Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/src/windows/classes/sun/awt/Win32GraphicsConfig.java
32287 views
1
/*
2
* Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.awt;
27
28
import java.awt.AWTException;
29
import java.awt.BufferCapabilities;
30
import java.awt.Component;
31
import java.awt.Graphics;
32
import java.awt.GraphicsConfiguration;
33
import java.awt.GraphicsDevice;
34
import java.awt.GraphicsEnvironment;
35
import java.awt.Image;
36
import java.awt.ImageCapabilities;
37
import java.awt.Rectangle;
38
import java.awt.Toolkit;
39
import java.awt.Transparency;
40
import java.awt.Window;
41
import java.awt.geom.AffineTransform;
42
import java.awt.image.BufferedImage;
43
import java.awt.image.ColorModel;
44
import java.awt.image.DirectColorModel;
45
import java.awt.image.Raster;
46
import java.awt.image.VolatileImage;
47
import java.awt.image.WritableRaster;
48
49
import sun.awt.windows.WComponentPeer;
50
import sun.awt.image.OffScreenImage;
51
import sun.awt.image.SunVolatileImage;
52
import sun.awt.image.SurfaceManager;
53
import sun.java2d.SurfaceData;
54
import sun.java2d.InvalidPipeException;
55
import sun.java2d.loops.RenderLoops;
56
import sun.java2d.loops.SurfaceType;
57
import sun.java2d.loops.CompositeType;
58
import sun.java2d.windows.GDIWindowSurfaceData;
59
60
/**
61
* This is an implementation of a GraphicsConfiguration object for a
62
* single Win32 visual.
63
*
64
* @see GraphicsEnvironment
65
* @see GraphicsDevice
66
*/
67
public class Win32GraphicsConfig extends GraphicsConfiguration
68
implements DisplayChangedListener, SurfaceManager.ProxiedGraphicsConfig
69
{
70
protected Win32GraphicsDevice screen;
71
protected int visual; //PixelFormatID
72
protected RenderLoops solidloops;
73
74
private static native void initIDs();
75
76
static {
77
initIDs();
78
}
79
80
/**
81
* Returns a Win32GraphicsConfiguration object with the given device
82
* and PixelFormat. Note that this method does NOT check to ensure that
83
* the returned Win32GraphicsConfig will correctly support rendering into a
84
* Java window. This method is provided so that client code can do its
85
* own checking as to the appropriateness of a particular PixelFormat.
86
* Safer access to Win32GraphicsConfigurations is provided by
87
* Win32GraphicsDevice.getConfigurations().
88
*/
89
public static Win32GraphicsConfig getConfig(Win32GraphicsDevice device,
90
int pixFormatID)
91
{
92
return new Win32GraphicsConfig(device, pixFormatID);
93
}
94
95
/**
96
* @deprecated as of JDK version 1.3
97
* replaced by <code>getConfig()</code>
98
*/
99
@Deprecated
100
public Win32GraphicsConfig(GraphicsDevice device, int visualnum) {
101
this.screen = (Win32GraphicsDevice)device;
102
this.visual = visualnum;
103
((Win32GraphicsDevice)device).addDisplayChangedListener(this);
104
}
105
106
/**
107
* Return the graphics device associated with this configuration.
108
*/
109
public GraphicsDevice getDevice() {
110
return screen;
111
}
112
113
/**
114
* Return the PixelFormatIndex this GraphicsConfig uses
115
*/
116
public int getVisual() {
117
return visual;
118
}
119
120
public Object getProxyKey() {
121
return screen;
122
}
123
124
/**
125
* Return the RenderLoops this type of destination uses for
126
* solid fills and strokes.
127
*/
128
private SurfaceType sTypeOrig = null;
129
public synchronized RenderLoops getSolidLoops(SurfaceType stype) {
130
if (solidloops == null || sTypeOrig != stype) {
131
solidloops = SurfaceData.makeRenderLoops(SurfaceType.OpaqueColor,
132
CompositeType.SrcNoEa,
133
stype);
134
sTypeOrig = stype;
135
}
136
return solidloops;
137
}
138
139
/**
140
* Returns the color model associated with this configuration.
141
*/
142
public synchronized ColorModel getColorModel() {
143
return screen.getColorModel();
144
}
145
146
/**
147
* Returns a new color model for this configuration. This call
148
* is only used internally, by images and components that are
149
* associated with the graphics device. When attributes of that
150
* device change (for example, when the device palette is updated),
151
* then this device-based color model will be updated internally
152
* to reflect the new situation.
153
*/
154
public ColorModel getDeviceColorModel() {
155
return screen.getDynamicColorModel();
156
}
157
158
/**
159
* Returns the color model associated with this configuration that
160
* supports the specified transparency.
161
*/
162
public ColorModel getColorModel(int transparency) {
163
switch (transparency) {
164
case Transparency.OPAQUE:
165
return getColorModel();
166
case Transparency.BITMASK:
167
return new DirectColorModel(25, 0xff0000, 0xff00, 0xff, 0x1000000);
168
case Transparency.TRANSLUCENT:
169
return ColorModel.getRGBdefault();
170
default:
171
return null;
172
}
173
}
174
175
/**
176
* Returns the default Transform for this configuration. This
177
* Transform is typically the Identity transform for most normal
178
* screens. Device coordinates for screen and printer devices will
179
* have the origin in the upper left-hand corner of the target region of
180
* the device, with X coordinates
181
* increasing to the right and Y coordinates increasing downwards.
182
* For image buffers, this Transform will be the Identity transform.
183
*/
184
public AffineTransform getDefaultTransform() {
185
return new AffineTransform();
186
}
187
188
/**
189
*
190
* Returns a Transform that can be composed with the default Transform
191
* of a Graphics2D so that 72 units in user space will equal 1 inch
192
* in device space.
193
* Given a Graphics2D, g, one can reset the transformation to create
194
* such a mapping by using the following pseudocode:
195
* <pre>
196
* GraphicsConfiguration gc = g.getGraphicsConfiguration();
197
*
198
* g.setTransform(gc.getDefaultTransform());
199
* g.transform(gc.getNormalizingTransform());
200
* </pre>
201
* Note that sometimes this Transform will be identity (e.g. for
202
* printers or metafile output) and that this Transform is only
203
* as accurate as the information supplied by the underlying system.
204
* For image buffers, this Transform will be the Identity transform,
205
* since there is no valid distance measurement.
206
*/
207
public AffineTransform getNormalizingTransform() {
208
Win32GraphicsEnvironment ge = (Win32GraphicsEnvironment)
209
GraphicsEnvironment.getLocalGraphicsEnvironment();
210
double xscale = ge.getXResolution() / 72.0;
211
double yscale = ge.getYResolution() / 72.0;
212
return new AffineTransform(xscale, 0.0, 0.0, yscale, 0.0, 0.0);
213
}
214
215
public String toString() {
216
return (super.toString()+"[dev="+screen+",pixfmt="+visual+"]");
217
}
218
219
private native Rectangle getBounds(int screen);
220
221
public Rectangle getBounds() {
222
return getBounds(screen.getScreen());
223
}
224
225
public synchronized void displayChanged() {
226
solidloops = null;
227
}
228
229
public void paletteChanged() {}
230
231
/**
232
* The following methods are invoked from WComponentPeer.java rather
233
* than having the Win32-dependent implementations hardcoded in that
234
* class. This way the appropriate actions are taken based on the peer's
235
* GraphicsConfig, whether it is a Win32GraphicsConfig or a
236
* WGLGraphicsConfig.
237
*/
238
239
/**
240
* Creates a new SurfaceData that will be associated with the given
241
* WComponentPeer.
242
*/
243
public SurfaceData createSurfaceData(WComponentPeer peer,
244
int numBackBuffers)
245
{
246
return GDIWindowSurfaceData.createData(peer);
247
}
248
249
/**
250
* Creates a new managed image of the given width and height
251
* that is associated with the target Component.
252
*/
253
public Image createAcceleratedImage(Component target,
254
int width, int height)
255
{
256
ColorModel model = getColorModel(Transparency.OPAQUE);
257
WritableRaster wr =
258
model.createCompatibleWritableRaster(width, height);
259
return new OffScreenImage(target, model, wr,
260
model.isAlphaPremultiplied());
261
}
262
263
/**
264
* The following methods correspond to the multibuffering methods in
265
* WComponentPeer.java...
266
*/
267
268
/**
269
* Checks that the requested configuration is natively supported; if not,
270
* an AWTException is thrown.
271
*/
272
public void assertOperationSupported(Component target,
273
int numBuffers,
274
BufferCapabilities caps)
275
throws AWTException
276
{
277
// the default pipeline doesn't support flip buffer strategy
278
throw new AWTException(
279
"The operation requested is not supported");
280
}
281
282
/**
283
* This method is called from WComponentPeer when a surface data is replaced
284
* REMIND: while the default pipeline doesn't support flipping, it may
285
* happen that the accelerated device may have this graphics config
286
* (like if the device restoration failed when one device exits fs mode
287
* while others remain).
288
*/
289
public VolatileImage createBackBuffer(WComponentPeer peer) {
290
Component target = (Component)peer.getTarget();
291
return new SunVolatileImage(target,
292
target.getWidth(), target.getHeight(),
293
Boolean.TRUE);
294
}
295
296
/**
297
* Performs the native flip operation for the given target Component.
298
*
299
* REMIND: we should really not get here because that would mean that
300
* a FLIP BufferStrategy has been created, and one could only be created
301
* if accelerated pipeline is present but in some rare (and transitional)
302
* cases it may happen that the accelerated graphics device may have a
303
* default graphics configuraiton, so this is just a precaution.
304
*/
305
public void flip(WComponentPeer peer,
306
Component target, VolatileImage backBuffer,
307
int x1, int y1, int x2, int y2,
308
BufferCapabilities.FlipContents flipAction)
309
{
310
if (flipAction == BufferCapabilities.FlipContents.COPIED ||
311
flipAction == BufferCapabilities.FlipContents.UNDEFINED) {
312
Graphics g = peer.getGraphics();
313
try {
314
g.drawImage(backBuffer,
315
x1, y1, x2, y2,
316
x1, y1, x2, y2,
317
null);
318
} finally {
319
g.dispose();
320
}
321
} else if (flipAction == BufferCapabilities.FlipContents.BACKGROUND) {
322
Graphics g = backBuffer.getGraphics();
323
try {
324
g.setColor(target.getBackground());
325
g.fillRect(0, 0,
326
backBuffer.getWidth(),
327
backBuffer.getHeight());
328
} finally {
329
g.dispose();
330
}
331
}
332
// the rest of the flip actions are not supported
333
}
334
335
@Override
336
public boolean isTranslucencyCapable() {
337
//XXX: worth checking if 8-bit? Anyway, it doesn't hurt.
338
return true;
339
}
340
}
341
342