Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/native/sun/awt/image/jpeg/jdphuff.c
38918 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jdphuff.c
7
*
8
* Copyright (C) 1995-1997, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains Huffman entropy decoding routines for progressive JPEG.
13
*
14
* Much of the complexity here has to do with supporting input suspension.
15
* If the data source module demands suspension, we want to be able to back
16
* up to the start of the current MCU. To do this, we copy state variables
17
* into local working storage, and update them back to the permanent
18
* storage only upon successful completion of an MCU.
19
*/
20
21
#define JPEG_INTERNALS
22
#include "jinclude.h"
23
#include "jpeglib.h"
24
#include "jdhuff.h" /* Declarations shared with jdhuff.c */
25
26
27
#ifdef D_PROGRESSIVE_SUPPORTED
28
29
/*
30
* Expanded entropy decoder object for progressive Huffman decoding.
31
*
32
* The savable_state subrecord contains fields that change within an MCU,
33
* but must not be updated permanently until we complete the MCU.
34
*/
35
36
typedef struct {
37
unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
38
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
39
} savable_state;
40
41
/* This macro is to work around compilers with missing or broken
42
* structure assignment. You'll need to fix this code if you have
43
* such a compiler and you change MAX_COMPS_IN_SCAN.
44
*/
45
46
#ifndef NO_STRUCT_ASSIGN
47
#define ASSIGN_STATE(dest,src) ((dest) = (src))
48
#else
49
#if MAX_COMPS_IN_SCAN == 4
50
#define ASSIGN_STATE(dest,src) \
51
((dest).EOBRUN = (src).EOBRUN, \
52
(dest).last_dc_val[0] = (src).last_dc_val[0], \
53
(dest).last_dc_val[1] = (src).last_dc_val[1], \
54
(dest).last_dc_val[2] = (src).last_dc_val[2], \
55
(dest).last_dc_val[3] = (src).last_dc_val[3])
56
#endif
57
#endif
58
59
60
typedef struct {
61
struct jpeg_entropy_decoder pub; /* public fields */
62
63
/* These fields are loaded into local variables at start of each MCU.
64
* In case of suspension, we exit WITHOUT updating them.
65
*/
66
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
67
savable_state saved; /* Other state at start of MCU */
68
69
/* These fields are NOT loaded into local working state. */
70
unsigned int restarts_to_go; /* MCUs left in this restart interval */
71
72
/* Pointers to derived tables (these workspaces have image lifespan) */
73
d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
74
75
d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
76
} phuff_entropy_decoder;
77
78
typedef phuff_entropy_decoder * phuff_entropy_ptr;
79
80
/* Forward declarations */
81
METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
82
JBLOCKROW *MCU_data));
83
METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
84
JBLOCKROW *MCU_data));
85
METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
86
JBLOCKROW *MCU_data));
87
METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
88
JBLOCKROW *MCU_data));
89
90
91
/*
92
* Initialize for a Huffman-compressed scan.
93
*/
94
95
METHODDEF(void)
96
start_pass_phuff_decoder (j_decompress_ptr cinfo)
97
{
98
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
99
boolean is_DC_band, bad;
100
int ci, coefi, tbl;
101
int *coef_bit_ptr;
102
jpeg_component_info * compptr;
103
104
is_DC_band = (cinfo->Ss == 0);
105
106
/* Validate scan parameters */
107
bad = FALSE;
108
if (is_DC_band) {
109
if (cinfo->Se != 0)
110
bad = TRUE;
111
} else {
112
/* need not check Ss/Se < 0 since they came from unsigned bytes */
113
if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
114
bad = TRUE;
115
/* AC scans may have only one component */
116
if (cinfo->comps_in_scan != 1)
117
bad = TRUE;
118
}
119
if (cinfo->Ah != 0) {
120
/* Successive approximation refinement scan: must have Al = Ah-1. */
121
if (cinfo->Al != cinfo->Ah-1)
122
bad = TRUE;
123
}
124
if (cinfo->Al > 13) /* need not check for < 0 */
125
bad = TRUE;
126
/* Arguably the maximum Al value should be less than 13 for 8-bit precision,
127
* but the spec doesn't say so, and we try to be liberal about what we
128
* accept. Note: large Al values could result in out-of-range DC
129
* coefficients during early scans, leading to bizarre displays due to
130
* overflows in the IDCT math. But we won't crash.
131
*/
132
if (bad)
133
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
134
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
135
/* Update progression status, and verify that scan order is legal.
136
* Note that inter-scan inconsistencies are treated as warnings
137
* not fatal errors ... not clear if this is right way to behave.
138
*/
139
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
140
int cindex = cinfo->cur_comp_info[ci]->component_index;
141
coef_bit_ptr = & cinfo->coef_bits[cindex][0];
142
if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
143
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
144
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
145
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
146
if (cinfo->Ah != expected)
147
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
148
coef_bit_ptr[coefi] = cinfo->Al;
149
}
150
}
151
152
/* Select MCU decoding routine */
153
if (cinfo->Ah == 0) {
154
if (is_DC_band)
155
entropy->pub.decode_mcu = decode_mcu_DC_first;
156
else
157
entropy->pub.decode_mcu = decode_mcu_AC_first;
158
} else {
159
if (is_DC_band)
160
entropy->pub.decode_mcu = decode_mcu_DC_refine;
161
else
162
entropy->pub.decode_mcu = decode_mcu_AC_refine;
163
}
164
165
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
166
compptr = cinfo->cur_comp_info[ci];
167
/* Make sure requested tables are present, and compute derived tables.
168
* We may build same derived table more than once, but it's not expensive.
169
*/
170
if (is_DC_band) {
171
if (cinfo->Ah == 0) { /* DC refinement needs no table */
172
tbl = compptr->dc_tbl_no;
173
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
174
& entropy->derived_tbls[tbl]);
175
}
176
} else {
177
tbl = compptr->ac_tbl_no;
178
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
179
& entropy->derived_tbls[tbl]);
180
/* remember the single active table */
181
entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
182
}
183
/* Initialize DC predictions to 0 */
184
entropy->saved.last_dc_val[ci] = 0;
185
}
186
187
/* Initialize bitread state variables */
188
entropy->bitstate.bits_left = 0;
189
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
190
entropy->pub.insufficient_data = FALSE;
191
192
/* Initialize private state variables */
193
entropy->saved.EOBRUN = 0;
194
195
/* Initialize restart counter */
196
entropy->restarts_to_go = cinfo->restart_interval;
197
}
198
199
200
/*
201
* Figure F.12: extend sign bit.
202
* On some machines, a shift and add will be faster than a table lookup.
203
*/
204
205
#ifdef AVOID_TABLES
206
207
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
208
209
#else
210
211
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
212
213
static const int extend_test[16] = /* entry n is 2**(n-1) */
214
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
215
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
216
217
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
218
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
219
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
220
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
221
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
222
223
#endif /* AVOID_TABLES */
224
225
226
/*
227
* Check for a restart marker & resynchronize decoder.
228
* Returns FALSE if must suspend.
229
*/
230
231
LOCAL(boolean)
232
process_restart (j_decompress_ptr cinfo)
233
{
234
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
235
int ci;
236
237
/* Throw away any unused bits remaining in bit buffer; */
238
/* include any full bytes in next_marker's count of discarded bytes */
239
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
240
entropy->bitstate.bits_left = 0;
241
242
/* Advance past the RSTn marker */
243
if (! (*cinfo->marker->read_restart_marker) (cinfo))
244
return FALSE;
245
246
/* Re-initialize DC predictions to 0 */
247
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
248
entropy->saved.last_dc_val[ci] = 0;
249
/* Re-init EOB run count, too */
250
entropy->saved.EOBRUN = 0;
251
252
/* Reset restart counter */
253
entropy->restarts_to_go = cinfo->restart_interval;
254
255
/* Reset out-of-data flag, unless read_restart_marker left us smack up
256
* against a marker. In that case we will end up treating the next data
257
* segment as empty, and we can avoid producing bogus output pixels by
258
* leaving the flag set.
259
*/
260
if (cinfo->unread_marker == 0)
261
entropy->pub.insufficient_data = FALSE;
262
263
return TRUE;
264
}
265
266
267
/*
268
* Huffman MCU decoding.
269
* Each of these routines decodes and returns one MCU's worth of
270
* Huffman-compressed coefficients.
271
* The coefficients are reordered from zigzag order into natural array order,
272
* but are not dequantized.
273
*
274
* The i'th block of the MCU is stored into the block pointed to by
275
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
276
*
277
* We return FALSE if data source requested suspension. In that case no
278
* changes have been made to permanent state. (Exception: some output
279
* coefficients may already have been assigned. This is harmless for
280
* spectral selection, since we'll just re-assign them on the next call.
281
* Successive approximation AC refinement has to be more careful, however.)
282
*/
283
284
/*
285
* MCU decoding for DC initial scan (either spectral selection,
286
* or first pass of successive approximation).
287
*/
288
289
METHODDEF(boolean)
290
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
291
{
292
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
293
int Al = cinfo->Al;
294
register int s, r;
295
int blkn, ci;
296
JBLOCKROW block;
297
BITREAD_STATE_VARS;
298
savable_state state;
299
d_derived_tbl * tbl;
300
jpeg_component_info * compptr;
301
302
/* Process restart marker if needed; may have to suspend */
303
if (cinfo->restart_interval) {
304
if (entropy->restarts_to_go == 0)
305
if (! process_restart(cinfo))
306
return FALSE;
307
}
308
309
/* If we've run out of data, just leave the MCU set to zeroes.
310
* This way, we return uniform gray for the remainder of the segment.
311
*/
312
if (! entropy->pub.insufficient_data) {
313
314
/* Load up working state */
315
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
316
ASSIGN_STATE(state, entropy->saved);
317
318
/* Outer loop handles each block in the MCU */
319
320
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
321
block = MCU_data[blkn];
322
ci = cinfo->MCU_membership[blkn];
323
compptr = cinfo->cur_comp_info[ci];
324
tbl = entropy->derived_tbls[compptr->dc_tbl_no];
325
326
/* Decode a single block's worth of coefficients */
327
328
/* Section F.2.2.1: decode the DC coefficient difference */
329
HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
330
if (s) {
331
CHECK_BIT_BUFFER(br_state, s, return FALSE);
332
r = GET_BITS(s);
333
s = HUFF_EXTEND(r, s);
334
}
335
336
/* Convert DC difference to actual value, update last_dc_val */
337
s += state.last_dc_val[ci];
338
state.last_dc_val[ci] = s;
339
/* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
340
(*block)[0] = (JCOEF) (s << Al);
341
}
342
343
/* Completed MCU, so update state */
344
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
345
ASSIGN_STATE(entropy->saved, state);
346
}
347
348
/* Account for restart interval (no-op if not using restarts) */
349
entropy->restarts_to_go--;
350
351
return TRUE;
352
}
353
354
355
/*
356
* MCU decoding for AC initial scan (either spectral selection,
357
* or first pass of successive approximation).
358
*/
359
360
METHODDEF(boolean)
361
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
362
{
363
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
364
int Se = cinfo->Se;
365
int Al = cinfo->Al;
366
register int s, k, r;
367
unsigned int EOBRUN;
368
JBLOCKROW block;
369
BITREAD_STATE_VARS;
370
d_derived_tbl * tbl;
371
372
/* Process restart marker if needed; may have to suspend */
373
if (cinfo->restart_interval) {
374
if (entropy->restarts_to_go == 0)
375
if (! process_restart(cinfo))
376
return FALSE;
377
}
378
379
/* If we've run out of data, just leave the MCU set to zeroes.
380
* This way, we return uniform gray for the remainder of the segment.
381
*/
382
if (! entropy->pub.insufficient_data) {
383
384
/* Load up working state.
385
* We can avoid loading/saving bitread state if in an EOB run.
386
*/
387
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
388
389
/* There is always only one block per MCU */
390
391
if (EOBRUN > 0) /* if it's a band of zeroes... */
392
EOBRUN--; /* ...process it now (we do nothing) */
393
else {
394
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
395
block = MCU_data[0];
396
tbl = entropy->ac_derived_tbl;
397
398
for (k = cinfo->Ss; k <= Se; k++) {
399
HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
400
r = s >> 4;
401
s &= 15;
402
if (s) {
403
k += r;
404
CHECK_BIT_BUFFER(br_state, s, return FALSE);
405
r = GET_BITS(s);
406
s = HUFF_EXTEND(r, s);
407
/* Scale and output coefficient in natural (dezigzagged) order */
408
(*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
409
} else {
410
if (r == 15) { /* ZRL */
411
k += 15; /* skip 15 zeroes in band */
412
} else { /* EOBr, run length is 2^r + appended bits */
413
EOBRUN = 1 << r;
414
if (r) { /* EOBr, r > 0 */
415
CHECK_BIT_BUFFER(br_state, r, return FALSE);
416
r = GET_BITS(r);
417
EOBRUN += r;
418
}
419
EOBRUN--; /* this band is processed at this moment */
420
break; /* force end-of-band */
421
}
422
}
423
}
424
425
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
426
}
427
428
/* Completed MCU, so update state */
429
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
430
}
431
432
/* Account for restart interval (no-op if not using restarts) */
433
entropy->restarts_to_go--;
434
435
return TRUE;
436
}
437
438
439
/*
440
* MCU decoding for DC successive approximation refinement scan.
441
* Note: we assume such scans can be multi-component, although the spec
442
* is not very clear on the point.
443
*/
444
445
METHODDEF(boolean)
446
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
447
{
448
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
449
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
450
int blkn;
451
JBLOCKROW block;
452
BITREAD_STATE_VARS;
453
454
/* Process restart marker if needed; may have to suspend */
455
if (cinfo->restart_interval) {
456
if (entropy->restarts_to_go == 0)
457
if (! process_restart(cinfo))
458
return FALSE;
459
}
460
461
/* Not worth the cycles to check insufficient_data here,
462
* since we will not change the data anyway if we read zeroes.
463
*/
464
465
/* Load up working state */
466
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
467
468
/* Outer loop handles each block in the MCU */
469
470
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
471
block = MCU_data[blkn];
472
473
/* Encoded data is simply the next bit of the two's-complement DC value */
474
CHECK_BIT_BUFFER(br_state, 1, return FALSE);
475
if (GET_BITS(1))
476
(*block)[0] |= p1;
477
/* Note: since we use |=, repeating the assignment later is safe */
478
}
479
480
/* Completed MCU, so update state */
481
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
482
483
/* Account for restart interval (no-op if not using restarts) */
484
entropy->restarts_to_go--;
485
486
return TRUE;
487
}
488
489
490
/*
491
* MCU decoding for AC successive approximation refinement scan.
492
*/
493
494
METHODDEF(boolean)
495
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
496
{
497
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
498
int Se = cinfo->Se;
499
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
500
int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
501
register int s, k, r;
502
unsigned int EOBRUN;
503
JBLOCKROW block;
504
JCOEFPTR thiscoef;
505
BITREAD_STATE_VARS;
506
d_derived_tbl * tbl;
507
int num_newnz;
508
int newnz_pos[DCTSIZE2];
509
510
/* Process restart marker if needed; may have to suspend */
511
if (cinfo->restart_interval) {
512
if (entropy->restarts_to_go == 0)
513
if (! process_restart(cinfo))
514
return FALSE;
515
}
516
517
/* If we've run out of data, don't modify the MCU.
518
*/
519
if (! entropy->pub.insufficient_data) {
520
521
/* Load up working state */
522
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
523
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
524
525
/* There is always only one block per MCU */
526
block = MCU_data[0];
527
tbl = entropy->ac_derived_tbl;
528
529
/* If we are forced to suspend, we must undo the assignments to any newly
530
* nonzero coefficients in the block, because otherwise we'd get confused
531
* next time about which coefficients were already nonzero.
532
* But we need not undo addition of bits to already-nonzero coefficients;
533
* instead, we can test the current bit to see if we already did it.
534
*/
535
num_newnz = 0;
536
537
/* initialize coefficient loop counter to start of band */
538
k = cinfo->Ss;
539
540
if (EOBRUN == 0) {
541
for (; k <= Se; k++) {
542
HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
543
r = s >> 4;
544
s &= 15;
545
if (s) {
546
if (s != 1) /* size of new coef should always be 1 */
547
WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
548
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
549
if (GET_BITS(1))
550
s = p1; /* newly nonzero coef is positive */
551
else
552
s = m1; /* newly nonzero coef is negative */
553
} else {
554
if (r != 15) {
555
EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
556
if (r) {
557
CHECK_BIT_BUFFER(br_state, r, goto undoit);
558
r = GET_BITS(r);
559
EOBRUN += r;
560
}
561
break; /* rest of block is handled by EOB logic */
562
}
563
/* note s = 0 for processing ZRL */
564
}
565
/* Advance over already-nonzero coefs and r still-zero coefs,
566
* appending correction bits to the nonzeroes. A correction bit is 1
567
* if the absolute value of the coefficient must be increased.
568
*/
569
do {
570
thiscoef = *block + jpeg_natural_order[k];
571
if (*thiscoef != 0) {
572
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
573
if (GET_BITS(1)) {
574
if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
575
if (*thiscoef >= 0)
576
*thiscoef += p1;
577
else
578
*thiscoef += m1;
579
}
580
}
581
} else {
582
if (--r < 0)
583
break; /* reached target zero coefficient */
584
}
585
k++;
586
} while (k <= Se);
587
if (s) {
588
int pos = jpeg_natural_order[k];
589
/* Output newly nonzero coefficient */
590
(*block)[pos] = (JCOEF) s;
591
/* Remember its position in case we have to suspend */
592
newnz_pos[num_newnz++] = pos;
593
}
594
}
595
}
596
597
if (EOBRUN > 0) {
598
/* Scan any remaining coefficient positions after the end-of-band
599
* (the last newly nonzero coefficient, if any). Append a correction
600
* bit to each already-nonzero coefficient. A correction bit is 1
601
* if the absolute value of the coefficient must be increased.
602
*/
603
for (; k <= Se; k++) {
604
thiscoef = *block + jpeg_natural_order[k];
605
if (*thiscoef != 0) {
606
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
607
if (GET_BITS(1)) {
608
if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
609
if (*thiscoef >= 0)
610
*thiscoef += p1;
611
else
612
*thiscoef += m1;
613
}
614
}
615
}
616
}
617
/* Count one block completed in EOB run */
618
EOBRUN--;
619
}
620
621
/* Completed MCU, so update state */
622
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
623
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
624
}
625
626
/* Account for restart interval (no-op if not using restarts) */
627
entropy->restarts_to_go--;
628
629
return TRUE;
630
631
undoit:
632
/* Re-zero any output coefficients that we made newly nonzero */
633
while (num_newnz > 0)
634
(*block)[newnz_pos[--num_newnz]] = 0;
635
636
return FALSE;
637
}
638
639
640
/*
641
* Module initialization routine for progressive Huffman entropy decoding.
642
*/
643
644
GLOBAL(void)
645
jinit_phuff_decoder (j_decompress_ptr cinfo)
646
{
647
phuff_entropy_ptr entropy;
648
int *coef_bit_ptr;
649
int ci, i;
650
651
entropy = (phuff_entropy_ptr)
652
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
653
SIZEOF(phuff_entropy_decoder));
654
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
655
entropy->pub.start_pass = start_pass_phuff_decoder;
656
657
/* Mark derived tables unallocated */
658
for (i = 0; i < NUM_HUFF_TBLS; i++) {
659
entropy->derived_tbls[i] = NULL;
660
}
661
662
/* Create progression status table */
663
cinfo->coef_bits = (int (*)[DCTSIZE2])
664
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
665
cinfo->num_components*DCTSIZE2*SIZEOF(int));
666
coef_bit_ptr = & cinfo->coef_bits[0][0];
667
for (ci = 0; ci < cinfo->num_components; ci++)
668
for (i = 0; i < DCTSIZE2; i++)
669
*coef_bit_ptr++ = -1;
670
}
671
672
#endif /* D_PROGRESSIVE_SUPPORTED */
673
674