Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/native/common/LEFontInstance.h
38825 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*
24
*/
25
26
27
/*
28
*
29
* (C) Copyright IBM Corp. 1998-2007 - All Rights Reserved
30
*
31
*/
32
33
#ifndef __LEFONTINSTANCE_H
34
#define __LEFONTINSTANCE_H
35
36
#include "LETypes.h"
37
/**
38
* \file
39
* \brief C++ API: Layout Engine Font Instance object
40
*/
41
42
U_NAMESPACE_BEGIN
43
44
/**
45
* Instances of this class are used by <code>LEFontInstance::mapCharsToGlyphs</code> and
46
* <code>LEFontInstance::mapCharToGlyph</code> to adjust character codes before the character
47
* to glyph mapping process. Examples of this are filtering out control characters
48
* and character mirroring - replacing a character which has both a left and a right
49
* hand form with the opposite form.
50
*
51
* @stable ICU 3.2
52
*/
53
class LECharMapper /* not : public UObject because this is an interface/mixin class */
54
{
55
public:
56
/**
57
* Destructor.
58
* @stable ICU 3.2
59
*/
60
virtual ~LECharMapper();
61
62
/**
63
* This method does the adjustments.
64
*
65
* @param ch - the input character
66
*
67
* @return the adjusted character
68
*
69
* @stable ICU 2.8
70
*/
71
virtual LEUnicode32 mapChar(LEUnicode32 ch) const = 0;
72
};
73
74
/**
75
* This is a forward reference to the class which holds the per-glyph
76
* storage.
77
*
78
* @stable ICU 3.0
79
*/
80
class LEGlyphStorage;
81
82
/**
83
* This is a virtual base class that serves as the interface between a LayoutEngine
84
* and the platform font environment. It allows a LayoutEngine to access font tables, do
85
* character to glyph mapping, and obtain metrics information without knowing any platform
86
* specific details. There are also a few utility methods for converting between points,
87
* pixels and funits. (font design units)
88
*
89
* An instance of an <code>LEFontInstance</code> represents a font at a particular point
90
* size. Each instance can represent either a single physical font, or a composite font.
91
* A composite font is a collection of physical fonts, each of which contains a subset of
92
* the characters contained in the composite font.
93
*
94
* Note: with the exception of <code>getSubFont</code>, the methods in this class only
95
* make sense for a physical font. If you have an <code>LEFontInstance</code> which
96
* represents a composite font you should only call the methods below which have
97
* an <code>LEGlyphID</code>, an <code>LEUnicode</code> or an <code>LEUnicode32</code>
98
* as one of the arguments because these can be used to select a particular subfont.
99
*
100
* Subclasses which implement composite fonts should supply an implementation of these
101
* methods with some default behavior such as returning constant values, or using the
102
* values from the first subfont.
103
*
104
* @stable ICU 3.0
105
*/
106
class U_LAYOUT_API LEFontInstance : public UObject
107
{
108
public:
109
110
/**
111
* This virtual destructor is here so that the subclass
112
* destructors can be invoked through the base class.
113
*
114
* @stable ICU 2.8
115
*/
116
virtual ~LEFontInstance();
117
118
/**
119
* Get a physical font which can render the given text. For composite fonts,
120
* if there is no single physical font which can render all of the text,
121
* return a physical font which can render an initial substring of the text,
122
* and set the <code>offset</code> parameter to the end of that substring.
123
*
124
* Internally, the LayoutEngine works with runs of text all in the same
125
* font and script, so it is best to call this method with text which is
126
* in a single script, passing the script code in as a hint. If you don't
127
* know the script of the text, you can use zero, which is the script code
128
* for characters used in more than one script.
129
*
130
* The default implementation of this method is intended for instances of
131
* <code>LEFontInstance</code> which represent a physical font. It returns
132
* <code>this</code> and indicates that the entire string can be rendered.
133
*
134
* This method will return a valid <code>LEFontInstance</code> unless you
135
* have passed illegal parameters, or an internal error has been encountered.
136
* For composite fonts, it may return the warning <code>LE_NO_SUBFONT_WARNING</code>
137
* to indicate that the returned font may not be able to render all of
138
* the text. Whenever a valid font is returned, the <code>offset</code> parameter
139
* will be advanced by at least one.
140
*
141
* Subclasses which implement composite fonts must override this method.
142
* Where it makes sense, they should use the script code as a hint to render
143
* characters from the COMMON script in the font which is used for the given
144
* script. For example, if the input text is a series of Arabic words separated
145
* by spaces, and the script code passed in is <code>arabScriptCode</code> you
146
* should return the font used for Arabic characters for all of the input text,
147
* including the spaces. If, on the other hand, the input text contains characters
148
* which cannot be rendered by the font used for Arabic characters, but which can
149
* be rendered by another font, you should return that font for those characters.
150
*
151
* @param chars - the array of Unicode characters.
152
* @param offset - a pointer to the starting offset in the text. On exit this
153
* will be set the the limit offset of the text which can be
154
* rendered using the returned font.
155
* @param limit - the limit offset for the input text.
156
* @param script - the script hint.
157
* @param success - set to an error code if the arguments are illegal, or no font
158
* can be returned for some reason. May also be set to
159
* <code>LE_NO_SUBFONT_WARNING</code> if the subfont which
160
* was returned cannot render all of the text.
161
*
162
* @return an <code>LEFontInstance</code> for the sub font which can render the characters, or
163
* <code>NULL</code> if there is an error.
164
*
165
* @see LEScripts.h
166
*
167
* @stable ICU 3.2
168
*/
169
virtual const LEFontInstance *getSubFont(const LEUnicode chars[], le_int32 *offset, le_int32 limit, le_int32 script, LEErrorCode &success) const;
170
171
//
172
// Font file access
173
//
174
175
/**
176
* This method reads a table from the font. Note that in general,
177
* it only makes sense to call this method on an <code>LEFontInstance</code>
178
* which represents a physical font - i.e. one which has been returned by
179
* <code>getSubFont()</code>. This is because each subfont in a composite font
180
* will have different tables, and there's no way to know which subfont to access.
181
*
182
* Subclasses which represent composite fonts should always return <code>NULL</code>.
183
*
184
* Note that implementing this function does not allow for range checking.
185
* Subclasses that desire the safety of range checking must implement the
186
* variation which has a length parameter.
187
*
188
* @param tableTag - the four byte table tag. (e.g. 'cmap')
189
*
190
* @return the address of the table in memory, or <code>NULL</code>
191
* if the table doesn't exist.
192
*
193
* @stable ICU 2.8
194
*/
195
virtual const void *getFontTable(LETag tableTag) const = 0;
196
197
/**
198
* This method reads a table from the font. Note that in general,
199
* it only makes sense to call this method on an <code>LEFontInstance</code>
200
* which represents a physical font - i.e. one which has been returned by
201
* <code>getSubFont()</code>. This is because each subfont in a composite font
202
* will have different tables, and there's no way to know which subfont to access.
203
*
204
* Subclasses which represent composite fonts should always return <code>NULL</code>.
205
*
206
* This version sets a length, for range checking.
207
* Note that range checking can only be accomplished if this function is
208
* implemented in subclasses.
209
*
210
* @param tableTag - the four byte table tag. (e.g. 'cmap')
211
* @param length - ignored on entry, on exit will be the length of the table if known, or -1 if unknown.
212
* @return the address of the table in memory, or <code>NULL</code>
213
* if the table doesn't exist.
214
* @internal
215
*/
216
virtual const void* getFontTable(LETag tableTag, size_t &length) const { length=-1; return getFontTable(tableTag); } /* -1 = unknown length */
217
218
virtual void *getKernPairs() const = 0;
219
virtual void setKernPairs(void *pairs) const = 0;
220
221
/**
222
* This method is used to determine if the font can
223
* render the given character. This can usually be done
224
* by looking the character up in the font's character
225
* to glyph mapping.
226
*
227
* The default implementation of this method will return
228
* <code>TRUE</code> if <code>mapCharToGlyph(ch)</code>
229
* returns a non-zero value.
230
*
231
* @param ch - the character to be tested
232
*
233
* @return <code>TRUE</code> if the font can render ch.
234
*
235
* @stable ICU 3.2
236
*/
237
virtual le_bool canDisplay(LEUnicode32 ch) const;
238
239
/**
240
* This method returns the number of design units in
241
* the font's EM square.
242
*
243
* @return the number of design units pre EM.
244
*
245
* @stable ICU 2.8
246
*/
247
virtual le_int32 getUnitsPerEM() const = 0;
248
249
/**
250
* This method maps an array of character codes to an array of glyph
251
* indices, using the font's character to glyph map.
252
*
253
* The default implementation iterates over all of the characters and calls
254
* <code>mapCharToGlyph(ch, mapper)</code> on each one. It also handles surrogate
255
* characters, storing the glyph ID for the high surrogate, and a deleted glyph (0xFFFF)
256
* for the low surrogate.
257
*
258
* Most sublcasses will not need to implement this method.
259
*
260
* @param chars - the character array
261
* @param offset - the index of the first character
262
* @param count - the number of characters
263
* @param reverse - if <code>TRUE</code>, store the glyph indices in reverse order.
264
* @param mapper - the character mapper.
265
* @param filterZeroWidth - <code>TRUE</code> if ZWJ / ZWNJ characters should map to a glyph w/ no contours.
266
* @param glyphStorage - the object which contains the output glyph array
267
*
268
* @see LECharMapper
269
*
270
* @stable ICU 3.6
271
*/
272
virtual void mapCharsToGlyphs(const LEUnicode chars[], le_int32 offset, le_int32 count, le_bool reverse, const LECharMapper *mapper, le_bool filterZeroWidth, LEGlyphStorage &glyphStorage) const;
273
274
/**
275
* This method maps a single character to a glyph index, using the
276
* font's character to glyph map. The default implementation of this
277
* method calls the mapper, and then calls <code>mapCharToGlyph(mappedCh)</code>.
278
*
279
* @param ch - the character
280
* @param mapper - the character mapper
281
* @param filterZeroWidth - <code>TRUE</code> if ZWJ / ZWNJ characters should map to a glyph w/ no contours.
282
*
283
* @return the glyph index
284
*
285
* @see LECharMapper
286
*
287
* @stable ICU 3.6
288
*/
289
virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch, const LECharMapper *mapper, le_bool filterZeroWidth) const;
290
291
/**
292
* This method maps a single character to a glyph index, using the
293
* font's character to glyph map. The default implementation of this
294
* method calls the mapper, and then calls <code>mapCharToGlyph(mappedCh)</code>.
295
*
296
* @param ch - the character
297
* @param mapper - the character mapper
298
*
299
* @return the glyph index
300
*
301
* @see LECharMapper
302
*
303
* @stable ICU 3.2
304
*/
305
virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch, const LECharMapper *mapper) const;
306
307
/**
308
* This method maps a single character to a glyph index, using the
309
* font's character to glyph map. There is no default implementation
310
* of this method because it requires information about the platform
311
* font implementation.
312
*
313
* @param ch - the character
314
*
315
* @return the glyph index
316
*
317
* @stable ICU 3.2
318
*/
319
virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch) const = 0;
320
321
//
322
// Metrics
323
//
324
325
/**
326
* This method gets the X and Y advance of a particular glyph, in pixels.
327
*
328
* @param glyph - the glyph index
329
* @param advance - the X and Y pixel values will be stored here
330
*
331
* @stable ICU 3.2
332
*/
333
virtual void getGlyphAdvance(LEGlyphID glyph, LEPoint &advance) const = 0;
334
335
virtual void getKerningAdjustment(LEPoint &adjustment) const = 0;
336
337
/**
338
* This method gets the hinted X and Y pixel coordinates of a particular
339
* point in the outline of the given glyph.
340
*
341
* @param glyph - the glyph index
342
* @param pointNumber - the number of the point
343
* @param point - the point's X and Y pixel values will be stored here
344
*
345
* @return <code>TRUE</code> if the point coordinates could be stored.
346
*
347
* @stable ICU 2.8
348
*/
349
virtual le_bool getGlyphPoint(LEGlyphID glyph, le_int32 pointNumber, LEPoint &point) const = 0;
350
351
/**
352
* This method returns the width of the font's EM square
353
* in pixels.
354
*
355
* @return the pixel width of the EM square
356
*
357
* @stable ICU 2.8
358
*/
359
virtual float getXPixelsPerEm() const = 0;
360
361
/**
362
* This method returns the height of the font's EM square
363
* in pixels.
364
*
365
* @return the pixel height of the EM square
366
*
367
* @stable ICU 2.8
368
*/
369
virtual float getYPixelsPerEm() const = 0;
370
371
/**
372
* This method converts font design units in the
373
* X direction to points.
374
*
375
* @param xUnits - design units in the X direction
376
*
377
* @return points in the X direction
378
*
379
* @stable ICU 3.2
380
*/
381
virtual float xUnitsToPoints(float xUnits) const;
382
383
/**
384
* This method converts font design units in the
385
* Y direction to points.
386
*
387
* @param yUnits - design units in the Y direction
388
*
389
* @return points in the Y direction
390
*
391
* @stable ICU 3.2
392
*/
393
virtual float yUnitsToPoints(float yUnits) const;
394
395
/**
396
* This method converts font design units to points.
397
*
398
* @param units - X and Y design units
399
* @param points - set to X and Y points
400
*
401
* @stable ICU 3.2
402
*/
403
virtual void unitsToPoints(LEPoint &units, LEPoint &points) const;
404
405
/**
406
* This method converts pixels in the
407
* X direction to font design units.
408
*
409
* @param xPixels - pixels in the X direction
410
*
411
* @return font design units in the X direction
412
*
413
* @stable ICU 3.2
414
*/
415
virtual float xPixelsToUnits(float xPixels) const;
416
417
/**
418
* This method converts pixels in the
419
* Y direction to font design units.
420
*
421
* @param yPixels - pixels in the Y direction
422
*
423
* @return font design units in the Y direction
424
*
425
* @stable ICU 3.2
426
*/
427
virtual float yPixelsToUnits(float yPixels) const;
428
429
/**
430
* This method converts pixels to font design units.
431
*
432
* @param pixels - X and Y pixel
433
* @param units - set to X and Y font design units
434
*
435
* @stable ICU 3.2
436
*/
437
virtual void pixelsToUnits(LEPoint &pixels, LEPoint &units) const;
438
439
/**
440
* Get the X scale factor from the font's transform. The default
441
* implementation of <code>transformFunits()</code> will call this method.
442
*
443
* @return the X scale factor.
444
*
445
*
446
* @see transformFunits
447
*
448
* @stable ICU 3.2
449
*/
450
virtual float getScaleFactorX() const = 0;
451
452
/**
453
* Get the Y scale factor from the font's transform. The default
454
* implementation of <code>transformFunits()</code> will call this method.
455
*
456
* @return the Yscale factor.
457
*
458
* @see transformFunits
459
*
460
* @stable ICU 3.2
461
*/
462
virtual float getScaleFactorY() const = 0;
463
464
/**
465
* This method transforms an X, Y point in font design units to a
466
* pixel coordinate, applying the font's transform. The default
467
* implementation of this method calls <code>getScaleFactorX()</code>
468
* and <code>getScaleFactorY()</code>.
469
*
470
* @param xFunits - the X coordinate in font design units
471
* @param yFunits - the Y coordinate in font design units
472
* @param pixels - the tranformed co-ordinate in pixels
473
*
474
* @see getScaleFactorX
475
* @see getScaleFactorY
476
*
477
* @stable ICU 3.2
478
*/
479
virtual void transformFunits(float xFunits, float yFunits, LEPoint &pixels) const;
480
481
/**
482
* This is a convenience method used to convert
483
* values in a 16.16 fixed point format to floating point.
484
*
485
* @param fixed - the fixed point value
486
*
487
* @return the floating point value
488
*
489
* @stable ICU 2.8
490
*/
491
static inline float fixedToFloat(le_int32 fixed);
492
493
/**
494
* This is a convenience method used to convert
495
* floating point values to 16.16 fixed point format.
496
*
497
* @param theFloat - the floating point value
498
*
499
* @return the fixed point value
500
*
501
* @stable ICU 2.8
502
*/
503
static inline le_int32 floatToFixed(float theFloat);
504
505
//
506
// These methods won't ever be called by the LayoutEngine,
507
// but are useful for clients of <code>LEFontInstance</code> who
508
// need to render text.
509
//
510
511
/**
512
* Get the font's ascent.
513
*
514
* @return the font's ascent, in points. This value
515
* will always be positive.
516
*
517
* @stable ICU 3.2
518
*/
519
virtual le_int32 getAscent() const = 0;
520
521
/**
522
* Get the font's descent.
523
*
524
* @return the font's descent, in points. This value
525
* will always be positive.
526
*
527
* @stable ICU 3.2
528
*/
529
virtual le_int32 getDescent() const = 0;
530
531
/**
532
* Get the font's leading.
533
*
534
* @return the font's leading, in points. This value
535
* will always be positive.
536
*
537
* @stable ICU 3.2
538
*/
539
virtual le_int32 getLeading() const = 0;
540
541
/**
542
* Get the line height required to display text in
543
* this font. The default implementation of this method
544
* returns the sum of the ascent, descent, and leading.
545
*
546
* @return the line height, in points. This vaule will
547
* always be positive.
548
*
549
* @stable ICU 3.2
550
*/
551
virtual le_int32 getLineHeight() const;
552
553
/**
554
* ICU "poor man's RTTI", returns a UClassID for the actual class.
555
*
556
* @stable ICU 3.2
557
*/
558
virtual UClassID getDynamicClassID() const;
559
560
/**
561
* ICU "poor man's RTTI", returns a UClassID for this class.
562
*
563
* @stable ICU 3.2
564
*/
565
static UClassID getStaticClassID();
566
567
};
568
569
inline float LEFontInstance::fixedToFloat(le_int32 fixed)
570
{
571
return (float) (fixed / 65536.0);
572
}
573
574
inline le_int32 LEFontInstance::floatToFixed(float theFloat)
575
{
576
return (le_int32) (theFloat * 65536.0);
577
}
578
579
U_NAMESPACE_END
580
#endif
581
582