Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/share/native/sun/security/ec/impl/ecp.h
38918 views
1
/*
2
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3
* Use is subject to license terms.
4
*
5
* This library is free software; you can redistribute it and/or
6
* modify it under the terms of the GNU Lesser General Public
7
* License as published by the Free Software Foundation; either
8
* version 2.1 of the License, or (at your option) any later version.
9
*
10
* This library is distributed in the hope that it will be useful,
11
* but WITHOUT ANY WARRANTY; without even the implied warranty of
12
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13
* Lesser General Public License for more details.
14
*
15
* You should have received a copy of the GNU Lesser General Public License
16
* along with this library; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*/
23
24
/* *********************************************************************
25
*
26
* The Original Code is the elliptic curve math library for prime field curves.
27
*
28
* The Initial Developer of the Original Code is
29
* Sun Microsystems, Inc.
30
* Portions created by the Initial Developer are Copyright (C) 2003
31
* the Initial Developer. All Rights Reserved.
32
*
33
* Contributor(s):
34
* Douglas Stebila <[email protected]>, Sun Microsystems Laboratories
35
*
36
* Last Modified Date from the Original Code: May 2017
37
*********************************************************************** */
38
39
#ifndef _ECP_H
40
#define _ECP_H
41
42
#include "ecl-priv.h"
43
44
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
45
mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
46
47
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
48
mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
49
50
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
51
* qy). Uses affine coordinates. */
52
mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
53
const mp_int *qx, const mp_int *qy, mp_int *rx,
54
mp_int *ry, const ECGroup *group);
55
56
/* Computes R = P - Q. Uses affine coordinates. */
57
mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
58
const mp_int *qx, const mp_int *qy, mp_int *rx,
59
mp_int *ry, const ECGroup *group);
60
61
/* Computes R = 2P. Uses affine coordinates. */
62
mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
63
mp_int *ry, const ECGroup *group);
64
65
/* Validates a point on a GFp curve. */
66
mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
67
68
#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
69
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
70
* a, b and p are the elliptic curve coefficients and the prime that
71
* determines the field GFp. Uses affine coordinates. */
72
mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
73
const mp_int *py, mp_int *rx, mp_int *ry,
74
const ECGroup *group);
75
#endif
76
77
/* Converts a point P(px, py) from affine coordinates to Jacobian
78
* projective coordinates R(rx, ry, rz). */
79
mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
80
mp_int *ry, mp_int *rz, const ECGroup *group);
81
82
/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
83
* affine coordinates R(rx, ry). */
84
mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
85
const mp_int *pz, mp_int *rx, mp_int *ry,
86
const ECGroup *group);
87
88
/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
89
* coordinates. */
90
mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
91
const mp_int *pz);
92
93
/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
94
* coordinates. */
95
mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
96
97
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
98
* (qx, qy, qz). Uses Jacobian coordinates. */
99
mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
100
const mp_int *pz, const mp_int *qx,
101
const mp_int *qy, mp_int *rx, mp_int *ry,
102
mp_int *rz, const ECGroup *group);
103
104
/* Computes R = 2P. Uses Jacobian coordinates. */
105
mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
106
const mp_int *pz, mp_int *rx, mp_int *ry,
107
mp_int *rz, const ECGroup *group);
108
109
#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
110
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
111
* a, b and p are the elliptic curve coefficients and the prime that
112
* determines the field GFp. Uses Jacobian coordinates. */
113
mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
114
const mp_int *py, mp_int *rx, mp_int *ry,
115
const ECGroup *group);
116
#endif
117
118
/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
119
* (base point) of the group of points on the elliptic curve. Allows k1 =
120
* NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
121
* coordinates. Input and output values are assumed to be NOT
122
* field-encoded and are in affine form. */
123
mp_err
124
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
125
const mp_int *py, mp_int *rx, mp_int *ry,
126
const ECGroup *group, int timing);
127
128
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
129
* curve points P and R can be identical. Uses mixed Modified-Jacobian
130
* co-ordinates for doubling and Chudnovsky Jacobian coordinates for
131
* additions. Assumes input is already field-encoded using field_enc, and
132
* returns output that is still field-encoded. Uses 5-bit window NAF
133
* method (algorithm 11) for scalar-point multiplication from Brown,
134
* Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
135
* Curves Over Prime Fields. The implementation includes a countermeasure
136
* that attempts to hide the size of n from timing channels. This counter-
137
* measure is enabled using the timing argument. The high-rder bits of timing
138
* must be uniformly random in order for this countermeasure to work. */
139
mp_err
140
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
141
mp_int *rx, mp_int *ry, const ECGroup *group,
142
int timing);
143
144
#endif /* _ECP_H */
145
146