Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/sun/misc/FormattedFloatingDecimal.java
38829 views
1
/*
2
* Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.misc;
27
28
import java.util.Arrays;
29
30
public class FormattedFloatingDecimal{
31
32
public enum Form { SCIENTIFIC, COMPATIBLE, DECIMAL_FLOAT, GENERAL };
33
34
35
public static FormattedFloatingDecimal valueOf(double d, int precision, Form form){
36
FloatingDecimal.BinaryToASCIIConverter fdConverter =
37
FloatingDecimal.getBinaryToASCIIConverter(d, form == Form.COMPATIBLE);
38
return new FormattedFloatingDecimal(precision,form, fdConverter);
39
}
40
41
private int decExponentRounded;
42
private char[] mantissa;
43
private char[] exponent;
44
45
private static final ThreadLocal<Object> threadLocalCharBuffer =
46
new ThreadLocal<Object>() {
47
@Override
48
protected Object initialValue() {
49
return new char[20];
50
}
51
};
52
53
private static char[] getBuffer(){
54
return (char[]) threadLocalCharBuffer.get();
55
}
56
57
private FormattedFloatingDecimal(int precision, Form form, FloatingDecimal.BinaryToASCIIConverter fdConverter) {
58
if (fdConverter.isExceptional()) {
59
this.mantissa = fdConverter.toJavaFormatString().toCharArray();
60
this.exponent = null;
61
return;
62
}
63
char[] digits = getBuffer();
64
int nDigits = fdConverter.getDigits(digits);
65
int decExp = fdConverter.getDecimalExponent();
66
int exp;
67
boolean isNegative = fdConverter.isNegative();
68
switch (form) {
69
case COMPATIBLE:
70
exp = decExp;
71
this.decExponentRounded = exp;
72
fillCompatible(precision, digits, nDigits, exp, isNegative);
73
break;
74
case DECIMAL_FLOAT:
75
exp = applyPrecision(decExp, digits, nDigits, decExp + precision);
76
fillDecimal(precision, digits, nDigits, exp, isNegative);
77
this.decExponentRounded = exp;
78
break;
79
case SCIENTIFIC:
80
exp = applyPrecision(decExp, digits, nDigits, precision + 1);
81
fillScientific(precision, digits, nDigits, exp, isNegative);
82
this.decExponentRounded = exp;
83
break;
84
case GENERAL:
85
exp = applyPrecision(decExp, digits, nDigits, precision);
86
// adjust precision to be the number of digits to right of decimal
87
// the real exponent to be output is actually exp - 1, not exp
88
if (exp - 1 < -4 || exp - 1 >= precision) {
89
// form = Form.SCIENTIFIC;
90
precision--;
91
fillScientific(precision, digits, nDigits, exp, isNegative);
92
} else {
93
// form = Form.DECIMAL_FLOAT;
94
precision = precision - exp;
95
fillDecimal(precision, digits, nDigits, exp, isNegative);
96
}
97
this.decExponentRounded = exp;
98
break;
99
default:
100
assert false;
101
}
102
}
103
104
// returns the exponent after rounding has been done by applyPrecision
105
public int getExponentRounded() {
106
return decExponentRounded - 1;
107
}
108
109
public char[] getMantissa(){
110
return mantissa;
111
}
112
113
public char[] getExponent(){
114
return exponent;
115
}
116
117
/**
118
* Returns new decExp in case of overflow.
119
*/
120
private static int applyPrecision(int decExp, char[] digits, int nDigits, int prec) {
121
if (prec >= nDigits || prec < 0) {
122
// no rounding necessary
123
return decExp;
124
}
125
if (prec == 0) {
126
// only one digit (0 or 1) is returned because the precision
127
// excludes all significant digits
128
if (digits[0] >= '5') {
129
digits[0] = '1';
130
Arrays.fill(digits, 1, nDigits, '0');
131
return decExp + 1;
132
} else {
133
Arrays.fill(digits, 0, nDigits, '0');
134
return decExp;
135
}
136
}
137
int q = digits[prec];
138
if (q >= '5') {
139
int i = prec;
140
q = digits[--i];
141
if ( q == '9' ) {
142
while ( q == '9' && i > 0 ){
143
q = digits[--i];
144
}
145
if ( q == '9' ){
146
// carryout! High-order 1, rest 0s, larger exp.
147
digits[0] = '1';
148
Arrays.fill(digits, 1, nDigits, '0');
149
return decExp+1;
150
}
151
}
152
digits[i] = (char)(q + 1);
153
Arrays.fill(digits, i+1, nDigits, '0');
154
} else {
155
Arrays.fill(digits, prec, nDigits, '0');
156
}
157
return decExp;
158
}
159
160
/**
161
* Fills mantissa and exponent char arrays for compatible format.
162
*/
163
private void fillCompatible(int precision, char[] digits, int nDigits, int exp, boolean isNegative) {
164
int startIndex = isNegative ? 1 : 0;
165
if (exp > 0 && exp < 8) {
166
// print digits.digits.
167
if (nDigits < exp) {
168
int extraZeros = exp - nDigits;
169
mantissa = create(isNegative, nDigits + extraZeros + 2);
170
System.arraycopy(digits, 0, mantissa, startIndex, nDigits);
171
Arrays.fill(mantissa, startIndex + nDigits, startIndex + nDigits + extraZeros, '0');
172
mantissa[startIndex + nDigits + extraZeros] = '.';
173
mantissa[startIndex + nDigits + extraZeros+1] = '0';
174
} else if (exp < nDigits) {
175
int t = Math.min(nDigits - exp, precision);
176
mantissa = create(isNegative, exp + 1 + t);
177
System.arraycopy(digits, 0, mantissa, startIndex, exp);
178
mantissa[startIndex + exp ] = '.';
179
System.arraycopy(digits, exp, mantissa, startIndex+exp+1, t);
180
} else { // exp == digits.length
181
mantissa = create(isNegative, nDigits + 2);
182
System.arraycopy(digits, 0, mantissa, startIndex, nDigits);
183
mantissa[startIndex + nDigits ] = '.';
184
mantissa[startIndex + nDigits +1] = '0';
185
}
186
} else if (exp <= 0 && exp > -3) {
187
int zeros = Math.max(0, Math.min(-exp, precision));
188
int t = Math.max(0, Math.min(nDigits, precision + exp));
189
// write '0' s before the significant digits
190
if (zeros > 0) {
191
mantissa = create(isNegative, zeros + 2 + t);
192
mantissa[startIndex] = '0';
193
mantissa[startIndex+1] = '.';
194
Arrays.fill(mantissa, startIndex + 2, startIndex + 2 + zeros, '0');
195
if (t > 0) {
196
// copy only when significant digits are within the precision
197
System.arraycopy(digits, 0, mantissa, startIndex + 2 + zeros, t);
198
}
199
} else if (t > 0) {
200
mantissa = create(isNegative, zeros + 2 + t);
201
mantissa[startIndex] = '0';
202
mantissa[startIndex + 1] = '.';
203
// copy only when significant digits are within the precision
204
System.arraycopy(digits, 0, mantissa, startIndex + 2, t);
205
} else {
206
this.mantissa = create(isNegative, 1);
207
this.mantissa[startIndex] = '0';
208
}
209
} else {
210
if (nDigits > 1) {
211
mantissa = create(isNegative, nDigits + 1);
212
mantissa[startIndex] = digits[0];
213
mantissa[startIndex + 1] = '.';
214
System.arraycopy(digits, 1, mantissa, startIndex + 2, nDigits - 1);
215
} else {
216
mantissa = create(isNegative, 3);
217
mantissa[startIndex] = digits[0];
218
mantissa[startIndex + 1] = '.';
219
mantissa[startIndex + 2] = '0';
220
}
221
int e, expStartIntex;
222
boolean isNegExp = (exp <= 0);
223
if (isNegExp) {
224
e = -exp + 1;
225
expStartIntex = 1;
226
} else {
227
e = exp - 1;
228
expStartIntex = 0;
229
}
230
// decExponent has 1, 2, or 3, digits
231
if (e <= 9) {
232
exponent = create(isNegExp,1);
233
exponent[expStartIntex] = (char) (e + '0');
234
} else if (e <= 99) {
235
exponent = create(isNegExp,2);
236
exponent[expStartIntex] = (char) (e / 10 + '0');
237
exponent[expStartIntex+1] = (char) (e % 10 + '0');
238
} else {
239
exponent = create(isNegExp,3);
240
exponent[expStartIntex] = (char) (e / 100 + '0');
241
e %= 100;
242
exponent[expStartIntex+1] = (char) (e / 10 + '0');
243
exponent[expStartIntex+2] = (char) (e % 10 + '0');
244
}
245
}
246
}
247
248
private static char[] create(boolean isNegative, int size) {
249
if(isNegative) {
250
char[] r = new char[size +1];
251
r[0] = '-';
252
return r;
253
} else {
254
return new char[size];
255
}
256
}
257
258
/*
259
* Fills mantissa char arrays for DECIMAL_FLOAT format.
260
* Exponent should be equal to null.
261
*/
262
private void fillDecimal(int precision, char[] digits, int nDigits, int exp, boolean isNegative) {
263
int startIndex = isNegative ? 1 : 0;
264
if (exp > 0) {
265
// print digits.digits.
266
if (nDigits < exp) {
267
mantissa = create(isNegative,exp);
268
System.arraycopy(digits, 0, mantissa, startIndex, nDigits);
269
Arrays.fill(mantissa, startIndex + nDigits, startIndex + exp, '0');
270
// Do not append ".0" for formatted floats since the user
271
// may request that it be omitted. It is added as necessary
272
// by the Formatter.
273
} else {
274
int t = Math.min(nDigits - exp, precision);
275
mantissa = create(isNegative, exp + (t > 0 ? (t + 1) : 0));
276
System.arraycopy(digits, 0, mantissa, startIndex, exp);
277
// Do not append ".0" for formatted floats since the user
278
// may request that it be omitted. It is added as necessary
279
// by the Formatter.
280
if (t > 0) {
281
mantissa[startIndex + exp] = '.';
282
System.arraycopy(digits, exp, mantissa, startIndex + exp + 1, t);
283
}
284
}
285
} else if (exp <= 0) {
286
int zeros = Math.max(0, Math.min(-exp, precision));
287
int t = Math.max(0, Math.min(nDigits, precision + exp));
288
// write '0' s before the significant digits
289
if (zeros > 0) {
290
mantissa = create(isNegative, zeros + 2 + t);
291
mantissa[startIndex] = '0';
292
mantissa[startIndex+1] = '.';
293
Arrays.fill(mantissa, startIndex + 2, startIndex + 2 + zeros, '0');
294
if (t > 0) {
295
// copy only when significant digits are within the precision
296
System.arraycopy(digits, 0, mantissa, startIndex + 2 + zeros, t);
297
}
298
} else if (t > 0) {
299
mantissa = create(isNegative, zeros + 2 + t);
300
mantissa[startIndex] = '0';
301
mantissa[startIndex + 1] = '.';
302
// copy only when significant digits are within the precision
303
System.arraycopy(digits, 0, mantissa, startIndex + 2, t);
304
} else {
305
this.mantissa = create(isNegative, 1);
306
this.mantissa[startIndex] = '0';
307
}
308
}
309
}
310
311
/**
312
* Fills mantissa and exponent char arrays for SCIENTIFIC format.
313
*/
314
private void fillScientific(int precision, char[] digits, int nDigits, int exp, boolean isNegative) {
315
int startIndex = isNegative ? 1 : 0;
316
int t = Math.max(0, Math.min(nDigits - 1, precision));
317
if (t > 0) {
318
mantissa = create(isNegative, t + 2);
319
mantissa[startIndex] = digits[0];
320
mantissa[startIndex + 1] = '.';
321
System.arraycopy(digits, 1, mantissa, startIndex + 2, t);
322
} else {
323
mantissa = create(isNegative, 1);
324
mantissa[startIndex] = digits[0];
325
}
326
char expSign;
327
int e;
328
if (exp <= 0) {
329
expSign = '-';
330
e = -exp + 1;
331
} else {
332
expSign = '+' ;
333
e = exp - 1;
334
}
335
// decExponent has 1, 2, or 3, digits
336
if (e <= 9) {
337
exponent = new char[] { expSign,
338
'0', (char) (e + '0') };
339
} else if (e <= 99) {
340
exponent = new char[] { expSign,
341
(char) (e / 10 + '0'), (char) (e % 10 + '0') };
342
} else {
343
char hiExpChar = (char) (e / 100 + '0');
344
e %= 100;
345
exponent = new char[] { expSign,
346
hiExpChar, (char) (e / 10 + '0'), (char) (e % 10 + '0') };
347
}
348
}
349
}
350
351