;
412
this.lenAtLastSplit = Float.MIN_VALUE;
413
this.recLevel = Integer.MIN_VALUE;
414
this.lastSegLen = Float.MAX_VALUE;
415
this.done = true;
416
}
417
418
/**
419
* Reset this LengthIterator.
420
*/
421
void reset() {
422
// keep data dirty
423
// as it appears not useful to reset data:
424
if (doCleanDirty) {
425
final int recLimit = recCurveStack.length - 1;
426
for (int i = recLimit; i >= 0; i--) {
427
Arrays.fill(recCurveStack[i], 0f);
428
}
429
Arrays.fill(sides, Side.LEFT);
430
Arrays.fill(curLeafCtrlPolyLengths, 0f);
431
Arrays.fill(nextRoots, 0f);
432
Arrays.fill(flatLeafCoefCache, 0f);
433
flatLeafCoefCache[2] = -1f;
434
}
435
}
436
437
void initializeIterationOnCurve(float[] pts, int type) {
438
// optimize arraycopy (8 values faster than 6 = type):
439
System.arraycopy(pts, 0, recCurveStack[0], 0, 8);
440
this.curveType = type;
441
this.recLevel = 0;
442
this.lastT = 0f;
443
this.lenAtLastT = 0f;
444
this.nextT = 0f;
445
this.lenAtNextT = 0f;
446
goLeft(); // initializes nextT and lenAtNextT properly
447
this.lenAtLastSplit = 0f;
448
if (recLevel > 0) {
449
this.sides[0] = Side.LEFT;
450
this.done = false;
451
} else {
452
// the root of the tree is a leaf so we're done.
453
this.sides[0] = Side.RIGHT;
454
this.done = true;
455
}
456
this.lastSegLen = 0f;
457
}
458
459
// 0 == false, 1 == true, -1 == invalid cached value.
460
private int cachedHaveLowAcceleration = -1;
461
462
private boolean haveLowAcceleration(float err) {
463
if (cachedHaveLowAcceleration == -1) {
464
final float len1 = curLeafCtrlPolyLengths[0];
465
final float len2 = curLeafCtrlPolyLengths[1];
466
// the test below is equivalent to !within(len1/len2, 1, err).
467
// It is using a multiplication instead of a division, so it
468
// should be a bit faster.
469
if (!Helpers.within(len1, len2, err*len2)) {
470
cachedHaveLowAcceleration = 0;
471
return false;
472
}
473
if (curveType == 8) {
474
final float len3 = curLeafCtrlPolyLengths[2];
475
// if len1 is close to 2 and 2 is close to 3, that probably
476
// means 1 is close to 3 so the second part of this test might
477
// not be needed, but it doesn't hurt to include it.
478
final float errLen3 = err * len3;
479
if (!(Helpers.within(len2, len3, errLen3) &&
480
Helpers.within(len1, len3, errLen3))) {
481
cachedHaveLowAcceleration = 0;
482
return false;
483
}
484
}
485
cachedHaveLowAcceleration = 1;
486
return true;
487
}
488
489
return (cachedHaveLowAcceleration == 1);
490
}
491
492
// we want to avoid allocations/gc so we keep this array so we
493
// can put roots in it,
494
private final float[] nextRoots = new float[4];
495
496
// caches the coefficients of the current leaf in its flattened
497
// form (see inside next() for what that means). The cache is
498
// invalid when it's third element is negative, since in any
499
// valid flattened curve, this would be >= 0.
500
private final float[] flatLeafCoefCache = new float[]{0f, 0f, -1f, 0f};
501
502
// returns the t value where the remaining curve should be split in
503
// order for the left subdivided curve to have length len. If len
504
// is >= than the length of the uniterated curve, it returns 1.
505
float next(final float len) {
506
final float targetLength = lenAtLastSplit + len;
507
while (lenAtNextT < targetLength) {
508
if (done) {
509
lastSegLen = lenAtNextT - lenAtLastSplit;
510
return 1f;
511
}
512
goToNextLeaf();
513
}
514
lenAtLastSplit = targetLength;
515
final float leaflen = lenAtNextT - lenAtLastT;
516
float t = (targetLength - lenAtLastT) / leaflen;
517
518
// cubicRootsInAB is a fairly expensive call, so we just don't do it
519
// if the acceleration in this section of the curve is small enough.
520
if (!haveLowAcceleration(0.05f)) {
521
// We flatten the current leaf along the x axis, so that we're
522
// left with a, b, c which define a 1D Bezier curve. We then
523
// solve this to get the parameter of the original leaf that
524
// gives us the desired length.
525
final float[] _flatLeafCoefCache = flatLeafCoefCache;
526
527
if (_flatLeafCoefCache[2] < 0) {
528
float x = 0f + curLeafCtrlPolyLengths[0],
529
y = x + curLeafCtrlPolyLengths[1];
530
if (curveType == 8) {
531
float z = y + curLeafCtrlPolyLengths[2];
532
_flatLeafCoefCache[0] = 3f * (x - y) + z;
533
_flatLeafCoefCache[1] = 3f * (y - 2f * x);
534
_flatLeafCoefCache[2] = 3f * x;
535
_flatLeafCoefCache[3] = -z;
536
} else if (curveType == 6) {
537
_flatLeafCoefCache[0] = 0f;
538
_flatLeafCoefCache[1] = y - 2f * x;
539
_flatLeafCoefCache[2] = 2f * x;
540
_flatLeafCoefCache[3] = -y;
541
}
542
}
543
float a = _flatLeafCoefCache[0];
544
float b = _flatLeafCoefCache[1];
545
float c = _flatLeafCoefCache[2];
546
float d = t * _flatLeafCoefCache[3];
547
548
// we use cubicRootsInAB here, because we want only roots in 0, 1,
549
// and our quadratic root finder doesn't filter, so it's just a
550
// matter of convenience.
551
int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1);
552
if (n == 1 && !Float.isNaN(nextRoots[0])) {
553
t = nextRoots[0];
554
}
555
}
556
// t is relative to the current leaf, so we must make it a valid parameter
557
// of the original curve.
558
t = t * (nextT - lastT) + lastT;
559
if (t >= 1f) {
560
t = 1f;
561
done = true;
562
}
563
// even if done = true, if we're here, that means targetLength
564
// is equal to, or very, very close to the total length of the
565
// curve, so lastSegLen won't be too high. In cases where len
566
// overshoots the curve, this method will exit in the while
567
// loop, and lastSegLen will still be set to the right value.
568
lastSegLen = len;
569
return t;
570
}
571
572
float lastSegLen() {
573
return lastSegLen;
574
}
575
576
// go to the next leaf (in an inorder traversal) in the recursion tree
577
// preconditions: must be on a leaf, and that leaf must not be the root.
578
private void goToNextLeaf() {
579
// We must go to the first ancestor node that has an unvisited
580
// right child.
581
int _recLevel = recLevel;
582
final Side[] _sides = sides;
583
584
_recLevel--;
585
while(_sides[_recLevel] == Side.RIGHT) {
586
if (_recLevel == 0) {
587
recLevel = 0;
588
done = true;
589
return;
590
}
591
_recLevel--;
592
}
593
594
_sides[_recLevel] = Side.RIGHT;
595
// optimize arraycopy (8 values faster than 6 = type):
596
System.arraycopy(recCurveStack[_recLevel], 0,
597
recCurveStack[_recLevel+1], 0, 8);
598
_recLevel++;
599
600
recLevel = _recLevel;
601
goLeft();
602
}
603
604
// go to the leftmost node from the current node. Return its length.
605
private void goLeft() {
606
float len = onLeaf();
607
if (len >= 0f) {
608
lastT = nextT;
609
lenAtLastT = lenAtNextT;
610
nextT += (1 << (recLimit - recLevel)) * minTincrement;
611
lenAtNextT += len;
612
// invalidate caches
613
flatLeafCoefCache[2] = -1f;
614
cachedHaveLowAcceleration = -1;
615
} else {
616
Helpers.subdivide(recCurveStack[recLevel], 0,
617
recCurveStack[recLevel+1], 0,
618
recCurveStack[recLevel], 0, curveType);
619
sides[recLevel] = Side.LEFT;
620
recLevel++;
621
goLeft();
622
}
623
}
624
625
// this is a bit of a hack. It returns -1 if we're not on a leaf, and
626
// the length of the leaf if we are on a leaf.
627
private float onLeaf() {
628
float[] curve = recCurveStack[recLevel];
629
float polyLen = 0f;
630
631
float x0 = curve[0], y0 = curve[1];
632
for (int i = 2; i < curveType; i += 2) {
633
final float x1 = curve[i], y1 = curve[i+1];
634
final float len = Helpers.linelen(x0, y0, x1, y1);
635
polyLen += len;
636
curLeafCtrlPolyLengths[i/2 - 1] = len;
637
x0 = x1;
638
y0 = y1;
639
}
640
641
final float lineLen = Helpers.linelen(curve[0], curve[1],
642
curve[curveType-2],
643
curve[curveType-1]);
644
if ((polyLen - lineLen) < ERR || recLevel == recLimit) {
645
return (polyLen + lineLen) / 2f;
646
}
647
return -1f;
648
}
649
}
650
651
@Override
652
public void curveTo(float x1, float y1,
653
float x2, float y2,
654
float x3, float y3)
655
{
656
final float[] _curCurvepts = curCurvepts;
657
_curCurvepts[0] = x0; _curCurvepts[1] = y0;
658
_curCurvepts[2] = x1; _curCurvepts[3] = y1;
659
_curCurvepts[4] = x2; _curCurvepts[5] = y2;
660
_curCurvepts[6] = x3; _curCurvepts[7] = y3;
661
somethingTo(8);
662
}
663
664
@Override
665
public void quadTo(float x1, float y1, float x2, float y2) {
666
final float[] _curCurvepts = curCurvepts;
667
_curCurvepts[0] = x0; _curCurvepts[1] = y0;
668
_curCurvepts[2] = x1; _curCurvepts[3] = y1;
669
_curCurvepts[4] = x2; _curCurvepts[5] = y2;
670
somethingTo(6);
671
}
672
673
@Override
674
public void closePath() {
675
lineTo(sx, sy);
676
if (firstSegidx > 0) {
677
if (!dashOn || needsMoveTo) {
678
out.moveTo(sx, sy);
679
}
680
emitFirstSegments();
681
}
682
moveTo(sx, sy);
683
}
684
685
@Override
686
public void pathDone() {
687
if (firstSegidx > 0) {
688
out.moveTo(sx, sy);
689
emitFirstSegments();
690
}
691
out.pathDone();
692
693
// Dispose this instance:
694
dispose();
695
}
696
697
@Override
698
public long getNativeConsumer() {
699
throw new InternalError("Dasher does not use a native consumer");
700
}
701
}
702
703
704