Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/native/sun/security/ec/impl/ec2.h
38918 views
1
/*
2
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3
* Use is subject to license terms.
4
*
5
* This library is free software; you can redistribute it and/or
6
* modify it under the terms of the GNU Lesser General Public
7
* License as published by the Free Software Foundation; either
8
* version 2.1 of the License, or (at your option) any later version.
9
*
10
* This library is distributed in the hope that it will be useful,
11
* but WITHOUT ANY WARRANTY; without even the implied warranty of
12
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13
* Lesser General Public License for more details.
14
*
15
* You should have received a copy of the GNU Lesser General Public License
16
* along with this library; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*/
23
24
/* *********************************************************************
25
*
26
* The Original Code is the elliptic curve math library for binary polynomial field curves.
27
*
28
* The Initial Developer of the Original Code is
29
* Sun Microsystems, Inc.
30
* Portions created by the Initial Developer are Copyright (C) 2003
31
* the Initial Developer. All Rights Reserved.
32
*
33
* Contributor(s):
34
* Douglas Stebila <[email protected]>, Sun Microsystems Laboratories
35
*
36
* Last Modified Date from the Original Code: May 2017
37
*********************************************************************** */
38
39
#ifndef _EC2_H
40
#define _EC2_H
41
42
#include "ecl-priv.h"
43
44
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
45
mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py);
46
47
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
48
mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py);
49
50
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
51
* qy). Uses affine coordinates. */
52
mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py,
53
const mp_int *qx, const mp_int *qy, mp_int *rx,
54
mp_int *ry, const ECGroup *group);
55
56
/* Computes R = P - Q. Uses affine coordinates. */
57
mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py,
58
const mp_int *qx, const mp_int *qy, mp_int *rx,
59
mp_int *ry, const ECGroup *group);
60
61
/* Computes R = 2P. Uses affine coordinates. */
62
mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
63
mp_int *ry, const ECGroup *group);
64
65
/* Validates a point on a GF2m curve. */
66
mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
67
68
/* by default, this routine is unused and thus doesn't need to be compiled */
69
#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
70
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
71
* a, b and p are the elliptic curve coefficients and the irreducible that
72
* determines the field GF2m. Uses affine coordinates. */
73
mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px,
74
const mp_int *py, mp_int *rx, mp_int *ry,
75
const ECGroup *group);
76
#endif
77
78
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
79
* a, b and p are the elliptic curve coefficients and the irreducible that
80
* determines the field GF2m. Uses Montgomery projective coordinates. */
81
mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px,
82
const mp_int *py, mp_int *rx, mp_int *ry,
83
const ECGroup *group, int timing);
84
85
#ifdef ECL_ENABLE_GF2M_PROJ
86
/* Converts a point P(px, py) from affine coordinates to projective
87
* coordinates R(rx, ry, rz). */
88
mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx,
89
mp_int *ry, mp_int *rz, const ECGroup *group);
90
91
/* Converts a point P(px, py, pz) from projective coordinates to affine
92
* coordinates R(rx, ry). */
93
mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py,
94
const mp_int *pz, mp_int *rx, mp_int *ry,
95
const ECGroup *group);
96
97
/* Checks if point P(px, py, pz) is at infinity. Uses projective
98
* coordinates. */
99
mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py,
100
const mp_int *pz);
101
102
/* Sets P(px, py, pz) to be the point at infinity. Uses projective
103
* coordinates. */
104
mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz);
105
106
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
107
* (qx, qy, qz). Uses projective coordinates. */
108
mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py,
109
const mp_int *pz, const mp_int *qx,
110
const mp_int *qy, mp_int *rx, mp_int *ry,
111
mp_int *rz, const ECGroup *group);
112
113
/* Computes R = 2P. Uses projective coordinates. */
114
mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py,
115
const mp_int *pz, mp_int *rx, mp_int *ry,
116
mp_int *rz, const ECGroup *group);
117
118
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
119
* a, b and p are the elliptic curve coefficients and the prime that
120
* determines the field GF2m. Uses projective coordinates. */
121
mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px,
122
const mp_int *py, mp_int *rx, mp_int *ry,
123
const ECGroup *group);
124
#endif
125
126
#endif /* _EC2_H */
127
128