Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/native/sun/java2d/cmm/lcms/cmsopt.c
38918 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
// This file is available under and governed by the GNU General Public
26
// License version 2 only, as published by the Free Software Foundation.
27
// However, the following notice accompanied the original version of this
28
// file:
29
//
30
//---------------------------------------------------------------------------------
31
//
32
// Little Color Management System
33
// Copyright (c) 1998-2020 Marti Maria Saguer
34
//
35
// Permission is hereby granted, free of charge, to any person obtaining
36
// a copy of this software and associated documentation files (the "Software"),
37
// to deal in the Software without restriction, including without limitation
38
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39
// and/or sell copies of the Software, and to permit persons to whom the Software
40
// is furnished to do so, subject to the following conditions:
41
//
42
// The above copyright notice and this permission notice shall be included in
43
// all copies or substantial portions of the Software.
44
//
45
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52
//
53
//---------------------------------------------------------------------------------
54
//
55
56
#include "lcms2_internal.h"
57
58
59
//----------------------------------------------------------------------------------
60
61
// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
62
typedef struct {
63
64
cmsContext ContextID;
65
66
const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
67
68
cmsUInt16Number rx[256], ry[256], rz[256];
69
cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
70
71
72
} Prelin8Data;
73
74
75
// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
76
typedef struct {
77
78
cmsContext ContextID;
79
80
// Number of channels
81
cmsUInt32Number nInputs;
82
cmsUInt32Number nOutputs;
83
84
_cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
85
cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
86
87
_cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
88
const cmsInterpParams* CLUTparams; // (not-owned pointer)
89
90
91
_cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
92
cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
93
94
95
} Prelin16Data;
96
97
98
// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
99
100
typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
101
102
#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
103
104
typedef struct {
105
106
cmsContext ContextID;
107
108
cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
109
cmsS1Fixed14Number Shaper1G[256];
110
cmsS1Fixed14Number Shaper1B[256];
111
112
cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
113
cmsS1Fixed14Number Off[3];
114
115
cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
116
cmsUInt16Number Shaper2G[16385];
117
cmsUInt16Number Shaper2B[16385];
118
119
} MatShaper8Data;
120
121
// Curves, optimization is shared between 8 and 16 bits
122
typedef struct {
123
124
cmsContext ContextID;
125
126
cmsUInt32Number nCurves; // Number of curves
127
cmsUInt32Number nElements; // Elements in curves
128
cmsUInt16Number** Curves; // Points to a dynamically allocated array
129
130
} Curves16Data;
131
132
133
// Simple optimizations ----------------------------------------------------------------------------------------------------------
134
135
136
// Remove an element in linked chain
137
static
138
void _RemoveElement(cmsStage** head)
139
{
140
cmsStage* mpe = *head;
141
cmsStage* next = mpe ->Next;
142
*head = next;
143
cmsStageFree(mpe);
144
}
145
146
// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
147
static
148
cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
149
{
150
cmsStage** pt = &Lut ->Elements;
151
cmsBool AnyOpt = FALSE;
152
153
while (*pt != NULL) {
154
155
if ((*pt) ->Implements == UnaryOp) {
156
_RemoveElement(pt);
157
AnyOpt = TRUE;
158
}
159
else
160
pt = &((*pt) -> Next);
161
}
162
163
return AnyOpt;
164
}
165
166
// Same, but only if two adjacent elements are found
167
static
168
cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
169
{
170
cmsStage** pt1;
171
cmsStage** pt2;
172
cmsBool AnyOpt = FALSE;
173
174
pt1 = &Lut ->Elements;
175
if (*pt1 == NULL) return AnyOpt;
176
177
while (*pt1 != NULL) {
178
179
pt2 = &((*pt1) -> Next);
180
if (*pt2 == NULL) return AnyOpt;
181
182
if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
183
_RemoveElement(pt2);
184
_RemoveElement(pt1);
185
AnyOpt = TRUE;
186
}
187
else
188
pt1 = &((*pt1) -> Next);
189
}
190
191
return AnyOpt;
192
}
193
194
195
static
196
cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
197
{
198
return fabs(b - a) < 0.00001f;
199
}
200
201
static
202
cmsBool isFloatMatrixIdentity(const cmsMAT3* a)
203
{
204
cmsMAT3 Identity;
205
int i, j;
206
207
_cmsMAT3identity(&Identity);
208
209
for (i = 0; i < 3; i++)
210
for (j = 0; j < 3; j++)
211
if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
212
213
return TRUE;
214
}
215
// if two adjacent matrices are found, multiply them.
216
static
217
cmsBool _MultiplyMatrix(cmsPipeline* Lut)
218
{
219
cmsStage** pt1;
220
cmsStage** pt2;
221
cmsStage* chain;
222
cmsBool AnyOpt = FALSE;
223
224
pt1 = &Lut->Elements;
225
if (*pt1 == NULL) return AnyOpt;
226
227
while (*pt1 != NULL) {
228
229
pt2 = &((*pt1)->Next);
230
if (*pt2 == NULL) return AnyOpt;
231
232
if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
233
234
// Get both matrices
235
_cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
236
_cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
237
cmsMAT3 res;
238
239
// Input offset and output offset should be zero to use this optimization
240
if (m1->Offset != NULL || m2 ->Offset != NULL ||
241
cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
242
cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
243
return FALSE;
244
245
// Multiply both matrices to get the result
246
_cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
247
248
// Get the next in chain after the matrices
249
chain = (*pt2)->Next;
250
251
// Remove both matrices
252
_RemoveElement(pt2);
253
_RemoveElement(pt1);
254
255
// Now what if the result is a plain identity?
256
if (!isFloatMatrixIdentity(&res)) {
257
258
// We can not get rid of full matrix
259
cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
260
if (Multmat == NULL) return FALSE; // Should never happen
261
262
// Recover the chain
263
Multmat->Next = chain;
264
*pt1 = Multmat;
265
}
266
267
AnyOpt = TRUE;
268
}
269
else
270
pt1 = &((*pt1)->Next);
271
}
272
273
return AnyOpt;
274
}
275
276
277
// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
278
// by a v4 to v2 and vice-versa. The elements are then discarded.
279
static
280
cmsBool PreOptimize(cmsPipeline* Lut)
281
{
282
cmsBool AnyOpt = FALSE, Opt;
283
284
do {
285
286
Opt = FALSE;
287
288
// Remove all identities
289
Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
290
291
// Remove XYZ2Lab followed by Lab2XYZ
292
Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
293
294
// Remove Lab2XYZ followed by XYZ2Lab
295
Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
296
297
// Remove V4 to V2 followed by V2 to V4
298
Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
299
300
// Remove V2 to V4 followed by V4 to V2
301
Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
302
303
// Remove float pcs Lab conversions
304
Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
305
306
// Remove float pcs Lab conversions
307
Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
308
309
// Simplify matrix.
310
Opt |= _MultiplyMatrix(Lut);
311
312
if (Opt) AnyOpt = TRUE;
313
314
} while (Opt);
315
316
return AnyOpt;
317
}
318
319
static
320
void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],
321
CMSREGISTER cmsUInt16Number Output[],
322
CMSREGISTER const struct _cms_interp_struc* p)
323
{
324
Output[0] = Input[0];
325
326
cmsUNUSED_PARAMETER(p);
327
}
328
329
static
330
void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],
331
CMSREGISTER cmsUInt16Number Output[],
332
CMSREGISTER const void* D)
333
{
334
Prelin16Data* p16 = (Prelin16Data*) D;
335
cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
336
cmsUInt16Number StageDEF[cmsMAXCHANNELS];
337
cmsUInt32Number i;
338
339
for (i=0; i < p16 ->nInputs; i++) {
340
341
p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
342
}
343
344
p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
345
346
for (i=0; i < p16 ->nOutputs; i++) {
347
348
p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
349
}
350
}
351
352
353
static
354
void PrelinOpt16free(cmsContext ContextID, void* ptr)
355
{
356
Prelin16Data* p16 = (Prelin16Data*) ptr;
357
358
_cmsFree(ContextID, p16 ->EvalCurveOut16);
359
_cmsFree(ContextID, p16 ->ParamsCurveOut16);
360
361
_cmsFree(ContextID, p16);
362
}
363
364
static
365
void* Prelin16dup(cmsContext ContextID, const void* ptr)
366
{
367
Prelin16Data* p16 = (Prelin16Data*) ptr;
368
Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
369
370
if (Duped == NULL) return NULL;
371
372
Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
373
Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
374
375
return Duped;
376
}
377
378
379
static
380
Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
381
const cmsInterpParams* ColorMap,
382
cmsUInt32Number nInputs, cmsToneCurve** In,
383
cmsUInt32Number nOutputs, cmsToneCurve** Out )
384
{
385
cmsUInt32Number i;
386
Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
387
if (p16 == NULL) return NULL;
388
389
p16 ->nInputs = nInputs;
390
p16 ->nOutputs = nOutputs;
391
392
393
for (i=0; i < nInputs; i++) {
394
395
if (In == NULL) {
396
p16 -> ParamsCurveIn16[i] = NULL;
397
p16 -> EvalCurveIn16[i] = Eval16nop1D;
398
399
}
400
else {
401
p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
402
p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
403
}
404
}
405
406
p16 ->CLUTparams = ColorMap;
407
p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
408
409
410
p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
411
p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
412
413
for (i=0; i < nOutputs; i++) {
414
415
if (Out == NULL) {
416
p16 ->ParamsCurveOut16[i] = NULL;
417
p16 -> EvalCurveOut16[i] = Eval16nop1D;
418
}
419
else {
420
421
p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
422
p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
423
}
424
}
425
426
return p16;
427
}
428
429
430
431
// Resampling ---------------------------------------------------------------------------------
432
433
#define PRELINEARIZATION_POINTS 4096
434
435
// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
436
// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
437
static
438
cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void* Cargo)
439
{
440
cmsPipeline* Lut = (cmsPipeline*) Cargo;
441
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
442
cmsUInt32Number i;
443
444
_cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
445
_cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
446
447
// From 16 bit to floating point
448
for (i=0; i < Lut ->InputChannels; i++)
449
InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
450
451
// Evaluate in floating point
452
cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
453
454
// Back to 16 bits representation
455
for (i=0; i < Lut ->OutputChannels; i++)
456
Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
457
458
// Always succeed
459
return TRUE;
460
}
461
462
// Try to see if the curves of a given MPE are linear
463
static
464
cmsBool AllCurvesAreLinear(cmsStage* mpe)
465
{
466
cmsToneCurve** Curves;
467
cmsUInt32Number i, n;
468
469
Curves = _cmsStageGetPtrToCurveSet(mpe);
470
if (Curves == NULL) return FALSE;
471
472
n = cmsStageOutputChannels(mpe);
473
474
for (i=0; i < n; i++) {
475
if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
476
}
477
478
return TRUE;
479
}
480
481
// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
482
// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
483
static
484
cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
485
cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
486
{
487
_cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
488
cmsInterpParams* p16 = Grid ->Params;
489
cmsFloat64Number px, py, pz, pw;
490
int x0, y0, z0, w0;
491
int i, index;
492
493
if (CLUT -> Type != cmsSigCLutElemType) {
494
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
495
return FALSE;
496
}
497
498
if (nChannelsIn == 4) {
499
500
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
501
py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
502
pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
503
pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
504
505
x0 = (int) floor(px);
506
y0 = (int) floor(py);
507
z0 = (int) floor(pz);
508
w0 = (int) floor(pw);
509
510
if (((px - x0) != 0) ||
511
((py - y0) != 0) ||
512
((pz - z0) != 0) ||
513
((pw - w0) != 0)) return FALSE; // Not on exact node
514
515
index = (int) p16 -> opta[3] * x0 +
516
(int) p16 -> opta[2] * y0 +
517
(int) p16 -> opta[1] * z0 +
518
(int) p16 -> opta[0] * w0;
519
}
520
else
521
if (nChannelsIn == 3) {
522
523
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
524
py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
525
pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
526
527
x0 = (int) floor(px);
528
y0 = (int) floor(py);
529
z0 = (int) floor(pz);
530
531
if (((px - x0) != 0) ||
532
((py - y0) != 0) ||
533
((pz - z0) != 0)) return FALSE; // Not on exact node
534
535
index = (int) p16 -> opta[2] * x0 +
536
(int) p16 -> opta[1] * y0 +
537
(int) p16 -> opta[0] * z0;
538
}
539
else
540
if (nChannelsIn == 1) {
541
542
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
543
544
x0 = (int) floor(px);
545
546
if (((px - x0) != 0)) return FALSE; // Not on exact node
547
548
index = (int) p16 -> opta[0] * x0;
549
}
550
else {
551
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
552
return FALSE;
553
}
554
555
for (i = 0; i < (int) nChannelsOut; i++)
556
Grid->Tab.T[index + i] = Value[i];
557
558
return TRUE;
559
}
560
561
// Auxiliary, to see if two values are equal or very different
562
static
563
cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
564
{
565
cmsUInt32Number i;
566
567
for (i=0; i < n; i++) {
568
569
if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
570
if (White1[i] != White2[i]) return FALSE;
571
}
572
return TRUE;
573
}
574
575
576
// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
577
static
578
cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
579
{
580
cmsUInt16Number *WhitePointIn, *WhitePointOut;
581
cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
582
cmsUInt32Number i, nOuts, nIns;
583
cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
584
585
if (!_cmsEndPointsBySpace(EntryColorSpace,
586
&WhitePointIn, NULL, &nIns)) return FALSE;
587
588
if (!_cmsEndPointsBySpace(ExitColorSpace,
589
&WhitePointOut, NULL, &nOuts)) return FALSE;
590
591
// It needs to be fixed?
592
if (Lut ->InputChannels != nIns) return FALSE;
593
if (Lut ->OutputChannels != nOuts) return FALSE;
594
595
cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
596
597
if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
598
599
// Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
600
if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
601
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
602
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
603
if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
604
return FALSE;
605
606
// We need to interpolate white points of both, pre and post curves
607
if (PreLin) {
608
609
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
610
611
for (i=0; i < nIns; i++) {
612
WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
613
}
614
}
615
else {
616
for (i=0; i < nIns; i++)
617
WhiteIn[i] = WhitePointIn[i];
618
}
619
620
// If any post-linearization, we need to find how is represented white before the curve, do
621
// a reverse interpolation in this case.
622
if (PostLin) {
623
624
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
625
626
for (i=0; i < nOuts; i++) {
627
628
cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
629
if (InversePostLin == NULL) {
630
WhiteOut[i] = WhitePointOut[i];
631
632
} else {
633
634
WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
635
cmsFreeToneCurve(InversePostLin);
636
}
637
}
638
}
639
else {
640
for (i=0; i < nOuts; i++)
641
WhiteOut[i] = WhitePointOut[i];
642
}
643
644
// Ok, proceed with patching. May fail and we don't care if it fails
645
PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
646
647
return TRUE;
648
}
649
650
// -----------------------------------------------------------------------------------------------------------------------------------------------
651
// This function creates simple LUT from complex ones. The generated LUT has an optional set of
652
// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
653
// These curves have to exist in the original LUT in order to be used in the simplified output.
654
// Caller may also use the flags to allow this feature.
655
// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
656
// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
657
// -----------------------------------------------------------------------------------------------------------------------------------------------
658
659
static
660
cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
661
{
662
cmsPipeline* Src = NULL;
663
cmsPipeline* Dest = NULL;
664
cmsStage* mpe;
665
cmsStage* CLUT;
666
cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
667
cmsUInt32Number nGridPoints;
668
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
669
cmsStage *NewPreLin = NULL;
670
cmsStage *NewPostLin = NULL;
671
_cmsStageCLutData* DataCLUT;
672
cmsToneCurve** DataSetIn;
673
cmsToneCurve** DataSetOut;
674
Prelin16Data* p16;
675
676
// This is a lossy optimization! does not apply in floating-point cases
677
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
678
679
ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
680
OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
681
682
// Color space must be specified
683
if (ColorSpace == (cmsColorSpaceSignature)0 ||
684
OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
685
686
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
687
688
// For empty LUTs, 2 points are enough
689
if (cmsPipelineStageCount(*Lut) == 0)
690
nGridPoints = 2;
691
692
Src = *Lut;
693
694
// Named color pipelines cannot be optimized either
695
for (mpe = cmsPipelineGetPtrToFirstStage(Src);
696
mpe != NULL;
697
mpe = cmsStageNext(mpe)) {
698
if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
699
}
700
701
// Allocate an empty LUT
702
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
703
if (!Dest) return FALSE;
704
705
// Prelinearization tables are kept unless indicated by flags
706
if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
707
708
// Get a pointer to the prelinearization element
709
cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
710
711
// Check if suitable
712
if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
713
714
// Maybe this is a linear tram, so we can avoid the whole stuff
715
if (!AllCurvesAreLinear(PreLin)) {
716
717
// All seems ok, proceed.
718
NewPreLin = cmsStageDup(PreLin);
719
if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
720
goto Error;
721
722
// Remove prelinearization. Since we have duplicated the curve
723
// in destination LUT, the sampling should be applied after this stage.
724
cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
725
}
726
}
727
}
728
729
// Allocate the CLUT
730
CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
731
if (CLUT == NULL) goto Error;
732
733
// Add the CLUT to the destination LUT
734
if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
735
goto Error;
736
}
737
738
// Postlinearization tables are kept unless indicated by flags
739
if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
740
741
// Get a pointer to the postlinearization if present
742
cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
743
744
// Check if suitable
745
if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
746
747
// Maybe this is a linear tram, so we can avoid the whole stuff
748
if (!AllCurvesAreLinear(PostLin)) {
749
750
// All seems ok, proceed.
751
NewPostLin = cmsStageDup(PostLin);
752
if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
753
goto Error;
754
755
// In destination LUT, the sampling should be applied after this stage.
756
cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
757
}
758
}
759
}
760
761
// Now its time to do the sampling. We have to ignore pre/post linearization
762
// The source LUT without pre/post curves is passed as parameter.
763
if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
764
Error:
765
// Ops, something went wrong, Restore stages
766
if (KeepPreLin != NULL) {
767
if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
768
_cmsAssert(0); // This never happens
769
}
770
}
771
if (KeepPostLin != NULL) {
772
if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
773
_cmsAssert(0); // This never happens
774
}
775
}
776
cmsPipelineFree(Dest);
777
return FALSE;
778
}
779
780
// Done.
781
782
if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
783
if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
784
cmsPipelineFree(Src);
785
786
DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
787
788
if (NewPreLin == NULL) DataSetIn = NULL;
789
else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
790
791
if (NewPostLin == NULL) DataSetOut = NULL;
792
else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
793
794
795
if (DataSetIn == NULL && DataSetOut == NULL) {
796
797
_cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
798
}
799
else {
800
801
p16 = PrelinOpt16alloc(Dest ->ContextID,
802
DataCLUT ->Params,
803
Dest ->InputChannels,
804
DataSetIn,
805
Dest ->OutputChannels,
806
DataSetOut);
807
808
_cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
809
}
810
811
812
// Don't fix white on absolute colorimetric
813
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
814
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
815
816
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
817
818
FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
819
}
820
821
*Lut = Dest;
822
return TRUE;
823
824
cmsUNUSED_PARAMETER(Intent);
825
}
826
827
828
// -----------------------------------------------------------------------------------------------------------------------------------------------
829
// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
830
// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
831
// for RGB transforms. See the paper for more details
832
// -----------------------------------------------------------------------------------------------------------------------------------------------
833
834
835
// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
836
// Descending curves are handled as well.
837
static
838
void SlopeLimiting(cmsToneCurve* g)
839
{
840
int BeginVal, EndVal;
841
int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
842
int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98%
843
cmsFloat64Number Val, Slope, beta;
844
int i;
845
846
if (cmsIsToneCurveDescending(g)) {
847
BeginVal = 0xffff; EndVal = 0;
848
}
849
else {
850
BeginVal = 0; EndVal = 0xffff;
851
}
852
853
// Compute slope and offset for begin of curve
854
Val = g ->Table16[AtBegin];
855
Slope = (Val - BeginVal) / AtBegin;
856
beta = Val - Slope * AtBegin;
857
858
for (i=0; i < AtBegin; i++)
859
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
860
861
// Compute slope and offset for the end
862
Val = g ->Table16[AtEnd];
863
Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
864
beta = Val - Slope * AtEnd;
865
866
for (i = AtEnd; i < (int) g ->nEntries; i++)
867
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
868
}
869
870
871
// Precomputes tables for 8-bit on input devicelink.
872
static
873
Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
874
{
875
int i;
876
cmsUInt16Number Input[3];
877
cmsS15Fixed16Number v1, v2, v3;
878
Prelin8Data* p8;
879
880
p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
881
if (p8 == NULL) return NULL;
882
883
// Since this only works for 8 bit input, values comes always as x * 257,
884
// we can safely take msb byte (x << 8 + x)
885
886
for (i=0; i < 256; i++) {
887
888
if (G != NULL) {
889
890
// Get 16-bit representation
891
Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
892
Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
893
Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
894
}
895
else {
896
Input[0] = FROM_8_TO_16(i);
897
Input[1] = FROM_8_TO_16(i);
898
Input[2] = FROM_8_TO_16(i);
899
}
900
901
902
// Move to 0..1.0 in fixed domain
903
v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
904
v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
905
v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
906
907
// Store the precalculated table of nodes
908
p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
909
p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
910
p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
911
912
// Store the precalculated table of offsets
913
p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
914
p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
915
p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
916
}
917
918
p8 ->ContextID = ContextID;
919
p8 ->p = p;
920
921
return p8;
922
}
923
924
static
925
void Prelin8free(cmsContext ContextID, void* ptr)
926
{
927
_cmsFree(ContextID, ptr);
928
}
929
930
static
931
void* Prelin8dup(cmsContext ContextID, const void* ptr)
932
{
933
return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
934
}
935
936
937
938
// A optimized interpolation for 8-bit input.
939
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
940
static CMS_NO_SANITIZE
941
void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],
942
CMSREGISTER cmsUInt16Number Output[],
943
CMSREGISTER const void* D)
944
{
945
946
cmsUInt8Number r, g, b;
947
cmsS15Fixed16Number rx, ry, rz;
948
cmsS15Fixed16Number c0, c1, c2, c3, Rest;
949
int OutChan;
950
CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
951
Prelin8Data* p8 = (Prelin8Data*) D;
952
CMSREGISTER const cmsInterpParams* p = p8 ->p;
953
int TotalOut = (int) p -> nOutputs;
954
const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
955
956
r = (cmsUInt8Number) (Input[0] >> 8);
957
g = (cmsUInt8Number) (Input[1] >> 8);
958
b = (cmsUInt8Number) (Input[2] >> 8);
959
960
X0 = X1 = (cmsS15Fixed16Number) p8->X0[r];
961
Y0 = Y1 = (cmsS15Fixed16Number) p8->Y0[g];
962
Z0 = Z1 = (cmsS15Fixed16Number) p8->Z0[b];
963
964
rx = p8 ->rx[r];
965
ry = p8 ->ry[g];
966
rz = p8 ->rz[b];
967
968
X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]);
969
Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]);
970
Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]);
971
972
973
// These are the 6 Tetrahedral
974
for (OutChan=0; OutChan < TotalOut; OutChan++) {
975
976
c0 = DENS(X0, Y0, Z0);
977
978
if (rx >= ry && ry >= rz)
979
{
980
c1 = DENS(X1, Y0, Z0) - c0;
981
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
982
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
983
}
984
else
985
if (rx >= rz && rz >= ry)
986
{
987
c1 = DENS(X1, Y0, Z0) - c0;
988
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
989
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
990
}
991
else
992
if (rz >= rx && rx >= ry)
993
{
994
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
995
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
996
c3 = DENS(X0, Y0, Z1) - c0;
997
}
998
else
999
if (ry >= rx && rx >= rz)
1000
{
1001
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
1002
c2 = DENS(X0, Y1, Z0) - c0;
1003
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
1004
}
1005
else
1006
if (ry >= rz && rz >= rx)
1007
{
1008
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1009
c2 = DENS(X0, Y1, Z0) - c0;
1010
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
1011
}
1012
else
1013
if (rz >= ry && ry >= rx)
1014
{
1015
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1016
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
1017
c3 = DENS(X0, Y0, Z1) - c0;
1018
}
1019
else {
1020
c1 = c2 = c3 = 0;
1021
}
1022
1023
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1024
Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1025
1026
}
1027
}
1028
1029
#undef DENS
1030
1031
1032
// Curves that contain wide empty areas are not optimizeable
1033
static
1034
cmsBool IsDegenerated(const cmsToneCurve* g)
1035
{
1036
cmsUInt32Number i, Zeros = 0, Poles = 0;
1037
cmsUInt32Number nEntries = g ->nEntries;
1038
1039
for (i=0; i < nEntries; i++) {
1040
1041
if (g ->Table16[i] == 0x0000) Zeros++;
1042
if (g ->Table16[i] == 0xffff) Poles++;
1043
}
1044
1045
if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
1046
if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
1047
if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
1048
1049
return FALSE;
1050
}
1051
1052
// --------------------------------------------------------------------------------------------------------------
1053
// We need xput over here
1054
1055
static
1056
cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1057
{
1058
cmsPipeline* OriginalLut;
1059
cmsUInt32Number nGridPoints;
1060
cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1061
cmsUInt32Number t, i;
1062
cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1063
cmsBool lIsSuitable, lIsLinear;
1064
cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1065
cmsStage* OptimizedCLUTmpe;
1066
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1067
cmsStage* OptimizedPrelinMpe;
1068
cmsStage* mpe;
1069
cmsToneCurve** OptimizedPrelinCurves;
1070
_cmsStageCLutData* OptimizedPrelinCLUT;
1071
1072
1073
// This is a lossy optimization! does not apply in floating-point cases
1074
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1075
1076
// Only on chunky RGB
1077
if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
1078
if (T_PLANAR(*InputFormat)) return FALSE;
1079
1080
if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1081
if (T_PLANAR(*OutputFormat)) return FALSE;
1082
1083
// On 16 bits, user has to specify the feature
1084
if (!_cmsFormatterIs8bit(*InputFormat)) {
1085
if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1086
}
1087
1088
OriginalLut = *Lut;
1089
1090
// Named color pipelines cannot be optimized either
1091
for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
1092
mpe != NULL;
1093
mpe = cmsStageNext(mpe)) {
1094
if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1095
}
1096
1097
ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1098
OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1099
1100
// Color space must be specified
1101
if (ColorSpace == (cmsColorSpaceSignature)0 ||
1102
OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1103
1104
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1105
1106
// Empty gamma containers
1107
memset(Trans, 0, sizeof(Trans));
1108
memset(TransReverse, 0, sizeof(TransReverse));
1109
1110
// If the last stage of the original lut are curves, and those curves are
1111
// degenerated, it is likely the transform is squeezing and clipping
1112
// the output from previous CLUT. We cannot optimize this case
1113
{
1114
cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1115
1116
if (last == NULL) goto Error;
1117
if (cmsStageType(last) == cmsSigCurveSetElemType) {
1118
1119
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1120
for (i = 0; i < Data->nCurves; i++) {
1121
if (IsDegenerated(Data->TheCurves[i]))
1122
goto Error;
1123
}
1124
}
1125
}
1126
1127
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1128
Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1129
if (Trans[t] == NULL) goto Error;
1130
}
1131
1132
// Populate the curves
1133
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1134
1135
v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1136
1137
// Feed input with a gray ramp
1138
for (t=0; t < OriginalLut ->InputChannels; t++)
1139
In[t] = v;
1140
1141
// Evaluate the gray value
1142
cmsPipelineEvalFloat(In, Out, OriginalLut);
1143
1144
// Store result in curve
1145
for (t=0; t < OriginalLut ->InputChannels; t++)
1146
Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1147
}
1148
1149
// Slope-limit the obtained curves
1150
for (t = 0; t < OriginalLut ->InputChannels; t++)
1151
SlopeLimiting(Trans[t]);
1152
1153
// Check for validity
1154
lIsSuitable = TRUE;
1155
lIsLinear = TRUE;
1156
for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1157
1158
// Exclude if already linear
1159
if (!cmsIsToneCurveLinear(Trans[t]))
1160
lIsLinear = FALSE;
1161
1162
// Exclude if non-monotonic
1163
if (!cmsIsToneCurveMonotonic(Trans[t]))
1164
lIsSuitable = FALSE;
1165
1166
if (IsDegenerated(Trans[t]))
1167
lIsSuitable = FALSE;
1168
}
1169
1170
// If it is not suitable, just quit
1171
if (!lIsSuitable) goto Error;
1172
1173
// Invert curves if possible
1174
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1175
TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1176
if (TransReverse[t] == NULL) goto Error;
1177
}
1178
1179
// Now inset the reversed curves at the begin of transform
1180
LutPlusCurves = cmsPipelineDup(OriginalLut);
1181
if (LutPlusCurves == NULL) goto Error;
1182
1183
if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1184
goto Error;
1185
1186
// Create the result LUT
1187
OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1188
if (OptimizedLUT == NULL) goto Error;
1189
1190
OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1191
1192
// Create and insert the curves at the beginning
1193
if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1194
goto Error;
1195
1196
// Allocate the CLUT for result
1197
OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1198
1199
// Add the CLUT to the destination LUT
1200
if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1201
goto Error;
1202
1203
// Resample the LUT
1204
if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1205
1206
// Free resources
1207
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1208
1209
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1210
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1211
}
1212
1213
cmsPipelineFree(LutPlusCurves);
1214
1215
1216
OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1217
OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1218
1219
// Set the evaluator if 8-bit
1220
if (_cmsFormatterIs8bit(*InputFormat)) {
1221
1222
Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1223
OptimizedPrelinCLUT ->Params,
1224
OptimizedPrelinCurves);
1225
if (p8 == NULL) return FALSE;
1226
1227
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1228
1229
}
1230
else
1231
{
1232
Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1233
OptimizedPrelinCLUT ->Params,
1234
3, OptimizedPrelinCurves, 3, NULL);
1235
if (p16 == NULL) return FALSE;
1236
1237
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1238
1239
}
1240
1241
// Don't fix white on absolute colorimetric
1242
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1243
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1244
1245
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1246
1247
if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1248
1249
return FALSE;
1250
}
1251
}
1252
1253
// And return the obtained LUT
1254
1255
cmsPipelineFree(OriginalLut);
1256
*Lut = OptimizedLUT;
1257
return TRUE;
1258
1259
Error:
1260
1261
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1262
1263
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1264
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1265
}
1266
1267
if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1268
if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1269
1270
return FALSE;
1271
1272
cmsUNUSED_PARAMETER(Intent);
1273
cmsUNUSED_PARAMETER(lIsLinear);
1274
}
1275
1276
1277
// Curves optimizer ------------------------------------------------------------------------------------------------------------------
1278
1279
static
1280
void CurvesFree(cmsContext ContextID, void* ptr)
1281
{
1282
Curves16Data* Data = (Curves16Data*) ptr;
1283
cmsUInt32Number i;
1284
1285
for (i=0; i < Data -> nCurves; i++) {
1286
1287
_cmsFree(ContextID, Data ->Curves[i]);
1288
}
1289
1290
_cmsFree(ContextID, Data ->Curves);
1291
_cmsFree(ContextID, ptr);
1292
}
1293
1294
static
1295
void* CurvesDup(cmsContext ContextID, const void* ptr)
1296
{
1297
Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1298
cmsUInt32Number i;
1299
1300
if (Data == NULL) return NULL;
1301
1302
Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1303
1304
for (i=0; i < Data -> nCurves; i++) {
1305
Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1306
}
1307
1308
return (void*) Data;
1309
}
1310
1311
// Precomputes tables for 8-bit on input devicelink.
1312
static
1313
Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1314
{
1315
cmsUInt32Number i, j;
1316
Curves16Data* c16;
1317
1318
c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1319
if (c16 == NULL) return NULL;
1320
1321
c16 ->nCurves = nCurves;
1322
c16 ->nElements = nElements;
1323
1324
c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1325
if (c16->Curves == NULL) {
1326
_cmsFree(ContextID, c16);
1327
return NULL;
1328
}
1329
1330
for (i=0; i < nCurves; i++) {
1331
1332
c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1333
1334
if (c16->Curves[i] == NULL) {
1335
1336
for (j=0; j < i; j++) {
1337
_cmsFree(ContextID, c16->Curves[j]);
1338
}
1339
_cmsFree(ContextID, c16->Curves);
1340
_cmsFree(ContextID, c16);
1341
return NULL;
1342
}
1343
1344
if (nElements == 256U) {
1345
1346
for (j=0; j < nElements; j++) {
1347
1348
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1349
}
1350
}
1351
else {
1352
1353
for (j=0; j < nElements; j++) {
1354
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1355
}
1356
}
1357
}
1358
1359
return c16;
1360
}
1361
1362
static
1363
void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],
1364
CMSREGISTER cmsUInt16Number Out[],
1365
CMSREGISTER const void* D)
1366
{
1367
Curves16Data* Data = (Curves16Data*) D;
1368
int x;
1369
cmsUInt32Number i;
1370
1371
for (i=0; i < Data ->nCurves; i++) {
1372
1373
x = (In[i] >> 8);
1374
Out[i] = Data -> Curves[i][x];
1375
}
1376
}
1377
1378
1379
static
1380
void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],
1381
CMSREGISTER cmsUInt16Number Out[],
1382
CMSREGISTER const void* D)
1383
{
1384
Curves16Data* Data = (Curves16Data*) D;
1385
cmsUInt32Number i;
1386
1387
for (i=0; i < Data ->nCurves; i++) {
1388
Out[i] = Data -> Curves[i][In[i]];
1389
}
1390
}
1391
1392
1393
static
1394
void FastIdentity16(CMSREGISTER const cmsUInt16Number In[],
1395
CMSREGISTER cmsUInt16Number Out[],
1396
CMSREGISTER const void* D)
1397
{
1398
cmsPipeline* Lut = (cmsPipeline*) D;
1399
cmsUInt32Number i;
1400
1401
for (i=0; i < Lut ->InputChannels; i++) {
1402
Out[i] = In[i];
1403
}
1404
}
1405
1406
1407
// If the target LUT holds only curves, the optimization procedure is to join all those
1408
// curves together. That only works on curves and does not work on matrices.
1409
static
1410
cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1411
{
1412
cmsToneCurve** GammaTables = NULL;
1413
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1414
cmsUInt32Number i, j;
1415
cmsPipeline* Src = *Lut;
1416
cmsPipeline* Dest = NULL;
1417
cmsStage* mpe;
1418
cmsStage* ObtainedCurves = NULL;
1419
1420
1421
// This is a lossy optimization! does not apply in floating-point cases
1422
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1423
1424
// Only curves in this LUT?
1425
for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1426
mpe != NULL;
1427
mpe = cmsStageNext(mpe)) {
1428
if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1429
}
1430
1431
// Allocate an empty LUT
1432
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1433
if (Dest == NULL) return FALSE;
1434
1435
// Create target curves
1436
GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1437
if (GammaTables == NULL) goto Error;
1438
1439
for (i=0; i < Src ->InputChannels; i++) {
1440
GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1441
if (GammaTables[i] == NULL) goto Error;
1442
}
1443
1444
// Compute 16 bit result by using floating point
1445
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1446
1447
for (j=0; j < Src ->InputChannels; j++)
1448
InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1449
1450
cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1451
1452
for (j=0; j < Src ->InputChannels; j++)
1453
GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1454
}
1455
1456
ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1457
if (ObtainedCurves == NULL) goto Error;
1458
1459
for (i=0; i < Src ->InputChannels; i++) {
1460
cmsFreeToneCurve(GammaTables[i]);
1461
GammaTables[i] = NULL;
1462
}
1463
1464
if (GammaTables != NULL) {
1465
_cmsFree(Src->ContextID, GammaTables);
1466
GammaTables = NULL;
1467
}
1468
1469
// Maybe the curves are linear at the end
1470
if (!AllCurvesAreLinear(ObtainedCurves)) {
1471
_cmsStageToneCurvesData* Data;
1472
1473
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1474
goto Error;
1475
Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1476
ObtainedCurves = NULL;
1477
1478
// If the curves are to be applied in 8 bits, we can save memory
1479
if (_cmsFormatterIs8bit(*InputFormat)) {
1480
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1481
1482
if (c16 == NULL) goto Error;
1483
*dwFlags |= cmsFLAGS_NOCACHE;
1484
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1485
1486
}
1487
else {
1488
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1489
1490
if (c16 == NULL) goto Error;
1491
*dwFlags |= cmsFLAGS_NOCACHE;
1492
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1493
}
1494
}
1495
else {
1496
1497
// LUT optimizes to nothing. Set the identity LUT
1498
cmsStageFree(ObtainedCurves);
1499
ObtainedCurves = NULL;
1500
1501
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1502
goto Error;
1503
1504
*dwFlags |= cmsFLAGS_NOCACHE;
1505
_cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1506
}
1507
1508
// We are done.
1509
cmsPipelineFree(Src);
1510
*Lut = Dest;
1511
return TRUE;
1512
1513
Error:
1514
1515
if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1516
if (GammaTables != NULL) {
1517
for (i=0; i < Src ->InputChannels; i++) {
1518
if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1519
}
1520
1521
_cmsFree(Src ->ContextID, GammaTables);
1522
}
1523
1524
if (Dest != NULL) cmsPipelineFree(Dest);
1525
return FALSE;
1526
1527
cmsUNUSED_PARAMETER(Intent);
1528
cmsUNUSED_PARAMETER(InputFormat);
1529
cmsUNUSED_PARAMETER(OutputFormat);
1530
cmsUNUSED_PARAMETER(dwFlags);
1531
}
1532
1533
// -------------------------------------------------------------------------------------------------------------------------------------
1534
// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1535
1536
1537
static
1538
void FreeMatShaper(cmsContext ContextID, void* Data)
1539
{
1540
if (Data != NULL) _cmsFree(ContextID, Data);
1541
}
1542
1543
static
1544
void* DupMatShaper(cmsContext ContextID, const void* Data)
1545
{
1546
return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1547
}
1548
1549
1550
// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1551
// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1552
// in total about 50K, and the performance boost is huge!
1553
static
1554
void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],
1555
CMSREGISTER cmsUInt16Number Out[],
1556
CMSREGISTER const void* D)
1557
{
1558
MatShaper8Data* p = (MatShaper8Data*) D;
1559
cmsS1Fixed14Number l1, l2, l3, r, g, b;
1560
cmsUInt32Number ri, gi, bi;
1561
1562
// In this case (and only in this case!) we can use this simplification since
1563
// In[] is assured to come from a 8 bit number. (a << 8 | a)
1564
ri = In[0] & 0xFFU;
1565
gi = In[1] & 0xFFU;
1566
bi = In[2] & 0xFFU;
1567
1568
// Across first shaper, which also converts to 1.14 fixed point
1569
r = p->Shaper1R[ri];
1570
g = p->Shaper1G[gi];
1571
b = p->Shaper1B[bi];
1572
1573
// Evaluate the matrix in 1.14 fixed point
1574
l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1575
l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1576
l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1577
1578
// Now we have to clip to 0..1.0 range
1579
ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1580
gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1581
bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1582
1583
// And across second shaper,
1584
Out[0] = p->Shaper2R[ri];
1585
Out[1] = p->Shaper2G[gi];
1586
Out[2] = p->Shaper2B[bi];
1587
1588
}
1589
1590
// This table converts from 8 bits to 1.14 after applying the curve
1591
static
1592
void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1593
{
1594
int i;
1595
cmsFloat32Number R, y;
1596
1597
for (i=0; i < 256; i++) {
1598
1599
R = (cmsFloat32Number) (i / 255.0);
1600
y = cmsEvalToneCurveFloat(Curve, R);
1601
1602
if (y < 131072.0)
1603
Table[i] = DOUBLE_TO_1FIXED14(y);
1604
else
1605
Table[i] = 0x7fffffff;
1606
}
1607
}
1608
1609
// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1610
static
1611
void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1612
{
1613
int i;
1614
cmsFloat32Number R, Val;
1615
1616
for (i=0; i < 16385; i++) {
1617
1618
R = (cmsFloat32Number) (i / 16384.0);
1619
Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
1620
1621
if (Val < 0)
1622
Val = 0;
1623
1624
if (Val > 1.0)
1625
Val = 1.0;
1626
1627
if (Is8BitsOutput) {
1628
1629
// If 8 bits output, we can optimize further by computing the / 257 part.
1630
// first we compute the resulting byte and then we store the byte times
1631
// 257. This quantization allows to round very quick by doing a >> 8, but
1632
// since the low byte is always equal to msb, we can do a & 0xff and this works!
1633
cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1634
cmsUInt8Number b = FROM_16_TO_8(w);
1635
1636
Table[i] = FROM_8_TO_16(b);
1637
}
1638
else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1639
}
1640
}
1641
1642
// Compute the matrix-shaper structure
1643
static
1644
cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1645
{
1646
MatShaper8Data* p;
1647
int i, j;
1648
cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1649
1650
// Allocate a big chuck of memory to store precomputed tables
1651
p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1652
if (p == NULL) return FALSE;
1653
1654
p -> ContextID = Dest -> ContextID;
1655
1656
// Precompute tables
1657
FillFirstShaper(p ->Shaper1R, Curve1[0]);
1658
FillFirstShaper(p ->Shaper1G, Curve1[1]);
1659
FillFirstShaper(p ->Shaper1B, Curve1[2]);
1660
1661
FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1662
FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1663
FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1664
1665
// Convert matrix to nFixed14. Note that those values may take more than 16 bits
1666
for (i=0; i < 3; i++) {
1667
for (j=0; j < 3; j++) {
1668
p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1669
}
1670
}
1671
1672
for (i=0; i < 3; i++) {
1673
1674
if (Off == NULL) {
1675
p ->Off[i] = 0;
1676
}
1677
else {
1678
p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1679
}
1680
}
1681
1682
// Mark as optimized for faster formatter
1683
if (Is8Bits)
1684
*OutputFormat |= OPTIMIZED_SH(1);
1685
1686
// Fill function pointers
1687
_cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1688
return TRUE;
1689
}
1690
1691
// 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1692
static
1693
cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1694
{
1695
cmsStage* Curve1, *Curve2;
1696
cmsStage* Matrix1, *Matrix2;
1697
cmsMAT3 res;
1698
cmsBool IdentityMat;
1699
cmsPipeline* Dest, *Src;
1700
cmsFloat64Number* Offset;
1701
1702
// Only works on RGB to RGB
1703
if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1704
1705
// Only works on 8 bit input
1706
if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1707
1708
// Seems suitable, proceed
1709
Src = *Lut;
1710
1711
// Check for:
1712
//
1713
// shaper-matrix-matrix-shaper
1714
// shaper-matrix-shaper
1715
//
1716
// Both of those constructs are possible (first because abs. colorimetric).
1717
// additionally, In the first case, the input matrix offset should be zero.
1718
1719
IdentityMat = FALSE;
1720
if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1721
cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1722
&Curve1, &Matrix1, &Matrix2, &Curve2)) {
1723
1724
// Get both matrices
1725
_cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1726
_cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1727
1728
// Input offset should be zero
1729
if (Data1->Offset != NULL) return FALSE;
1730
1731
// Multiply both matrices to get the result
1732
_cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1733
1734
// Only 2nd matrix has offset, or it is zero
1735
Offset = Data2->Offset;
1736
1737
// Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1738
if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1739
1740
// We can get rid of full matrix
1741
IdentityMat = TRUE;
1742
}
1743
1744
}
1745
else {
1746
1747
if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1748
cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1749
&Curve1, &Matrix1, &Curve2)) {
1750
1751
_cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1752
1753
// Copy the matrix to our result
1754
memcpy(&res, Data->Double, sizeof(res));
1755
1756
// Preserve the Odffset (may be NULL as a zero offset)
1757
Offset = Data->Offset;
1758
1759
if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1760
1761
// We can get rid of full matrix
1762
IdentityMat = TRUE;
1763
}
1764
}
1765
else
1766
return FALSE; // Not optimizeable this time
1767
1768
}
1769
1770
// Allocate an empty LUT
1771
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1772
if (!Dest) return FALSE;
1773
1774
// Assamble the new LUT
1775
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1776
goto Error;
1777
1778
if (!IdentityMat) {
1779
1780
if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1781
goto Error;
1782
}
1783
1784
if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1785
goto Error;
1786
1787
// If identity on matrix, we can further optimize the curves, so call the join curves routine
1788
if (IdentityMat) {
1789
1790
OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1791
}
1792
else {
1793
_cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1794
_cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1795
1796
// In this particular optimization, cache does not help as it takes more time to deal with
1797
// the cache that with the pixel handling
1798
*dwFlags |= cmsFLAGS_NOCACHE;
1799
1800
// Setup the optimizarion routines
1801
SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1802
}
1803
1804
cmsPipelineFree(Src);
1805
*Lut = Dest;
1806
return TRUE;
1807
Error:
1808
// Leave Src unchanged
1809
cmsPipelineFree(Dest);
1810
return FALSE;
1811
}
1812
1813
1814
// -------------------------------------------------------------------------------------------------------------------------------------
1815
// Optimization plug-ins
1816
1817
// List of optimizations
1818
typedef struct _cmsOptimizationCollection_st {
1819
1820
_cmsOPToptimizeFn OptimizePtr;
1821
1822
struct _cmsOptimizationCollection_st *Next;
1823
1824
} _cmsOptimizationCollection;
1825
1826
1827
// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1828
static _cmsOptimizationCollection DefaultOptimization[] = {
1829
1830
{ OptimizeByJoiningCurves, &DefaultOptimization[1] },
1831
{ OptimizeMatrixShaper, &DefaultOptimization[2] },
1832
{ OptimizeByComputingLinearization, &DefaultOptimization[3] },
1833
{ OptimizeByResampling, NULL }
1834
};
1835
1836
// The linked list head
1837
_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1838
1839
1840
// Duplicates the zone of memory used by the plug-in in the new context
1841
static
1842
void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1843
const struct _cmsContext_struct* src)
1844
{
1845
_cmsOptimizationPluginChunkType newHead = { NULL };
1846
_cmsOptimizationCollection* entry;
1847
_cmsOptimizationCollection* Anterior = NULL;
1848
_cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1849
1850
_cmsAssert(ctx != NULL);
1851
_cmsAssert(head != NULL);
1852
1853
// Walk the list copying all nodes
1854
for (entry = head->OptimizationCollection;
1855
entry != NULL;
1856
entry = entry ->Next) {
1857
1858
_cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1859
1860
if (newEntry == NULL)
1861
return;
1862
1863
// We want to keep the linked list order, so this is a little bit tricky
1864
newEntry -> Next = NULL;
1865
if (Anterior)
1866
Anterior -> Next = newEntry;
1867
1868
Anterior = newEntry;
1869
1870
if (newHead.OptimizationCollection == NULL)
1871
newHead.OptimizationCollection = newEntry;
1872
}
1873
1874
ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1875
}
1876
1877
void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1878
const struct _cmsContext_struct* src)
1879
{
1880
if (src != NULL) {
1881
1882
// Copy all linked list
1883
DupPluginOptimizationList(ctx, src);
1884
}
1885
else {
1886
static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1887
ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1888
}
1889
}
1890
1891
1892
// Register new ways to optimize
1893
cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1894
{
1895
cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1896
_cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1897
_cmsOptimizationCollection* fl;
1898
1899
if (Data == NULL) {
1900
1901
ctx->OptimizationCollection = NULL;
1902
return TRUE;
1903
}
1904
1905
// Optimizer callback is required
1906
if (Plugin ->OptimizePtr == NULL) return FALSE;
1907
1908
fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1909
if (fl == NULL) return FALSE;
1910
1911
// Copy the parameters
1912
fl ->OptimizePtr = Plugin ->OptimizePtr;
1913
1914
// Keep linked list
1915
fl ->Next = ctx->OptimizationCollection;
1916
1917
// Set the head
1918
ctx ->OptimizationCollection = fl;
1919
1920
// All is ok
1921
return TRUE;
1922
}
1923
1924
// The entry point for LUT optimization
1925
cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1926
cmsPipeline** PtrLut,
1927
cmsUInt32Number Intent,
1928
cmsUInt32Number* InputFormat,
1929
cmsUInt32Number* OutputFormat,
1930
cmsUInt32Number* dwFlags)
1931
{
1932
_cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1933
_cmsOptimizationCollection* Opts;
1934
cmsBool AnySuccess = FALSE;
1935
1936
// A CLUT is being asked, so force this specific optimization
1937
if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1938
1939
PreOptimize(*PtrLut);
1940
return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1941
}
1942
1943
// Anything to optimize?
1944
if ((*PtrLut) ->Elements == NULL) {
1945
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1946
return TRUE;
1947
}
1948
1949
// Try to get rid of identities and trivial conversions.
1950
AnySuccess = PreOptimize(*PtrLut);
1951
1952
// After removal do we end with an identity?
1953
if ((*PtrLut) ->Elements == NULL) {
1954
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1955
return TRUE;
1956
}
1957
1958
// Do not optimize, keep all precision
1959
if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1960
return FALSE;
1961
1962
// Try plug-in optimizations
1963
for (Opts = ctx->OptimizationCollection;
1964
Opts != NULL;
1965
Opts = Opts ->Next) {
1966
1967
// If one schema succeeded, we are done
1968
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1969
1970
return TRUE; // Optimized!
1971
}
1972
}
1973
1974
// Try built-in optimizations
1975
for (Opts = DefaultOptimization;
1976
Opts != NULL;
1977
Opts = Opts ->Next) {
1978
1979
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1980
1981
return TRUE;
1982
}
1983
}
1984
1985
// Only simple optimizations succeeded
1986
return AnySuccess;
1987
}
1988
1989
1990
1991
1992