Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/sun/java2d/pisces/Dasher.java
38918 views
1
/*
2
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.java2d.pisces;
27
28
import sun.awt.geom.PathConsumer2D;
29
30
/**
31
* The <code>Dasher</code> class takes a series of linear commands
32
* (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
33
* <code>end</code>) and breaks them into smaller segments according to a
34
* dash pattern array and a starting dash phase.
35
*
36
* <p> Issues: in J2Se, a zero length dash segment as drawn as a very
37
* short dash, whereas Pisces does not draw anything. The PostScript
38
* semantics are unclear.
39
*
40
*/
41
final class Dasher implements sun.awt.geom.PathConsumer2D {
42
43
private final PathConsumer2D out;
44
private final float[] dash;
45
private final float startPhase;
46
private final boolean startDashOn;
47
private final int startIdx;
48
49
private boolean starting;
50
private boolean needsMoveTo;
51
52
private int idx;
53
private boolean dashOn;
54
private float phase;
55
56
private float sx, sy;
57
private float x0, y0;
58
59
// temporary storage for the current curve
60
private float[] curCurvepts;
61
62
/**
63
* Constructs a <code>Dasher</code>.
64
*
65
* @param out an output <code>PathConsumer2D</code>.
66
* @param dash an array of <code>float</code>s containing the dash pattern
67
* @param phase a <code>float</code> containing the dash phase
68
*/
69
public Dasher(PathConsumer2D out, float[] dash, float phase) {
70
if (phase < 0) {
71
throw new IllegalArgumentException("phase < 0 !");
72
}
73
74
this.out = out;
75
76
// Normalize so 0 <= phase < dash[0]
77
int idx = 0;
78
dashOn = true;
79
float d;
80
while (phase >= (d = dash[idx])) {
81
phase -= d;
82
idx = (idx + 1) % dash.length;
83
dashOn = !dashOn;
84
}
85
86
this.dash = dash;
87
this.startPhase = this.phase = phase;
88
this.startDashOn = dashOn;
89
this.startIdx = idx;
90
this.starting = true;
91
92
// we need curCurvepts to be able to contain 2 curves because when
93
// dashing curves, we need to subdivide it
94
curCurvepts = new float[8 * 2];
95
}
96
97
public void moveTo(float x0, float y0) {
98
if (firstSegidx > 0) {
99
out.moveTo(sx, sy);
100
emitFirstSegments();
101
}
102
needsMoveTo = true;
103
this.idx = startIdx;
104
this.dashOn = this.startDashOn;
105
this.phase = this.startPhase;
106
this.sx = this.x0 = x0;
107
this.sy = this.y0 = y0;
108
this.starting = true;
109
}
110
111
private void emitSeg(float[] buf, int off, int type) {
112
switch (type) {
113
case 8:
114
out.curveTo(buf[off+0], buf[off+1],
115
buf[off+2], buf[off+3],
116
buf[off+4], buf[off+5]);
117
break;
118
case 6:
119
out.quadTo(buf[off+0], buf[off+1],
120
buf[off+2], buf[off+3]);
121
break;
122
case 4:
123
out.lineTo(buf[off], buf[off+1]);
124
}
125
}
126
127
private void emitFirstSegments() {
128
for (int i = 0; i < firstSegidx; ) {
129
emitSeg(firstSegmentsBuffer, i+1, (int)firstSegmentsBuffer[i]);
130
i += (((int)firstSegmentsBuffer[i]) - 1);
131
}
132
firstSegidx = 0;
133
}
134
135
// We don't emit the first dash right away. If we did, caps would be
136
// drawn on it, but we need joins to be drawn if there's a closePath()
137
// So, we store the path elements that make up the first dash in the
138
// buffer below.
139
private float[] firstSegmentsBuffer = new float[7];
140
private int firstSegidx = 0;
141
// precondition: pts must be in relative coordinates (relative to x0,y0)
142
// fullCurve is true iff the curve in pts has not been split.
143
private void goTo(float[] pts, int off, final int type) {
144
float x = pts[off + type - 4];
145
float y = pts[off + type - 3];
146
if (dashOn) {
147
if (starting) {
148
firstSegmentsBuffer = Helpers.widenArray(firstSegmentsBuffer,
149
firstSegidx, type - 2 + 1);
150
firstSegmentsBuffer[firstSegidx++] = type;
151
System.arraycopy(pts, off, firstSegmentsBuffer, firstSegidx, type - 2);
152
firstSegidx += type - 2;
153
} else {
154
if (needsMoveTo) {
155
out.moveTo(x0, y0);
156
needsMoveTo = false;
157
}
158
emitSeg(pts, off, type);
159
}
160
} else {
161
starting = false;
162
needsMoveTo = true;
163
}
164
this.x0 = x;
165
this.y0 = y;
166
}
167
168
public void lineTo(float x1, float y1) {
169
float dx = x1 - x0;
170
float dy = y1 - y0;
171
172
float len = (float) Math.sqrt(dx*dx + dy*dy);
173
174
if (len == 0) {
175
return;
176
}
177
178
// The scaling factors needed to get the dx and dy of the
179
// transformed dash segments.
180
float cx = dx / len;
181
float cy = dy / len;
182
183
while (true) {
184
float leftInThisDashSegment = dash[idx] - phase;
185
if (len <= leftInThisDashSegment) {
186
curCurvepts[0] = x1;
187
curCurvepts[1] = y1;
188
goTo(curCurvepts, 0, 4);
189
// Advance phase within current dash segment
190
phase += len;
191
if (len == leftInThisDashSegment) {
192
phase = 0f;
193
idx = (idx + 1) % dash.length;
194
dashOn = !dashOn;
195
}
196
return;
197
}
198
199
float dashdx = dash[idx] * cx;
200
float dashdy = dash[idx] * cy;
201
if (phase == 0) {
202
curCurvepts[0] = x0 + dashdx;
203
curCurvepts[1] = y0 + dashdy;
204
} else {
205
float p = leftInThisDashSegment / dash[idx];
206
curCurvepts[0] = x0 + p * dashdx;
207
curCurvepts[1] = y0 + p * dashdy;
208
}
209
210
goTo(curCurvepts, 0, 4);
211
212
len -= leftInThisDashSegment;
213
// Advance to next dash segment
214
idx = (idx + 1) % dash.length;
215
dashOn = !dashOn;
216
phase = 0;
217
}
218
}
219
220
private LengthIterator li = null;
221
222
// preconditions: curCurvepts must be an array of length at least 2 * type,
223
// that contains the curve we want to dash in the first type elements
224
private void somethingTo(int type) {
225
if (pointCurve(curCurvepts, type)) {
226
return;
227
}
228
if (li == null) {
229
li = new LengthIterator(4, 0.01f);
230
}
231
li.initializeIterationOnCurve(curCurvepts, type);
232
233
int curCurveoff = 0; // initially the current curve is at curCurvepts[0...type]
234
float lastSplitT = 0;
235
float t = 0;
236
float leftInThisDashSegment = dash[idx] - phase;
237
while ((t = li.next(leftInThisDashSegment)) < 1) {
238
if (t != 0) {
239
Helpers.subdivideAt((t - lastSplitT) / (1 - lastSplitT),
240
curCurvepts, curCurveoff,
241
curCurvepts, 0,
242
curCurvepts, type, type);
243
lastSplitT = t;
244
goTo(curCurvepts, 2, type);
245
curCurveoff = type;
246
}
247
// Advance to next dash segment
248
idx = (idx + 1) % dash.length;
249
dashOn = !dashOn;
250
phase = 0;
251
leftInThisDashSegment = dash[idx];
252
}
253
goTo(curCurvepts, curCurveoff+2, type);
254
phase += li.lastSegLen();
255
if (phase >= dash[idx]) {
256
phase = 0f;
257
idx = (idx + 1) % dash.length;
258
dashOn = !dashOn;
259
}
260
}
261
262
private static boolean pointCurve(float[] curve, int type) {
263
for (int i = 2; i < type; i++) {
264
if (curve[i] != curve[i-2]) {
265
return false;
266
}
267
}
268
return true;
269
}
270
271
// Objects of this class are used to iterate through curves. They return
272
// t values where the left side of the curve has a specified length.
273
// It does this by subdividing the input curve until a certain error
274
// condition has been met. A recursive subdivision procedure would
275
// return as many as 1<<limit curves, but this is an iterator and we
276
// don't need all the curves all at once, so what we carry out a
277
// lazy inorder traversal of the recursion tree (meaning we only move
278
// through the tree when we need the next subdivided curve). This saves
279
// us a lot of memory because at any one time we only need to store
280
// limit+1 curves - one for each level of the tree + 1.
281
// NOTE: the way we do things here is not enough to traverse a general
282
// tree; however, the trees we are interested in have the property that
283
// every non leaf node has exactly 2 children
284
private static class LengthIterator {
285
private enum Side {LEFT, RIGHT};
286
// Holds the curves at various levels of the recursion. The root
287
// (i.e. the original curve) is at recCurveStack[0] (but then it
288
// gets subdivided, the left half is put at 1, so most of the time
289
// only the right half of the original curve is at 0)
290
private float[][] recCurveStack;
291
// sides[i] indicates whether the node at level i+1 in the path from
292
// the root to the current leaf is a left or right child of its parent.
293
private Side[] sides;
294
private int curveType;
295
private final int limit;
296
private final float ERR;
297
private final float minTincrement;
298
// lastT and nextT delimit the current leaf.
299
private float nextT;
300
private float lenAtNextT;
301
private float lastT;
302
private float lenAtLastT;
303
private float lenAtLastSplit;
304
private float lastSegLen;
305
// the current level in the recursion tree. 0 is the root. limit
306
// is the deepest possible leaf.
307
private int recLevel;
308
private boolean done;
309
310
// the lengths of the lines of the control polygon. Only its first
311
// curveType/2 - 1 elements are valid. This is an optimization. See
312
// next(float) for more detail.
313
private float[] curLeafCtrlPolyLengths = new float[3];
314
315
public LengthIterator(int reclimit, float err) {
316
this.limit = reclimit;
317
this.minTincrement = 1f / (1 << limit);
318
this.ERR = err;
319
this.recCurveStack = new float[reclimit+1][8];
320
this.sides = new Side[reclimit];
321
// if any methods are called without first initializing this object on
322
// a curve, we want it to fail ASAP.
323
this.nextT = Float.MAX_VALUE;
324
this.lenAtNextT = Float.MAX_VALUE;
325
this.lenAtLastSplit = Float.MIN_VALUE;
326
this.recLevel = Integer.MIN_VALUE;
327
this.lastSegLen = Float.MAX_VALUE;
328
this.done = true;
329
}
330
331
public void initializeIterationOnCurve(float[] pts, int type) {
332
System.arraycopy(pts, 0, recCurveStack[0], 0, type);
333
this.curveType = type;
334
this.recLevel = 0;
335
this.lastT = 0;
336
this.lenAtLastT = 0;
337
this.nextT = 0;
338
this.lenAtNextT = 0;
339
goLeft(); // initializes nextT and lenAtNextT properly
340
this.lenAtLastSplit = 0;
341
if (recLevel > 0) {
342
this.sides[0] = Side.LEFT;
343
this.done = false;
344
} else {
345
// the root of the tree is a leaf so we're done.
346
this.sides[0] = Side.RIGHT;
347
this.done = true;
348
}
349
this.lastSegLen = 0;
350
}
351
352
// 0 == false, 1 == true, -1 == invalid cached value.
353
private int cachedHaveLowAcceleration = -1;
354
355
private boolean haveLowAcceleration(float err) {
356
if (cachedHaveLowAcceleration == -1) {
357
final float len1 = curLeafCtrlPolyLengths[0];
358
final float len2 = curLeafCtrlPolyLengths[1];
359
// the test below is equivalent to !within(len1/len2, 1, err).
360
// It is using a multiplication instead of a division, so it
361
// should be a bit faster.
362
if (!Helpers.within(len1, len2, err*len2)) {
363
cachedHaveLowAcceleration = 0;
364
return false;
365
}
366
if (curveType == 8) {
367
final float len3 = curLeafCtrlPolyLengths[2];
368
// if len1 is close to 2 and 2 is close to 3, that probably
369
// means 1 is close to 3 so the second part of this test might
370
// not be needed, but it doesn't hurt to include it.
371
if (!(Helpers.within(len2, len3, err*len3) &&
372
Helpers.within(len1, len3, err*len3))) {
373
cachedHaveLowAcceleration = 0;
374
return false;
375
}
376
}
377
cachedHaveLowAcceleration = 1;
378
return true;
379
}
380
381
return (cachedHaveLowAcceleration == 1);
382
}
383
384
// we want to avoid allocations/gc so we keep this array so we
385
// can put roots in it,
386
private float[] nextRoots = new float[4];
387
388
// caches the coefficients of the current leaf in its flattened
389
// form (see inside next() for what that means). The cache is
390
// invalid when it's third element is negative, since in any
391
// valid flattened curve, this would be >= 0.
392
private float[] flatLeafCoefCache = new float[] {0, 0, -1, 0};
393
// returns the t value where the remaining curve should be split in
394
// order for the left subdivided curve to have length len. If len
395
// is >= than the length of the uniterated curve, it returns 1.
396
public float next(final float len) {
397
final float targetLength = lenAtLastSplit + len;
398
while(lenAtNextT < targetLength) {
399
if (done) {
400
lastSegLen = lenAtNextT - lenAtLastSplit;
401
return 1;
402
}
403
goToNextLeaf();
404
}
405
lenAtLastSplit = targetLength;
406
final float leaflen = lenAtNextT - lenAtLastT;
407
float t = (targetLength - lenAtLastT) / leaflen;
408
409
// cubicRootsInAB is a fairly expensive call, so we just don't do it
410
// if the acceleration in this section of the curve is small enough.
411
if (!haveLowAcceleration(0.05f)) {
412
// We flatten the current leaf along the x axis, so that we're
413
// left with a, b, c which define a 1D Bezier curve. We then
414
// solve this to get the parameter of the original leaf that
415
// gives us the desired length.
416
417
if (flatLeafCoefCache[2] < 0) {
418
float x = 0+curLeafCtrlPolyLengths[0],
419
y = x+curLeafCtrlPolyLengths[1];
420
if (curveType == 8) {
421
float z = y + curLeafCtrlPolyLengths[2];
422
flatLeafCoefCache[0] = 3*(x - y) + z;
423
flatLeafCoefCache[1] = 3*(y - 2*x);
424
flatLeafCoefCache[2] = 3*x;
425
flatLeafCoefCache[3] = -z;
426
} else if (curveType == 6) {
427
flatLeafCoefCache[0] = 0f;
428
flatLeafCoefCache[1] = y - 2*x;
429
flatLeafCoefCache[2] = 2*x;
430
flatLeafCoefCache[3] = -y;
431
}
432
}
433
float a = flatLeafCoefCache[0];
434
float b = flatLeafCoefCache[1];
435
float c = flatLeafCoefCache[2];
436
float d = t*flatLeafCoefCache[3];
437
438
// we use cubicRootsInAB here, because we want only roots in 0, 1,
439
// and our quadratic root finder doesn't filter, so it's just a
440
// matter of convenience.
441
int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1);
442
if (n == 1 && !Float.isNaN(nextRoots[0])) {
443
t = nextRoots[0];
444
}
445
}
446
// t is relative to the current leaf, so we must make it a valid parameter
447
// of the original curve.
448
t = t * (nextT - lastT) + lastT;
449
if (t >= 1) {
450
t = 1;
451
done = true;
452
}
453
// even if done = true, if we're here, that means targetLength
454
// is equal to, or very, very close to the total length of the
455
// curve, so lastSegLen won't be too high. In cases where len
456
// overshoots the curve, this method will exit in the while
457
// loop, and lastSegLen will still be set to the right value.
458
lastSegLen = len;
459
return t;
460
}
461
462
public float lastSegLen() {
463
return lastSegLen;
464
}
465
466
// go to the next leaf (in an inorder traversal) in the recursion tree
467
// preconditions: must be on a leaf, and that leaf must not be the root.
468
private void goToNextLeaf() {
469
// We must go to the first ancestor node that has an unvisited
470
// right child.
471
recLevel--;
472
while(sides[recLevel] == Side.RIGHT) {
473
if (recLevel == 0) {
474
done = true;
475
return;
476
}
477
recLevel--;
478
}
479
480
sides[recLevel] = Side.RIGHT;
481
System.arraycopy(recCurveStack[recLevel], 0, recCurveStack[recLevel+1], 0, curveType);
482
recLevel++;
483
goLeft();
484
}
485
486
// go to the leftmost node from the current node. Return its length.
487
private void goLeft() {
488
float len = onLeaf();
489
if (len >= 0) {
490
lastT = nextT;
491
lenAtLastT = lenAtNextT;
492
nextT += (1 << (limit - recLevel)) * minTincrement;
493
lenAtNextT += len;
494
// invalidate caches
495
flatLeafCoefCache[2] = -1;
496
cachedHaveLowAcceleration = -1;
497
} else {
498
Helpers.subdivide(recCurveStack[recLevel], 0,
499
recCurveStack[recLevel+1], 0,
500
recCurveStack[recLevel], 0, curveType);
501
sides[recLevel] = Side.LEFT;
502
recLevel++;
503
goLeft();
504
}
505
}
506
507
// this is a bit of a hack. It returns -1 if we're not on a leaf, and
508
// the length of the leaf if we are on a leaf.
509
private float onLeaf() {
510
float[] curve = recCurveStack[recLevel];
511
float polyLen = 0;
512
513
float x0 = curve[0], y0 = curve[1];
514
for (int i = 2; i < curveType; i += 2) {
515
final float x1 = curve[i], y1 = curve[i+1];
516
final float len = Helpers.linelen(x0, y0, x1, y1);
517
polyLen += len;
518
curLeafCtrlPolyLengths[i/2 - 1] = len;
519
x0 = x1;
520
y0 = y1;
521
}
522
523
final float lineLen = Helpers.linelen(curve[0], curve[1], curve[curveType-2], curve[curveType-1]);
524
if (polyLen - lineLen < ERR || recLevel == limit) {
525
return (polyLen + lineLen)/2;
526
}
527
return -1;
528
}
529
}
530
531
@Override
532
public void curveTo(float x1, float y1,
533
float x2, float y2,
534
float x3, float y3)
535
{
536
curCurvepts[0] = x0; curCurvepts[1] = y0;
537
curCurvepts[2] = x1; curCurvepts[3] = y1;
538
curCurvepts[4] = x2; curCurvepts[5] = y2;
539
curCurvepts[6] = x3; curCurvepts[7] = y3;
540
somethingTo(8);
541
}
542
543
@Override
544
public void quadTo(float x1, float y1, float x2, float y2) {
545
curCurvepts[0] = x0; curCurvepts[1] = y0;
546
curCurvepts[2] = x1; curCurvepts[3] = y1;
547
curCurvepts[4] = x2; curCurvepts[5] = y2;
548
somethingTo(6);
549
}
550
551
public void closePath() {
552
lineTo(sx, sy);
553
if (firstSegidx > 0) {
554
if (!dashOn || needsMoveTo) {
555
out.moveTo(sx, sy);
556
}
557
emitFirstSegments();
558
}
559
moveTo(sx, sy);
560
}
561
562
public void pathDone() {
563
if (firstSegidx > 0) {
564
out.moveTo(sx, sy);
565
emitFirstSegments();
566
}
567
out.pathDone();
568
}
569
570
@Override
571
public long getNativeConsumer() {
572
throw new InternalError("Dasher does not use a native consumer");
573
}
574
}
575
576
577