Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/sun/java2d/pisces/Helpers.java
38918 views
1
/*
2
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.java2d.pisces;
27
28
import java.util.Arrays;
29
import static java.lang.Math.PI;
30
import static java.lang.Math.cos;
31
import static java.lang.Math.sqrt;
32
import static java.lang.Math.cbrt;
33
import static java.lang.Math.acos;
34
35
36
final class Helpers {
37
private Helpers() {
38
throw new Error("This is a non instantiable class");
39
}
40
41
static boolean within(final float x, final float y, final float err) {
42
final float d = y - x;
43
return (d <= err && d >= -err);
44
}
45
46
static boolean within(final double x, final double y, final double err) {
47
final double d = y - x;
48
return (d <= err && d >= -err);
49
}
50
51
static int quadraticRoots(final float a, final float b,
52
final float c, float[] zeroes, final int off)
53
{
54
int ret = off;
55
float t;
56
if (a != 0f) {
57
final float dis = b*b - 4*a*c;
58
if (dis > 0) {
59
final float sqrtDis = (float)Math.sqrt(dis);
60
// depending on the sign of b we use a slightly different
61
// algorithm than the traditional one to find one of the roots
62
// so we can avoid adding numbers of different signs (which
63
// might result in loss of precision).
64
if (b >= 0) {
65
zeroes[ret++] = (2 * c) / (-b - sqrtDis);
66
zeroes[ret++] = (-b - sqrtDis) / (2 * a);
67
} else {
68
zeroes[ret++] = (-b + sqrtDis) / (2 * a);
69
zeroes[ret++] = (2 * c) / (-b + sqrtDis);
70
}
71
} else if (dis == 0f) {
72
t = (-b) / (2 * a);
73
zeroes[ret++] = t;
74
}
75
} else {
76
if (b != 0f) {
77
t = (-c) / b;
78
zeroes[ret++] = t;
79
}
80
}
81
return ret - off;
82
}
83
84
// find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
85
static int cubicRootsInAB(float d, float a, float b, float c,
86
float[] pts, final int off,
87
final float A, final float B)
88
{
89
if (d == 0) {
90
int num = quadraticRoots(a, b, c, pts, off);
91
return filterOutNotInAB(pts, off, num, A, B) - off;
92
}
93
// From Graphics Gems:
94
// http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
95
// (also from awt.geom.CubicCurve2D. But here we don't need as
96
// much accuracy and we don't want to create arrays so we use
97
// our own customized version).
98
99
/* normal form: x^3 + ax^2 + bx + c = 0 */
100
a /= d;
101
b /= d;
102
c /= d;
103
104
// substitute x = y - A/3 to eliminate quadratic term:
105
// x^3 +Px + Q = 0
106
//
107
// Since we actually need P/3 and Q/2 for all of the
108
// calculations that follow, we will calculate
109
// p = P/3
110
// q = Q/2
111
// instead and use those values for simplicity of the code.
112
double sq_A = a * a;
113
double p = 1.0/3 * (-1.0/3 * sq_A + b);
114
double q = 1.0/2 * (2.0/27 * a * sq_A - 1.0/3 * a * b + c);
115
116
/* use Cardano's formula */
117
118
double cb_p = p * p * p;
119
double D = q * q + cb_p;
120
121
int num;
122
if (D < 0) {
123
// see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
124
final double phi = 1.0/3 * acos(-q / sqrt(-cb_p));
125
final double t = 2 * sqrt(-p);
126
127
pts[ off+0 ] = (float)( t * cos(phi));
128
pts[ off+1 ] = (float)(-t * cos(phi + PI / 3));
129
pts[ off+2 ] = (float)(-t * cos(phi - PI / 3));
130
num = 3;
131
} else {
132
final double sqrt_D = sqrt(D);
133
final double u = cbrt(sqrt_D - q);
134
final double v = - cbrt(sqrt_D + q);
135
136
pts[ off ] = (float)(u + v);
137
num = 1;
138
139
if (within(D, 0, 1e-8)) {
140
pts[off+1] = -(pts[off] / 2);
141
num = 2;
142
}
143
}
144
145
final float sub = 1.0f/3 * a;
146
147
for (int i = 0; i < num; ++i) {
148
pts[ off+i ] -= sub;
149
}
150
151
return filterOutNotInAB(pts, off, num, A, B) - off;
152
}
153
154
// These use a hardcoded factor of 2 for increasing sizes. Perhaps this
155
// should be provided as an argument.
156
static float[] widenArray(float[] in, final int cursize, final int numToAdd) {
157
if (in.length >= cursize + numToAdd) {
158
return in;
159
}
160
return Arrays.copyOf(in, 2 * (cursize + numToAdd));
161
}
162
163
static int[] widenArray(int[] in, final int cursize, final int numToAdd) {
164
if (in.length >= cursize + numToAdd) {
165
return in;
166
}
167
return Arrays.copyOf(in, 2 * (cursize + numToAdd));
168
}
169
170
static float evalCubic(final float a, final float b,
171
final float c, final float d,
172
final float t)
173
{
174
return t * (t * (t * a + b) + c) + d;
175
}
176
177
static float evalQuad(final float a, final float b,
178
final float c, final float t)
179
{
180
return t * (t * a + b) + c;
181
}
182
183
// returns the index 1 past the last valid element remaining after filtering
184
static int filterOutNotInAB(float[] nums, final int off, final int len,
185
final float a, final float b)
186
{
187
int ret = off;
188
for (int i = off; i < off + len; i++) {
189
if (nums[i] >= a && nums[i] < b) {
190
nums[ret++] = nums[i];
191
}
192
}
193
return ret;
194
}
195
196
static float polyLineLength(float[] poly, final int off, final int nCoords) {
197
assert nCoords % 2 == 0 && poly.length >= off + nCoords : "";
198
float acc = 0;
199
for (int i = off + 2; i < off + nCoords; i += 2) {
200
acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]);
201
}
202
return acc;
203
}
204
205
static float linelen(float x1, float y1, float x2, float y2) {
206
final float dx = x2 - x1;
207
final float dy = y2 - y1;
208
return (float)Math.sqrt(dx*dx + dy*dy);
209
}
210
211
static void subdivide(float[] src, int srcoff, float[] left, int leftoff,
212
float[] right, int rightoff, int type)
213
{
214
switch(type) {
215
case 6:
216
Helpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff);
217
break;
218
case 8:
219
Helpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff);
220
break;
221
default:
222
throw new InternalError("Unsupported curve type");
223
}
224
}
225
226
static void isort(float[] a, int off, int len) {
227
for (int i = off + 1; i < off + len; i++) {
228
float ai = a[i];
229
int j = i - 1;
230
for (; j >= off && a[j] > ai; j--) {
231
a[j+1] = a[j];
232
}
233
a[j+1] = ai;
234
}
235
}
236
237
// Most of these are copied from classes in java.awt.geom because we need
238
// float versions of these functions, and Line2D, CubicCurve2D,
239
// QuadCurve2D don't provide them.
240
/**
241
* Subdivides the cubic curve specified by the coordinates
242
* stored in the <code>src</code> array at indices <code>srcoff</code>
243
* through (<code>srcoff</code>&nbsp;+&nbsp;7) and stores the
244
* resulting two subdivided curves into the two result arrays at the
245
* corresponding indices.
246
* Either or both of the <code>left</code> and <code>right</code>
247
* arrays may be <code>null</code> or a reference to the same array
248
* as the <code>src</code> array.
249
* Note that the last point in the first subdivided curve is the
250
* same as the first point in the second subdivided curve. Thus,
251
* it is possible to pass the same array for <code>left</code>
252
* and <code>right</code> and to use offsets, such as <code>rightoff</code>
253
* equals (<code>leftoff</code> + 6), in order
254
* to avoid allocating extra storage for this common point.
255
* @param src the array holding the coordinates for the source curve
256
* @param srcoff the offset into the array of the beginning of the
257
* the 6 source coordinates
258
* @param left the array for storing the coordinates for the first
259
* half of the subdivided curve
260
* @param leftoff the offset into the array of the beginning of the
261
* the 6 left coordinates
262
* @param right the array for storing the coordinates for the second
263
* half of the subdivided curve
264
* @param rightoff the offset into the array of the beginning of the
265
* the 6 right coordinates
266
* @since 1.7
267
*/
268
static void subdivideCubic(float src[], int srcoff,
269
float left[], int leftoff,
270
float right[], int rightoff)
271
{
272
float x1 = src[srcoff + 0];
273
float y1 = src[srcoff + 1];
274
float ctrlx1 = src[srcoff + 2];
275
float ctrly1 = src[srcoff + 3];
276
float ctrlx2 = src[srcoff + 4];
277
float ctrly2 = src[srcoff + 5];
278
float x2 = src[srcoff + 6];
279
float y2 = src[srcoff + 7];
280
if (left != null) {
281
left[leftoff + 0] = x1;
282
left[leftoff + 1] = y1;
283
}
284
if (right != null) {
285
right[rightoff + 6] = x2;
286
right[rightoff + 7] = y2;
287
}
288
x1 = (x1 + ctrlx1) / 2.0f;
289
y1 = (y1 + ctrly1) / 2.0f;
290
x2 = (x2 + ctrlx2) / 2.0f;
291
y2 = (y2 + ctrly2) / 2.0f;
292
float centerx = (ctrlx1 + ctrlx2) / 2.0f;
293
float centery = (ctrly1 + ctrly2) / 2.0f;
294
ctrlx1 = (x1 + centerx) / 2.0f;
295
ctrly1 = (y1 + centery) / 2.0f;
296
ctrlx2 = (x2 + centerx) / 2.0f;
297
ctrly2 = (y2 + centery) / 2.0f;
298
centerx = (ctrlx1 + ctrlx2) / 2.0f;
299
centery = (ctrly1 + ctrly2) / 2.0f;
300
if (left != null) {
301
left[leftoff + 2] = x1;
302
left[leftoff + 3] = y1;
303
left[leftoff + 4] = ctrlx1;
304
left[leftoff + 5] = ctrly1;
305
left[leftoff + 6] = centerx;
306
left[leftoff + 7] = centery;
307
}
308
if (right != null) {
309
right[rightoff + 0] = centerx;
310
right[rightoff + 1] = centery;
311
right[rightoff + 2] = ctrlx2;
312
right[rightoff + 3] = ctrly2;
313
right[rightoff + 4] = x2;
314
right[rightoff + 5] = y2;
315
}
316
}
317
318
319
static void subdivideCubicAt(float t, float src[], int srcoff,
320
float left[], int leftoff,
321
float right[], int rightoff)
322
{
323
float x1 = src[srcoff + 0];
324
float y1 = src[srcoff + 1];
325
float ctrlx1 = src[srcoff + 2];
326
float ctrly1 = src[srcoff + 3];
327
float ctrlx2 = src[srcoff + 4];
328
float ctrly2 = src[srcoff + 5];
329
float x2 = src[srcoff + 6];
330
float y2 = src[srcoff + 7];
331
if (left != null) {
332
left[leftoff + 0] = x1;
333
left[leftoff + 1] = y1;
334
}
335
if (right != null) {
336
right[rightoff + 6] = x2;
337
right[rightoff + 7] = y2;
338
}
339
x1 = x1 + t * (ctrlx1 - x1);
340
y1 = y1 + t * (ctrly1 - y1);
341
x2 = ctrlx2 + t * (x2 - ctrlx2);
342
y2 = ctrly2 + t * (y2 - ctrly2);
343
float centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
344
float centery = ctrly1 + t * (ctrly2 - ctrly1);
345
ctrlx1 = x1 + t * (centerx - x1);
346
ctrly1 = y1 + t * (centery - y1);
347
ctrlx2 = centerx + t * (x2 - centerx);
348
ctrly2 = centery + t * (y2 - centery);
349
centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
350
centery = ctrly1 + t * (ctrly2 - ctrly1);
351
if (left != null) {
352
left[leftoff + 2] = x1;
353
left[leftoff + 3] = y1;
354
left[leftoff + 4] = ctrlx1;
355
left[leftoff + 5] = ctrly1;
356
left[leftoff + 6] = centerx;
357
left[leftoff + 7] = centery;
358
}
359
if (right != null) {
360
right[rightoff + 0] = centerx;
361
right[rightoff + 1] = centery;
362
right[rightoff + 2] = ctrlx2;
363
right[rightoff + 3] = ctrly2;
364
right[rightoff + 4] = x2;
365
right[rightoff + 5] = y2;
366
}
367
}
368
369
static void subdivideQuad(float src[], int srcoff,
370
float left[], int leftoff,
371
float right[], int rightoff)
372
{
373
float x1 = src[srcoff + 0];
374
float y1 = src[srcoff + 1];
375
float ctrlx = src[srcoff + 2];
376
float ctrly = src[srcoff + 3];
377
float x2 = src[srcoff + 4];
378
float y2 = src[srcoff + 5];
379
if (left != null) {
380
left[leftoff + 0] = x1;
381
left[leftoff + 1] = y1;
382
}
383
if (right != null) {
384
right[rightoff + 4] = x2;
385
right[rightoff + 5] = y2;
386
}
387
x1 = (x1 + ctrlx) / 2.0f;
388
y1 = (y1 + ctrly) / 2.0f;
389
x2 = (x2 + ctrlx) / 2.0f;
390
y2 = (y2 + ctrly) / 2.0f;
391
ctrlx = (x1 + x2) / 2.0f;
392
ctrly = (y1 + y2) / 2.0f;
393
if (left != null) {
394
left[leftoff + 2] = x1;
395
left[leftoff + 3] = y1;
396
left[leftoff + 4] = ctrlx;
397
left[leftoff + 5] = ctrly;
398
}
399
if (right != null) {
400
right[rightoff + 0] = ctrlx;
401
right[rightoff + 1] = ctrly;
402
right[rightoff + 2] = x2;
403
right[rightoff + 3] = y2;
404
}
405
}
406
407
static void subdivideQuadAt(float t, float src[], int srcoff,
408
float left[], int leftoff,
409
float right[], int rightoff)
410
{
411
float x1 = src[srcoff + 0];
412
float y1 = src[srcoff + 1];
413
float ctrlx = src[srcoff + 2];
414
float ctrly = src[srcoff + 3];
415
float x2 = src[srcoff + 4];
416
float y2 = src[srcoff + 5];
417
if (left != null) {
418
left[leftoff + 0] = x1;
419
left[leftoff + 1] = y1;
420
}
421
if (right != null) {
422
right[rightoff + 4] = x2;
423
right[rightoff + 5] = y2;
424
}
425
x1 = x1 + t * (ctrlx - x1);
426
y1 = y1 + t * (ctrly - y1);
427
x2 = ctrlx + t * (x2 - ctrlx);
428
y2 = ctrly + t * (y2 - ctrly);
429
ctrlx = x1 + t * (x2 - x1);
430
ctrly = y1 + t * (y2 - y1);
431
if (left != null) {
432
left[leftoff + 2] = x1;
433
left[leftoff + 3] = y1;
434
left[leftoff + 4] = ctrlx;
435
left[leftoff + 5] = ctrly;
436
}
437
if (right != null) {
438
right[rightoff + 0] = ctrlx;
439
right[rightoff + 1] = ctrly;
440
right[rightoff + 2] = x2;
441
right[rightoff + 3] = y2;
442
}
443
}
444
445
static void subdivideAt(float t, float src[], int srcoff,
446
float left[], int leftoff,
447
float right[], int rightoff, int size)
448
{
449
switch(size) {
450
case 8:
451
subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff);
452
break;
453
case 6:
454
subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff);
455
break;
456
}
457
}
458
}
459
460