Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/classes/sun/util/locale/provider/BreakDictionary.java
38918 views
1
/*
2
* Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/*
27
*
28
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
29
* (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved
30
*
31
* The original version of this source code and documentation
32
* is copyrighted and owned by Taligent, Inc., a wholly-owned
33
* subsidiary of IBM. These materials are provided under terms
34
* of a License Agreement between Taligent and Sun. This technology
35
* is protected by multiple US and International patents.
36
*
37
* This notice and attribution to Taligent may not be removed.
38
* Taligent is a registered trademark of Taligent, Inc.
39
*/
40
package sun.util.locale.provider;
41
42
import java.io.BufferedInputStream;
43
import java.io.IOException;
44
import java.security.AccessController;
45
import java.security.PrivilegedActionException;
46
import java.security.PrivilegedExceptionAction;
47
import java.util.MissingResourceException;
48
import sun.text.CompactByteArray;
49
import sun.text.SupplementaryCharacterData;
50
51
/**
52
* This is the class that represents the list of known words used by
53
* DictionaryBasedBreakIterator. The conceptual data structure used
54
* here is a trie: there is a node hanging off the root node for every
55
* letter that can start a word. Each of these nodes has a node hanging
56
* off of it for every letter that can be the second letter of a word
57
* if this node is the first letter, and so on. The trie is represented
58
* as a two-dimensional array that can be treated as a table of state
59
* transitions. Indexes are used to compress this array, taking
60
* advantage of the fact that this array will always be very sparse.
61
*/
62
class BreakDictionary {
63
64
//=========================================================================
65
// data members
66
//=========================================================================
67
68
/**
69
* The version of the dictionary that was read in.
70
*/
71
private static int supportedVersion = 1;
72
73
/**
74
* Maps from characters to column numbers. The main use of this is to
75
* avoid making room in the array for empty columns.
76
*/
77
private CompactByteArray columnMap = null;
78
private SupplementaryCharacterData supplementaryCharColumnMap = null;
79
80
/**
81
* The number of actual columns in the table
82
*/
83
private int numCols;
84
85
/**
86
* Columns are organized into groups of 32. This says how many
87
* column groups. (We could calculate this, but we store the
88
* value to avoid having to repeatedly calculate it.)
89
*/
90
private int numColGroups;
91
92
/**
93
* The actual compressed state table. Each conceptual row represents
94
* a state, and the cells in it contain the row numbers of the states
95
* to transition to for each possible letter. 0 is used to indicate
96
* an illegal combination of letters (i.e., the error state). The
97
* table is compressed by eliminating all the unpopulated (i.e., zero)
98
* cells. Multiple conceptual rows can then be doubled up in a single
99
* physical row by sliding them up and possibly shifting them to one
100
* side or the other so the populated cells don't collide. Indexes
101
* are used to identify unpopulated cells and to locate populated cells.
102
*/
103
private short[] table = null;
104
105
/**
106
* This index maps logical row numbers to physical row numbers
107
*/
108
private short[] rowIndex = null;
109
110
/**
111
* A bitmap is used to tell which cells in the comceptual table are
112
* populated. This array contains all the unique bit combinations
113
* in that bitmap. If the table is more than 32 columns wide,
114
* successive entries in this array are used for a single row.
115
*/
116
private int[] rowIndexFlags = null;
117
118
/**
119
* This index maps from a logical row number into the bitmap table above.
120
* (This keeps us from storing duplicate bitmap combinations.) Since there
121
* are a lot of rows with only one populated cell, instead of wasting space
122
* in the bitmap table, we just store a negative number in this index for
123
* rows with one populated cell. The absolute value of that number is
124
* the column number of the populated cell.
125
*/
126
private short[] rowIndexFlagsIndex = null;
127
128
/**
129
* For each logical row, this index contains a constant that is added to
130
* the logical column number to get the physical column number
131
*/
132
private byte[] rowIndexShifts = null;
133
134
//=========================================================================
135
// deserialization
136
//=========================================================================
137
138
BreakDictionary(String dictionaryName)
139
throws IOException, MissingResourceException {
140
141
readDictionaryFile(dictionaryName);
142
}
143
144
private void readDictionaryFile(final String dictionaryName)
145
throws IOException, MissingResourceException {
146
147
BufferedInputStream in;
148
try {
149
in = AccessController.doPrivileged(
150
new PrivilegedExceptionAction<BufferedInputStream>() {
151
@Override
152
public BufferedInputStream run() throws Exception {
153
return new BufferedInputStream(getClass().getResourceAsStream("/sun/text/resources/" + dictionaryName));
154
}
155
}
156
);
157
}
158
catch (PrivilegedActionException e) {
159
throw new InternalError(e.toString(), e);
160
}
161
162
byte[] buf = new byte[8];
163
if (in.read(buf) != 8) {
164
throw new MissingResourceException("Wrong data length",
165
dictionaryName, "");
166
}
167
168
// check version
169
int version = RuleBasedBreakIterator.getInt(buf, 0);
170
if (version != supportedVersion) {
171
throw new MissingResourceException("Dictionary version(" + version + ") is unsupported",
172
dictionaryName, "");
173
}
174
175
// get data size
176
int len = RuleBasedBreakIterator.getInt(buf, 4);
177
buf = new byte[len];
178
if (in.read(buf) != len) {
179
throw new MissingResourceException("Wrong data length",
180
dictionaryName, "");
181
}
182
183
// close the stream
184
in.close();
185
186
int l;
187
int offset = 0;
188
189
// read in the column map for BMP characteres (this is serialized in
190
// its internal form: an index array followed by a data array)
191
l = RuleBasedBreakIterator.getInt(buf, offset);
192
offset += 4;
193
short[] temp = new short[l];
194
for (int i = 0; i < l; i++, offset+=2) {
195
temp[i] = RuleBasedBreakIterator.getShort(buf, offset);
196
}
197
l = RuleBasedBreakIterator.getInt(buf, offset);
198
offset += 4;
199
byte[] temp2 = new byte[l];
200
for (int i = 0; i < l; i++, offset++) {
201
temp2[i] = buf[offset];
202
}
203
columnMap = new CompactByteArray(temp, temp2);
204
205
// read in numCols and numColGroups
206
numCols = RuleBasedBreakIterator.getInt(buf, offset);
207
offset += 4;
208
numColGroups = RuleBasedBreakIterator.getInt(buf, offset);
209
offset += 4;
210
211
// read in the row-number index
212
l = RuleBasedBreakIterator.getInt(buf, offset);
213
offset += 4;
214
rowIndex = new short[l];
215
for (int i = 0; i < l; i++, offset+=2) {
216
rowIndex[i] = RuleBasedBreakIterator.getShort(buf, offset);
217
}
218
219
// load in the populated-cells bitmap: index first, then bitmap list
220
l = RuleBasedBreakIterator.getInt(buf, offset);
221
offset += 4;
222
rowIndexFlagsIndex = new short[l];
223
for (int i = 0; i < l; i++, offset+=2) {
224
rowIndexFlagsIndex[i] = RuleBasedBreakIterator.getShort(buf, offset);
225
}
226
l = RuleBasedBreakIterator.getInt(buf, offset);
227
offset += 4;
228
rowIndexFlags = new int[l];
229
for (int i = 0; i < l; i++, offset+=4) {
230
rowIndexFlags[i] = RuleBasedBreakIterator.getInt(buf, offset);
231
}
232
233
// load in the row-shift index
234
l = RuleBasedBreakIterator.getInt(buf, offset);
235
offset += 4;
236
rowIndexShifts = new byte[l];
237
for (int i = 0; i < l; i++, offset++) {
238
rowIndexShifts[i] = buf[offset];
239
}
240
241
// load in the actual state table
242
l = RuleBasedBreakIterator.getInt(buf, offset);
243
offset += 4;
244
table = new short[l];
245
for (int i = 0; i < l; i++, offset+=2) {
246
table[i] = RuleBasedBreakIterator.getShort(buf, offset);
247
}
248
249
// finally, prepare the column map for supplementary characters
250
l = RuleBasedBreakIterator.getInt(buf, offset);
251
offset += 4;
252
int[] temp3 = new int[l];
253
for (int i = 0; i < l; i++, offset+=4) {
254
temp3[i] = RuleBasedBreakIterator.getInt(buf, offset);
255
}
256
supplementaryCharColumnMap = new SupplementaryCharacterData(temp3);
257
}
258
259
//=========================================================================
260
// access to the words
261
//=========================================================================
262
263
/**
264
* Uses the column map to map the character to a column number, then
265
* passes the row and column number to getNextState()
266
* @param row The current state
267
* @param ch The character whose column we're interested in
268
* @return The new state to transition to
269
*/
270
public final short getNextStateFromCharacter(int row, int ch) {
271
int col;
272
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
273
col = columnMap.elementAt((char)ch);
274
} else {
275
col = supplementaryCharColumnMap.getValue(ch);
276
}
277
return getNextState(row, col);
278
}
279
280
/**
281
* Returns the value in the cell with the specified (logical) row and
282
* column numbers. In DictionaryBasedBreakIterator, the row number is
283
* a state number, the column number is an input, and the return value
284
* is the row number of the new state to transition to. (0 is the
285
* "error" state, and -1 is the "end of word" state in a dictionary)
286
* @param row The row number of the current state
287
* @param col The column number of the input character (0 means "not a
288
* dictionary character")
289
* @return The row number of the new state to transition to
290
*/
291
public final short getNextState(int row, int col) {
292
if (cellIsPopulated(row, col)) {
293
// we map from logical to physical row number by looking up the
294
// mapping in rowIndex; we map from logical column number to
295
// physical column number by looking up a shift value for this
296
// logical row and offsetting the logical column number by
297
// the shift amount. Then we can use internalAt() to actually
298
// get the value out of the table.
299
return internalAt(rowIndex[row], col + rowIndexShifts[row]);
300
}
301
else {
302
return 0;
303
}
304
}
305
306
/**
307
* Given (logical) row and column numbers, returns true if the
308
* cell in that position is populated
309
*/
310
private boolean cellIsPopulated(int row, int col) {
311
// look up the entry in the bitmap index for the specified row.
312
// If it's a negative number, it's the column number of the only
313
// populated cell in the row
314
if (rowIndexFlagsIndex[row] < 0) {
315
return col == -rowIndexFlagsIndex[row];
316
}
317
318
// if it's a positive number, it's the offset of an entry in the bitmap
319
// list. If the table is more than 32 columns wide, the bitmap is stored
320
// successive entries in the bitmap list, so we have to divide the column
321
// number by 32 and offset the number we got out of the index by the result.
322
// Once we have the appropriate piece of the bitmap, test the appropriate
323
// bit and return the result.
324
else {
325
int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)];
326
return (flags & (1 << (col & 0x1f))) != 0;
327
}
328
}
329
330
/**
331
* Implementation of getNextState() when we know the specified cell is
332
* populated.
333
* @param row The PHYSICAL row number of the cell
334
* @param col The PHYSICAL column number of the cell
335
* @return The value stored in the cell
336
*/
337
private short internalAt(int row, int col) {
338
// the table is a one-dimensional array, so this just does the math necessary
339
// to treat it as a two-dimensional array (we don't just use a two-dimensional
340
// array because two-dimensional arrays are inefficient in Java)
341
return table[row * numCols + col];
342
}
343
}
344
345