Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/native/sun/font/DrawGlyphList.c
38829 views
1
/*
2
* Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
#include "jlong.h"
27
#include "math.h"
28
#include "string.h"
29
#include "stdlib.h"
30
#include "sunfontids.h"
31
#include "fontscalerdefs.h"
32
#include "glyphblitting.h"
33
#include "GraphicsPrimitiveMgr.h"
34
#include "sun_java2d_loops_DrawGlyphList.h"
35
#include "sun_java2d_loops_DrawGlyphListAA.h"
36
37
38
/*
39
* Need to account for the rare case when (eg) repainting damaged
40
* areas results in the drawing location being negative, in which
41
* case (int) rounding always goes towards zero. We need to always
42
* round down instead, so that we paint at the correct position.
43
* We only call "floor" when value is < 0 (ie rarely).
44
* Storing the result of (eg) (x+ginfo->topLeftX) benchmarks is more
45
* expensive than repeating the calculation as we do here.
46
* "floor" shows up as a significant cost in app-level microbenchmarks.
47
* This macro avoids calling it on positive values, instead using an
48
* (int) cast.
49
*/
50
#define FLOOR_ASSIGN(l, r)\
51
if ((r)<0) (l) = ((int)floor(r)); else (l) = ((int)(r))
52
53
GlyphBlitVector* setupBlitVector(JNIEnv *env, jobject glyphlist) {
54
55
int g;
56
size_t bytesNeeded;
57
jlong *imagePtrs;
58
jfloat* positions = NULL;
59
GlyphInfo *ginfo;
60
GlyphBlitVector *gbv;
61
62
jfloat x = (*env)->GetFloatField(env, glyphlist, sunFontIDs.glyphListX);
63
jfloat y = (*env)->GetFloatField(env, glyphlist, sunFontIDs.glyphListY);
64
jint len = (*env)->GetIntField(env, glyphlist, sunFontIDs.glyphListLen);
65
jlongArray glyphImages = (jlongArray)
66
(*env)->GetObjectField(env, glyphlist, sunFontIDs.glyphImages);
67
jfloatArray glyphPositions =
68
(*env)->GetBooleanField(env, glyphlist, sunFontIDs.glyphListUsePos)
69
? (jfloatArray)
70
(*env)->GetObjectField(env, glyphlist, sunFontIDs.glyphListPos)
71
: NULL;
72
73
bytesNeeded = sizeof(GlyphBlitVector)+sizeof(ImageRef)*len;
74
gbv = (GlyphBlitVector*)malloc(bytesNeeded);
75
if (gbv == NULL) {
76
return NULL;
77
}
78
gbv->numGlyphs = len;
79
gbv->glyphs = (ImageRef*)((unsigned char*)gbv+sizeof(GlyphBlitVector));
80
81
imagePtrs = (*env)->GetPrimitiveArrayCritical(env, glyphImages, NULL);
82
if (imagePtrs == NULL) {
83
free(gbv);
84
return (GlyphBlitVector*)NULL;
85
}
86
87
/* Add 0.5 to x and y and then use floor (or an equivalent operation)
88
* to round down the glyph positions to integral pixel positions.
89
*/
90
x += 0.5f;
91
y += 0.5f;
92
if (glyphPositions) {
93
int n = -1;
94
95
positions =
96
(*env)->GetPrimitiveArrayCritical(env, glyphPositions, NULL);
97
if (positions == NULL) {
98
(*env)->ReleasePrimitiveArrayCritical(env, glyphImages,
99
imagePtrs, JNI_ABORT);
100
free(gbv);
101
return (GlyphBlitVector*)NULL;
102
}
103
104
for (g=0; g<len; g++) {
105
jfloat px = x + positions[++n];
106
jfloat py = y + positions[++n];
107
108
ginfo = (GlyphInfo*) imagePtrs[g];
109
gbv->glyphs[g].glyphInfo = ginfo;
110
gbv->glyphs[g].pixels = ginfo->image;
111
gbv->glyphs[g].width = ginfo->width;
112
gbv->glyphs[g].rowBytes = ginfo->rowBytes;
113
gbv->glyphs[g].height = ginfo->height;
114
FLOOR_ASSIGN(gbv->glyphs[g].x, px + ginfo->topLeftX);
115
FLOOR_ASSIGN(gbv->glyphs[g].y, py + ginfo->topLeftY);
116
}
117
(*env)->ReleasePrimitiveArrayCritical(env,glyphPositions,
118
positions, JNI_ABORT);
119
} else {
120
for (g=0; g<len; g++) {
121
ginfo = (GlyphInfo*)imagePtrs[g];
122
gbv->glyphs[g].glyphInfo = ginfo;
123
gbv->glyphs[g].pixels = ginfo->image;
124
gbv->glyphs[g].width = ginfo->width;
125
gbv->glyphs[g].rowBytes = ginfo->rowBytes;
126
gbv->glyphs[g].height = ginfo->height;
127
FLOOR_ASSIGN(gbv->glyphs[g].x, x + ginfo->topLeftX);
128
FLOOR_ASSIGN(gbv->glyphs[g].y, y + ginfo->topLeftY);
129
130
/* copy image data into this array at x/y locations */
131
x += ginfo->advanceX;
132
y += ginfo->advanceY;
133
}
134
}
135
136
(*env)->ReleasePrimitiveArrayCritical(env, glyphImages, imagePtrs,
137
JNI_ABORT);
138
return gbv;
139
}
140
141
jint RefineBounds(GlyphBlitVector *gbv, SurfaceDataBounds *bounds) {
142
int index;
143
jint dx1, dy1, dx2, dy2;
144
ImageRef glyphImage;
145
int num = gbv->numGlyphs;
146
SurfaceDataBounds glyphs;
147
148
glyphs.x1 = glyphs.y1 = 0x7fffffff;
149
glyphs.x2 = glyphs.y2 = 0x80000000;
150
for (index = 0; index < num; index++) {
151
glyphImage = gbv->glyphs[index];
152
dx1 = (jint) glyphImage.x;
153
dy1 = (jint) glyphImage.y;
154
dx2 = dx1 + glyphImage.width;
155
dy2 = dy1 + glyphImage.height;
156
if (glyphs.x1 > dx1) glyphs.x1 = dx1;
157
if (glyphs.y1 > dy1) glyphs.y1 = dy1;
158
if (glyphs.x2 < dx2) glyphs.x2 = dx2;
159
if (glyphs.y2 < dy2) glyphs.y2 = dy2;
160
}
161
162
SurfaceData_IntersectBounds(bounds, &glyphs);
163
return (bounds->x1 < bounds->x2 && bounds->y1 < bounds->y2);
164
}
165
166
167
168
169
/* since the AA and non-AA loop functions share a common method
170
* signature, can call both through this common function since
171
* there's no difference except for the inner loop.
172
* This could be a macro but there's enough of those already.
173
*/
174
static void drawGlyphList(JNIEnv *env, jobject self,
175
jobject sg2d, jobject sData,
176
GlyphBlitVector *gbv, jint pixel, jint color,
177
NativePrimitive *pPrim, DrawGlyphListFunc *func) {
178
179
SurfaceDataOps *sdOps;
180
SurfaceDataRasInfo rasInfo;
181
CompositeInfo compInfo;
182
int clipLeft, clipRight, clipTop, clipBottom;
183
int ret;
184
185
sdOps = SurfaceData_GetOps(env, sData);
186
if (sdOps == 0) {
187
return;
188
}
189
190
if (pPrim->pCompType->getCompInfo != NULL) {
191
GrPrim_Sg2dGetCompInfo(env, sg2d, pPrim, &compInfo);
192
}
193
194
GrPrim_Sg2dGetClip(env, sg2d, &rasInfo.bounds);
195
if (rasInfo.bounds.y2 <= rasInfo.bounds.y1 ||
196
rasInfo.bounds.x2 <= rasInfo.bounds.x1)
197
{
198
return;
199
}
200
201
ret = sdOps->Lock(env, sdOps, &rasInfo, pPrim->dstflags);
202
if (ret != SD_SUCCESS) {
203
if (ret == SD_SLOWLOCK) {
204
if (!RefineBounds(gbv, &rasInfo.bounds)) {
205
SurfaceData_InvokeUnlock(env, sdOps, &rasInfo);
206
return;
207
}
208
} else {
209
return;
210
}
211
}
212
213
sdOps->GetRasInfo(env, sdOps, &rasInfo);
214
if (!rasInfo.rasBase) {
215
SurfaceData_InvokeUnlock(env, sdOps, &rasInfo);
216
return;
217
}
218
clipLeft = rasInfo.bounds.x1;
219
clipRight = rasInfo.bounds.x2;
220
clipTop = rasInfo.bounds.y1;
221
clipBottom = rasInfo.bounds.y2;
222
if (clipRight > clipLeft && clipBottom > clipTop) {
223
224
(*func)(&rasInfo,
225
gbv->glyphs, gbv->numGlyphs,
226
pixel, color,
227
clipLeft, clipTop,
228
clipRight, clipBottom,
229
pPrim, &compInfo);
230
SurfaceData_InvokeRelease(env, sdOps, &rasInfo);
231
232
}
233
SurfaceData_InvokeUnlock(env, sdOps, &rasInfo);
234
}
235
236
static unsigned char* getLCDGammaLUT(int gamma);
237
static unsigned char* getInvLCDGammaLUT(int gamma);
238
239
static void drawGlyphListLCD(JNIEnv *env, jobject self,
240
jobject sg2d, jobject sData,
241
GlyphBlitVector *gbv, jint pixel, jint color,
242
jboolean rgbOrder, int contrast,
243
NativePrimitive *pPrim,
244
DrawGlyphListLCDFunc *func) {
245
246
SurfaceDataOps *sdOps;
247
SurfaceDataRasInfo rasInfo;
248
CompositeInfo compInfo;
249
int clipLeft, clipRight, clipTop, clipBottom;
250
int ret;
251
252
sdOps = SurfaceData_GetOps(env, sData);
253
if (sdOps == 0) {
254
return;
255
}
256
257
if (pPrim->pCompType->getCompInfo != NULL) {
258
GrPrim_Sg2dGetCompInfo(env, sg2d, pPrim, &compInfo);
259
}
260
261
GrPrim_Sg2dGetClip(env, sg2d, &rasInfo.bounds);
262
if (rasInfo.bounds.y2 <= rasInfo.bounds.y1 ||
263
rasInfo.bounds.x2 <= rasInfo.bounds.x1)
264
{
265
return;
266
}
267
268
ret = sdOps->Lock(env, sdOps, &rasInfo, pPrim->dstflags);
269
if (ret != SD_SUCCESS) {
270
if (ret == SD_SLOWLOCK) {
271
if (!RefineBounds(gbv, &rasInfo.bounds)) {
272
SurfaceData_InvokeUnlock(env, sdOps, &rasInfo);
273
return;
274
}
275
} else {
276
return;
277
}
278
}
279
280
sdOps->GetRasInfo(env, sdOps, &rasInfo);
281
if (!rasInfo.rasBase) {
282
SurfaceData_InvokeUnlock(env, sdOps, &rasInfo);
283
return;
284
}
285
clipLeft = rasInfo.bounds.x1;
286
clipRight = rasInfo.bounds.x2;
287
clipTop = rasInfo.bounds.y1;
288
clipBottom = rasInfo.bounds.y2;
289
290
if (clipRight > clipLeft && clipBottom > clipTop) {
291
292
(*func)(&rasInfo,
293
gbv->glyphs, gbv->numGlyphs,
294
pixel, color,
295
clipLeft, clipTop,
296
clipRight, clipBottom, (jint)rgbOrder,
297
getLCDGammaLUT(contrast), getInvLCDGammaLUT(contrast),
298
pPrim, &compInfo);
299
SurfaceData_InvokeRelease(env, sdOps, &rasInfo);
300
301
}
302
SurfaceData_InvokeUnlock(env, sdOps, &rasInfo);
303
}
304
305
/*
306
* Class: sun_java2d_loops_DrawGlyphList
307
* Method: DrawGlyphList
308
* Signature: (Lsun/java2d/SunGraphics2D;Lsun/java2d/SurfaceData;Lsun/java2d/font/GlyphList;J)V
309
*/
310
JNIEXPORT void JNICALL
311
Java_sun_java2d_loops_DrawGlyphList_DrawGlyphList
312
(JNIEnv *env, jobject self,
313
jobject sg2d, jobject sData, jobject glyphlist) {
314
315
jint pixel, color;
316
GlyphBlitVector* gbv;
317
NativePrimitive *pPrim;
318
319
if ((pPrim = GetNativePrim(env, self)) == NULL) {
320
return;
321
}
322
323
if ((gbv = setupBlitVector(env, glyphlist)) == NULL) {
324
return;
325
}
326
327
pixel = GrPrim_Sg2dGetPixel(env, sg2d);
328
color = GrPrim_Sg2dGetEaRGB(env, sg2d);
329
drawGlyphList(env, self, sg2d, sData, gbv, pixel, color,
330
pPrim, pPrim->funcs.drawglyphlist);
331
free(gbv);
332
333
}
334
335
/*
336
* Class: sun_java2d_loops_DrawGlyphListAA
337
* Method: DrawGlyphListAA
338
* Signature: (Lsun/java2d/SunGraphics2D;Lsun/java2d/SurfaceData;Lsun/java2d/font/GlyphList;J)V
339
*/
340
JNIEXPORT void JNICALL
341
Java_sun_java2d_loops_DrawGlyphListAA_DrawGlyphListAA
342
(JNIEnv *env, jobject self,
343
jobject sg2d, jobject sData, jobject glyphlist) {
344
345
jint pixel, color;
346
GlyphBlitVector* gbv;
347
NativePrimitive *pPrim;
348
349
if ((pPrim = GetNativePrim(env, self)) == NULL) {
350
return;
351
}
352
353
if ((gbv = setupBlitVector(env, glyphlist)) == NULL) {
354
return;
355
}
356
pixel = GrPrim_Sg2dGetPixel(env, sg2d);
357
color = GrPrim_Sg2dGetEaRGB(env, sg2d);
358
drawGlyphList(env, self, sg2d, sData, gbv, pixel, color,
359
pPrim, pPrim->funcs.drawglyphlistaa);
360
free(gbv);
361
}
362
363
/*
364
* Class: sun_java2d_loops_DrawGlyphListLCD
365
* Method: DrawGlyphListLCD
366
* Signature: (Lsun/java2d/SunGraphics2D;Lsun/java2d/SurfaceData;Lsun/java2d/font/GlyphList;J)V
367
*/
368
JNIEXPORT void JNICALL
369
Java_sun_java2d_loops_DrawGlyphListLCD_DrawGlyphListLCD
370
(JNIEnv *env, jobject self,
371
jobject sg2d, jobject sData, jobject glyphlist) {
372
373
jint pixel, color, contrast;
374
jboolean rgbOrder;
375
GlyphBlitVector* gbv;
376
NativePrimitive *pPrim;
377
378
if ((pPrim = GetNativePrim(env, self)) == NULL) {
379
return;
380
}
381
382
if ((gbv = setupLCDBlitVector(env, glyphlist)) == NULL) {
383
return;
384
}
385
pixel = GrPrim_Sg2dGetPixel(env, sg2d);
386
color = GrPrim_Sg2dGetEaRGB(env, sg2d);
387
contrast = GrPrim_Sg2dGetLCDTextContrast(env, sg2d);
388
rgbOrder = (*env)->GetBooleanField(env,glyphlist, sunFontIDs.lcdRGBOrder);
389
drawGlyphListLCD(env, self, sg2d, sData, gbv, pixel, color,
390
rgbOrder, contrast,
391
pPrim, pPrim->funcs.drawglyphlistlcd);
392
free(gbv);
393
}
394
395
/*
396
* LCD text utilises a filter which spreads energy to adjacent subpixels.
397
* So we add 3 bytes (one whole pixel) of padding at the start of every row
398
* to hold energy from the very leftmost sub-pixel.
399
* This is to the left of the intended glyph image position so LCD text also
400
* adjusts the top-left X position of the padded image one pixel to the left
401
* so a glyph image is drawn in the same place it would be if the padding
402
* were not present.
403
*
404
* So in the glyph cache for LCD text the first two bytes of every row are
405
* zero.
406
* We make use of this to be able to adjust the rendering position of the
407
* text when the client specifies a fractional metrics sub-pixel positioning
408
* rendering hint.
409
*
410
* So the first 6 bytes in a cache row looks like :
411
* 00 00 Ex G0 G1 G2
412
*
413
* where
414
* 00 are the always zero bytes
415
* Ex is extra energy spread from the glyph into the left padding pixel.
416
* Gn are the RGB component bytes of the first pixel of the glyph image
417
* For an RGB display G0 is the red component, etc.
418
*
419
* If a glyph is drawn at X=12 then the G0 G1 G2 pixel is placed at that
420
* position : ie G0 is drawn in the first sub-pixel at X=12
421
*
422
* Draw at X=12,0
423
* PIXEL POS 11 11 11 12 12 12 13 13 13
424
* SUBPX POS 0 1 2 0 1 2 0 1 2
425
* 00 00 Ex G0 G1 G2
426
*
427
* If a sub-pixel rounded glyph position is calculated as being X=12.33 -
428
* ie 12 and one-third pixels, we want the result to look like this :
429
* Draw at X=12,1
430
* PIXEL POS 11 11 11 12 12 12 13 13 13
431
* SUBPX POS 0 1 2 0 1 2 0 1 2
432
* 00 00 Ex G0 G1 G2
433
*
434
* ie the G0 byte is moved one sub-pixel to the right.
435
* To do this we need to make two adjustments :
436
* - set X=X+1
437
* - set start of scan row to start+2, ie index past the two zero bytes
438
* ie we don't need the 00 00 bytes at all any more. Rendering start X
439
* can skip over those.
440
*
441
* Lets look at the final case :
442
* If a sub-pixel rounded glyph position is calculated as being X=12.67 -
443
* ie 12 and two-third pixels, we want the result to look like this :
444
* Draw at X=12,2
445
* PIXEL POS 11 11 11 12 12 12 13 13 13
446
* SUBPX POS 0 1 2 0 1 2 0 1 2
447
* 00 00 Ex G0 G1 G2
448
*
449
* ie the G0 byte is moved two sub-pixels to the right, so that the image
450
* starts at 12.67
451
* To do this we need to make these two adjustments :
452
* - set X=X+1
453
* - set start of scan row to start+1, ie index past the first zero byte
454
* In this case the second of the 00 bytes is used as a no-op on the first
455
* red sub-pixel position.
456
*
457
* The final adjustment needed to make all this work is note that if
458
* we moved the start of row one or two bytes in we will go one or two bytes
459
* past the end of the row. So the glyph cache needs to have 2 bytes of
460
* zero padding at the end of each row. This is the extra memory cost to
461
* accommodate this algorithm.
462
*
463
* The resulting text is perhaps fractionally better in overall perception
464
* than rounding to the whole pixel grid, as a few issues arise.
465
*
466
* * the improvement in inter-glyph spacing as well as being limited
467
* to 1/3 pixel resolution, is also limited because the glyphs were hinted
468
* so they fit to the whole pixel grid. It may be worthwhile to pursue
469
* disabling x-axis gridfitting.
470
*
471
* * an LCD display may have gaps between the pixels that are greater
472
* than the subpixels. Thus for thin stemmed fonts, if the shift causes
473
* the "heart" of a stem to span whole pixels it may appear more diffuse -
474
* less sharp. Eliminating hinting would probably not make this worse - in
475
* effect we have already doing that here. But it would improve the spacing.
476
*
477
* * perhaps contradicting the above point in some ways, more diffuse glyphs
478
* are better at reducing colour fringing, but what appears to be more
479
* colour fringing in this FM case is more likely attributable to a greater
480
* likelihood for glyphs to abutt. In integer metrics or even whole pixel
481
* rendered fractional metrics, there's typically more space between the
482
* glyphs. Perhaps disabling X-axis grid-fitting will help with that.
483
*/
484
GlyphBlitVector* setupLCDBlitVector(JNIEnv *env, jobject glyphlist) {
485
486
int g;
487
size_t bytesNeeded;
488
jlong *imagePtrs;
489
jfloat* positions = NULL;
490
GlyphInfo *ginfo;
491
GlyphBlitVector *gbv;
492
493
jfloat x = (*env)->GetFloatField(env, glyphlist, sunFontIDs.glyphListX);
494
jfloat y = (*env)->GetFloatField(env, glyphlist, sunFontIDs.glyphListY);
495
jint len = (*env)->GetIntField(env, glyphlist, sunFontIDs.glyphListLen);
496
jlongArray glyphImages = (jlongArray)
497
(*env)->GetObjectField(env, glyphlist, sunFontIDs.glyphImages);
498
jfloatArray glyphPositions =
499
(*env)->GetBooleanField(env, glyphlist, sunFontIDs.glyphListUsePos)
500
? (jfloatArray)
501
(*env)->GetObjectField(env, glyphlist, sunFontIDs.glyphListPos)
502
: NULL;
503
jboolean subPixPos =
504
(*env)->GetBooleanField(env,glyphlist, sunFontIDs.lcdSubPixPos);
505
506
bytesNeeded = sizeof(GlyphBlitVector)+sizeof(ImageRef)*len;
507
gbv = (GlyphBlitVector*)malloc(bytesNeeded);
508
if (gbv == NULL) {
509
return NULL;
510
}
511
gbv->numGlyphs = len;
512
gbv->glyphs = (ImageRef*)((unsigned char*)gbv+sizeof(GlyphBlitVector));
513
514
imagePtrs = (*env)->GetPrimitiveArrayCritical(env, glyphImages, NULL);
515
if (imagePtrs == NULL) {
516
free(gbv);
517
return (GlyphBlitVector*)NULL;
518
}
519
520
/* The position of the start of the text is adjusted up so
521
* that we can round it to an integral pixel position for a
522
* bitmap glyph or non-subpixel positioning, and round it to an
523
* integral subpixel position for that case, hence 0.5/3 = 0.166667
524
* Presently subPixPos means FM, and FM disables embedded bitmaps
525
* Therefore if subPixPos is true we should never get embedded bitmaps
526
* and the glyphlist will be homogenous. This test and the position
527
* adjustments will need to be per glyph once this case becomes
528
* heterogenous.
529
* Also set subPixPos=false if detect a B&W bitmap as we only
530
* need to test that on a per glyph basis once the list becomes
531
* heterogenous
532
*/
533
if (subPixPos && len > 0) {
534
ginfo = (GlyphInfo*)imagePtrs[0];
535
if (ginfo == NULL) {
536
(*env)->ReleasePrimitiveArrayCritical(env, glyphImages,
537
imagePtrs, JNI_ABORT);
538
free(gbv);
539
return (GlyphBlitVector*)NULL;
540
}
541
/* rowBytes==width tests if its a B&W or LCD glyph */
542
if (ginfo->width == ginfo->rowBytes) {
543
subPixPos = JNI_FALSE;
544
}
545
}
546
if (subPixPos) {
547
x += 0.1666667f;
548
y += 0.1666667f;
549
} else {
550
x += 0.5f;
551
y += 0.5f;
552
}
553
554
if (glyphPositions) {
555
int n = -1;
556
557
positions =
558
(*env)->GetPrimitiveArrayCritical(env, glyphPositions, NULL);
559
if (positions == NULL) {
560
(*env)->ReleasePrimitiveArrayCritical(env, glyphImages,
561
imagePtrs, JNI_ABORT);
562
free(gbv);
563
return (GlyphBlitVector*)NULL;
564
}
565
566
for (g=0; g<len; g++) {
567
jfloat px, py;
568
569
ginfo = (GlyphInfo*)imagePtrs[g];
570
if (ginfo == NULL) {
571
(*env)->ReleasePrimitiveArrayCritical(env, glyphImages,
572
imagePtrs, JNI_ABORT);
573
free(gbv);
574
return (GlyphBlitVector*)NULL;
575
}
576
gbv->glyphs[g].glyphInfo = ginfo;
577
gbv->glyphs[g].pixels = ginfo->image;
578
gbv->glyphs[g].width = ginfo->width;
579
gbv->glyphs[g].rowBytes = ginfo->rowBytes;
580
gbv->glyphs[g].height = ginfo->height;
581
582
px = x + positions[++n];
583
py = y + positions[++n];
584
585
/*
586
* Subpixel positioning may be requested for LCD text.
587
*
588
* Subpixel positioning can take place only in the direction in
589
* which the subpixels increase the resolution.
590
* So this is useful for the typical case of vertical stripes
591
* increasing the resolution in the direction of the glyph
592
* advances - ie typical horizontally laid out text.
593
* If the subpixel stripes are horizontal, subpixel positioning
594
* can take place only in the vertical direction, which isn't
595
* as useful - you would have to be drawing rotated text on
596
* a display which actually had that organisation. A pretty
597
* unlikely combination.
598
* So this is supported only for vertical stripes which
599
* increase the horizontal resolution.
600
* If in this case the client also rotates the text then there
601
* will still be some benefit for small rotations. For 90 degree
602
* rotation there's no horizontal advance and less benefit
603
* from the subpixel rendering too.
604
* The test for width==rowBytes detects the case where the glyph
605
* is a B&W image obtained from an embedded bitmap. In that
606
* case we cannot apply sub-pixel positioning so ignore it.
607
* This is handled on a per glyph basis.
608
*/
609
if (subPixPos) {
610
int frac;
611
float pos = px + ginfo->topLeftX;
612
FLOOR_ASSIGN(gbv->glyphs[g].x, pos);
613
/* Calculate the fractional pixel position - ie the subpixel
614
* position within the RGB/BGR triple. We are rounding to
615
* the nearest, even though we just do (int) since at the
616
* start of the loop the position was already adjusted by
617
* 0.5 (sub)pixels to get rounding.
618
* Thus the "fractional" position will be 0, 1 or 2.
619
* eg 0->0.32 is 0, 0.33->0.66 is 1, > 0.66->0.99 is 2.
620
* We can use an (int) cast here since the floor operation
621
* above guarantees us that the value is positive.
622
*/
623
frac = (int)((pos - gbv->glyphs[g].x)*3);
624
if (frac == 0) {
625
/* frac rounded down to zero, so this is equivalent
626
* to no sub-pixel positioning.
627
*/
628
gbv->glyphs[g].rowBytesOffset = 0;
629
} else {
630
/* In this case we need to adjust both the position at
631
* which the glyph will be positioned by one pixel to the
632
* left and adjust the position in the glyph image row
633
* from which to extract the data
634
* Every glyph image row has 2 bytes padding
635
* on the right to account for this.
636
*/
637
gbv->glyphs[g].rowBytesOffset = 3-frac;
638
gbv->glyphs[g].x += 1;
639
}
640
} else {
641
FLOOR_ASSIGN(gbv->glyphs[g].x, px + ginfo->topLeftX);
642
gbv->glyphs[g].rowBytesOffset = 0;
643
}
644
FLOOR_ASSIGN(gbv->glyphs[g].y, py + ginfo->topLeftY);
645
}
646
(*env)->ReleasePrimitiveArrayCritical(env,glyphPositions,
647
positions, JNI_ABORT);
648
} else {
649
for (g=0; g<len; g++) {
650
ginfo = (GlyphInfo*)imagePtrs[g];
651
if (ginfo == NULL) {
652
(*env)->ReleasePrimitiveArrayCritical(env, glyphImages,
653
imagePtrs, JNI_ABORT);
654
free(gbv);
655
return (GlyphBlitVector*)NULL;
656
}
657
gbv->glyphs[g].glyphInfo = ginfo;
658
gbv->glyphs[g].pixels = ginfo->image;
659
gbv->glyphs[g].width = ginfo->width;
660
gbv->glyphs[g].rowBytes = ginfo->rowBytes;
661
gbv->glyphs[g].height = ginfo->height;
662
663
if (subPixPos) {
664
int frac;
665
float pos = x + ginfo->topLeftX;
666
FLOOR_ASSIGN(gbv->glyphs[g].x, pos);
667
frac = (int)((pos - gbv->glyphs[g].x)*3);
668
if (frac == 0) {
669
gbv->glyphs[g].rowBytesOffset = 0;
670
} else {
671
gbv->glyphs[g].rowBytesOffset = 3-frac;
672
gbv->glyphs[g].x += 1;
673
}
674
} else {
675
FLOOR_ASSIGN(gbv->glyphs[g].x, x + ginfo->topLeftX);
676
gbv->glyphs[g].rowBytesOffset = 0;
677
}
678
FLOOR_ASSIGN(gbv->glyphs[g].y, y + ginfo->topLeftY);
679
/* copy image data into this array at x/y locations */
680
x += ginfo->advanceX;
681
y += ginfo->advanceY;
682
}
683
}
684
685
(*env)->ReleasePrimitiveArrayCritical(env, glyphImages, imagePtrs,
686
JNI_ABORT);
687
return gbv;
688
}
689
690
/* LCD text needs to go through a gamma (contrast) adjustment.
691
* Gamma is constrained to the range 1.0->2.2 with a quantization of
692
* 0.01 (more than good enough). Representing as an integer with that
693
* precision yields a range 100->250 thus we need to store up to 151 LUTs
694
* and inverse LUTs.
695
* We allocate the actual LUTs on an as needed basis. Typically zero or
696
* one is what will be needed.
697
* Colour component values are in the range 0.0->1.0 represented as an integer
698
* in the range 0->255 (ie in a byte). It is assumed that even if we have 5
699
* bit colour components these are presented mapped on to 8 bit components.
700
* lcdGammaLUT references LUTs which convert linear colour components
701
* to a gamma adjusted space, and
702
* lcdInvGammaLUT references LUTs which convert gamma adjusted colour
703
* components to a linear space.
704
*/
705
#define MIN_GAMMA 100
706
#define MAX_GAMMA 250
707
#define LCDLUTCOUNT (MAX_GAMMA-MIN_GAMMA+1)
708
UInt8 *lcdGammaLUT[LCDLUTCOUNT];
709
UInt8 *lcdInvGammaLUT[LCDLUTCOUNT];
710
711
void initLUT(int gamma) {
712
int i,index;
713
double ig,g;
714
715
index = gamma-MIN_GAMMA;
716
717
lcdGammaLUT[index] = (UInt8*)malloc(256);
718
lcdInvGammaLUT[index] = (UInt8*)malloc(256);
719
if (gamma==100) {
720
for (i=0;i<256;i++) {
721
lcdGammaLUT[index][i] = (UInt8)i;
722
lcdInvGammaLUT[index][i] = (UInt8)i;
723
}
724
return;
725
}
726
727
ig = ((double)gamma)/100.0;
728
g = 1.0/ig;
729
lcdGammaLUT[index][0] = (UInt8)0;
730
lcdInvGammaLUT[index][0] = (UInt8)0;
731
lcdGammaLUT[index][255] = (UInt8)255;
732
lcdInvGammaLUT[index][255] = (UInt8)255;
733
for (i=1;i<255;i++) {
734
double val = ((double)i)/255.0;
735
double gval = pow(val, g);
736
double igval = pow(val, ig);
737
lcdGammaLUT[index][i] = (UInt8)(255*gval);
738
lcdInvGammaLUT[index][i] = (UInt8)(255*igval);
739
}
740
}
741
742
static unsigned char* getLCDGammaLUT(int gamma) {
743
int index;
744
745
if (gamma<MIN_GAMMA) {
746
gamma = MIN_GAMMA;
747
} else if (gamma>MAX_GAMMA) {
748
gamma = MAX_GAMMA;
749
}
750
index = gamma-MIN_GAMMA;
751
if (!lcdGammaLUT[index]) {
752
initLUT(gamma);
753
}
754
return (unsigned char*)lcdGammaLUT[index];
755
}
756
757
static unsigned char* getInvLCDGammaLUT(int gamma) {
758
int index;
759
760
if (gamma<MIN_GAMMA) {
761
gamma = MIN_GAMMA;
762
} else if (gamma>MAX_GAMMA) {
763
gamma = MAX_GAMMA;
764
}
765
index = gamma-MIN_GAMMA;
766
if (!lcdInvGammaLUT[index]) {
767
initLUT(gamma);
768
}
769
return (unsigned char*)lcdInvGammaLUT[index];
770
}
771
772
#if 0
773
void printDefaultTables(int gamma) {
774
int i;
775
UInt8 *g, *ig;
776
lcdGammaLUT[gamma-MIN_GAMMA] = NULL;
777
lcdInvGammaLUT[gamma-MIN_GAMMA] = NULL;
778
g = getLCDGammaLUT(gamma);
779
ig = getInvLCDGammaLUT(gamma);
780
printf("UInt8 defaultGammaLUT[256] = {\n");
781
for (i=0;i<256;i++) {
782
if (i % 8 == 0) {
783
printf(" /* %3d */ ", i);
784
}
785
printf("%4d, ",(int)(g[i]&0xff));
786
if ((i+1) % 8 == 0) {
787
printf("\n");
788
}
789
}
790
printf("};\n");
791
792
printf("UInt8 defaultInvGammaLUT[256] = {\n");
793
for (i=0;i<256;i++) {
794
if (i % 8 == 0) {
795
printf(" /* %3d */ ", i);
796
}
797
printf("%4d, ",(int)(ig[i]&0xff));
798
if ((i+1) % 8 == 0) {
799
printf("\n");
800
}
801
}
802
printf("};\n");
803
}
804
#endif
805
806
/* These tables are generated for a Gamma adjustment of 1.4 */
807
UInt8 defaultGammaLUT[256] = {
808
/* 0 */ 0, 4, 7, 10, 13, 15, 17, 19,
809
/* 8 */ 21, 23, 25, 27, 28, 30, 32, 33,
810
/* 16 */ 35, 36, 38, 39, 41, 42, 44, 45,
811
/* 24 */ 47, 48, 49, 51, 52, 53, 55, 56,
812
/* 32 */ 57, 59, 60, 61, 62, 64, 65, 66,
813
/* 40 */ 67, 69, 70, 71, 72, 73, 75, 76,
814
/* 48 */ 77, 78, 79, 80, 81, 83, 84, 85,
815
/* 56 */ 86, 87, 88, 89, 90, 91, 92, 93,
816
/* 64 */ 94, 96, 97, 98, 99, 100, 101, 102,
817
/* 72 */ 103, 104, 105, 106, 107, 108, 109, 110,
818
/* 80 */ 111, 112, 113, 114, 115, 116, 117, 118,
819
/* 88 */ 119, 120, 121, 122, 123, 124, 125, 125,
820
/* 96 */ 126, 127, 128, 129, 130, 131, 132, 133,
821
/* 104 */ 134, 135, 136, 137, 138, 138, 139, 140,
822
/* 112 */ 141, 142, 143, 144, 145, 146, 147, 147,
823
/* 120 */ 148, 149, 150, 151, 152, 153, 154, 154,
824
/* 128 */ 155, 156, 157, 158, 159, 160, 161, 161,
825
/* 136 */ 162, 163, 164, 165, 166, 167, 167, 168,
826
/* 144 */ 169, 170, 171, 172, 172, 173, 174, 175,
827
/* 152 */ 176, 177, 177, 178, 179, 180, 181, 181,
828
/* 160 */ 182, 183, 184, 185, 186, 186, 187, 188,
829
/* 168 */ 189, 190, 190, 191, 192, 193, 194, 194,
830
/* 176 */ 195, 196, 197, 198, 198, 199, 200, 201,
831
/* 184 */ 201, 202, 203, 204, 205, 205, 206, 207,
832
/* 192 */ 208, 208, 209, 210, 211, 212, 212, 213,
833
/* 200 */ 214, 215, 215, 216, 217, 218, 218, 219,
834
/* 208 */ 220, 221, 221, 222, 223, 224, 224, 225,
835
/* 216 */ 226, 227, 227, 228, 229, 230, 230, 231,
836
/* 224 */ 232, 233, 233, 234, 235, 236, 236, 237,
837
/* 232 */ 238, 239, 239, 240, 241, 242, 242, 243,
838
/* 240 */ 244, 244, 245, 246, 247, 247, 248, 249,
839
/* 248 */ 249, 250, 251, 252, 252, 253, 254, 255,
840
};
841
842
UInt8 defaultInvGammaLUT[256] = {
843
/* 0 */ 0, 0, 0, 0, 0, 1, 1, 1,
844
/* 8 */ 2, 2, 2, 3, 3, 3, 4, 4,
845
/* 16 */ 5, 5, 6, 6, 7, 7, 8, 8,
846
/* 24 */ 9, 9, 10, 10, 11, 12, 12, 13,
847
/* 32 */ 13, 14, 15, 15, 16, 17, 17, 18,
848
/* 40 */ 19, 19, 20, 21, 21, 22, 23, 23,
849
/* 48 */ 24, 25, 26, 26, 27, 28, 29, 29,
850
/* 56 */ 30, 31, 32, 32, 33, 34, 35, 36,
851
/* 64 */ 36, 37, 38, 39, 40, 40, 41, 42,
852
/* 72 */ 43, 44, 45, 45, 46, 47, 48, 49,
853
/* 80 */ 50, 51, 52, 52, 53, 54, 55, 56,
854
/* 88 */ 57, 58, 59, 60, 61, 62, 63, 64,
855
/* 96 */ 64, 65, 66, 67, 68, 69, 70, 71,
856
/* 104 */ 72, 73, 74, 75, 76, 77, 78, 79,
857
/* 112 */ 80, 81, 82, 83, 84, 85, 86, 87,
858
/* 120 */ 88, 89, 90, 91, 92, 93, 95, 96,
859
/* 128 */ 97, 98, 99, 100, 101, 102, 103, 104,
860
/* 136 */ 105, 106, 107, 109, 110, 111, 112, 113,
861
/* 144 */ 114, 115, 116, 117, 119, 120, 121, 122,
862
/* 152 */ 123, 124, 125, 127, 128, 129, 130, 131,
863
/* 160 */ 132, 133, 135, 136, 137, 138, 139, 140,
864
/* 168 */ 142, 143, 144, 145, 146, 148, 149, 150,
865
/* 176 */ 151, 152, 154, 155, 156, 157, 159, 160,
866
/* 184 */ 161, 162, 163, 165, 166, 167, 168, 170,
867
/* 192 */ 171, 172, 173, 175, 176, 177, 178, 180,
868
/* 200 */ 181, 182, 184, 185, 186, 187, 189, 190,
869
/* 208 */ 191, 193, 194, 195, 196, 198, 199, 200,
870
/* 216 */ 202, 203, 204, 206, 207, 208, 210, 211,
871
/* 224 */ 212, 214, 215, 216, 218, 219, 220, 222,
872
/* 232 */ 223, 224, 226, 227, 228, 230, 231, 232,
873
/* 240 */ 234, 235, 236, 238, 239, 241, 242, 243,
874
/* 248 */ 245, 246, 248, 249, 250, 252, 253, 255,
875
};
876
877
878
/* Since our default is 140, here we can populate that from pre-calculated
879
* data, it needs only 512 bytes - plus a few more of overhead - and saves
880
* about that many intrinsic function calls plus other FP calculations.
881
*/
882
void initLCDGammaTables() {
883
memset(lcdGammaLUT, 0, LCDLUTCOUNT * sizeof(UInt8*));
884
memset(lcdInvGammaLUT, 0, LCDLUTCOUNT * sizeof(UInt8*));
885
/* printDefaultTables(140); */
886
lcdGammaLUT[40] = defaultGammaLUT;
887
lcdInvGammaLUT[40] = defaultInvGammaLUT;
888
}
889
890