Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/test/java/lang/Math/Expm1Tests.java
38812 views
1
/*
2
* Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*/
23
24
/*
25
* @test
26
* @bug 4851638 4900189 4939441
27
* @summary Tests for {Math, StrictMath}.expm1
28
* @author Joseph D. Darcy
29
*/
30
31
import sun.misc.DoubleConsts;
32
33
/*
34
* The Taylor expansion of expxm1(x) = exp(x) -1 is
35
*
36
* 1 + x/1! + x^2/2! + x^3/3| + ... -1 =
37
*
38
* x + x^2/2! + x^3/3 + ...
39
*
40
* Therefore, for small values of x, expxm1 ~= x.
41
*
42
* For large values of x, expxm1(x) ~= exp(x)
43
*
44
* For large negative x, expxm1(x) ~= -1.
45
*/
46
47
public class Expm1Tests {
48
49
private Expm1Tests(){}
50
51
static final double infinityD = Double.POSITIVE_INFINITY;
52
static final double NaNd = Double.NaN;
53
54
static int testExpm1() {
55
int failures = 0;
56
57
double [][] testCases = {
58
{Double.NaN, NaNd},
59
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
60
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
61
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
62
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
63
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
64
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
65
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
66
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
67
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
68
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
69
{infinityD, infinityD},
70
{-infinityD, -1.0},
71
{-0.0, -0.0},
72
{+0.0, +0.0},
73
};
74
75
// Test special cases
76
for(int i = 0; i < testCases.length; i++) {
77
failures += testExpm1CaseWithUlpDiff(testCases[i][0],
78
testCases[i][1], 0, null);
79
}
80
81
82
// For |x| < 2^-54 expm1(x) ~= x
83
for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
84
double d = Math.scalb(2, i);
85
failures += testExpm1Case(d, d);
86
failures += testExpm1Case(-d, -d);
87
}
88
89
90
// For values of y where exp(y) > 2^54, expm1(x) ~= exp(x).
91
// The least such y is ln(2^54) ~= 37.42994775023705; exp(x)
92
// overflows for x > ~= 709.8
93
94
// Use a 2-ulp error threshold to account for errors in the
95
// exp implementation; the increments of d in the loop will be
96
// exact.
97
for(double d = 37.5; d <= 709.5; d += 1.0) {
98
failures += testExpm1CaseWithUlpDiff(d, StrictMath.exp(d), 2, null);
99
}
100
101
// For x > 710, expm1(x) should be infinity
102
for(int i = 10; i <= DoubleConsts.MAX_EXPONENT; i++) {
103
double d = Math.scalb(2, i);
104
failures += testExpm1Case(d, infinityD);
105
}
106
107
// By monotonicity, once the limit is reached, the
108
// implemenation should return the limit for all smaller
109
// values.
110
boolean reachedLimit [] = {false, false};
111
112
// Once exp(y) < 0.5 * ulp(1), expm1(y) ~= -1.0;
113
// The greatest such y is ln(2^-53) ~= -36.7368005696771.
114
for(double d = -36.75; d >= -127.75; d -= 1.0) {
115
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1,
116
reachedLimit);
117
}
118
119
for(int i = 7; i <= DoubleConsts.MAX_EXPONENT; i++) {
120
double d = -Math.scalb(2, i);
121
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1, reachedLimit);
122
}
123
124
// Test for monotonicity failures near multiples of log(2).
125
// Test two numbers before and two numbers after each chosen
126
// value; i.e.
127
//
128
// pcNeighbors[] =
129
// {nextDown(nextDown(pc)),
130
// nextDown(pc),
131
// pc,
132
// nextUp(pc),
133
// nextUp(nextUp(pc))}
134
//
135
// and we test that expm1(pcNeighbors[i]) <= expm1(pcNeighbors[i+1])
136
{
137
double pcNeighbors[] = new double[5];
138
double pcNeighborsExpm1[] = new double[5];
139
double pcNeighborsStrictExpm1[] = new double[5];
140
141
for(int i = -50; i <= 50; i++) {
142
double pc = StrictMath.log(2)*i;
143
144
pcNeighbors[2] = pc;
145
pcNeighbors[1] = Math.nextDown(pc);
146
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
147
pcNeighbors[3] = Math.nextUp(pc);
148
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
149
150
for(int j = 0; j < pcNeighbors.length; j++) {
151
pcNeighborsExpm1[j] = Math.expm1(pcNeighbors[j]);
152
pcNeighborsStrictExpm1[j] = StrictMath.expm1(pcNeighbors[j]);
153
}
154
155
for(int j = 0; j < pcNeighborsExpm1.length-1; j++) {
156
if(pcNeighborsExpm1[j] > pcNeighborsExpm1[j+1] ) {
157
failures++;
158
System.err.println("Monotonicity failure for Math.expm1 on " +
159
pcNeighbors[j] + " and " +
160
pcNeighbors[j+1] + "\n\treturned " +
161
pcNeighborsExpm1[j] + " and " +
162
pcNeighborsExpm1[j+1] );
163
}
164
165
if(pcNeighborsStrictExpm1[j] > pcNeighborsStrictExpm1[j+1] ) {
166
failures++;
167
System.err.println("Monotonicity failure for StrictMath.expm1 on " +
168
pcNeighbors[j] + " and " +
169
pcNeighbors[j+1] + "\n\treturned " +
170
pcNeighborsStrictExpm1[j] + " and " +
171
pcNeighborsStrictExpm1[j+1] );
172
}
173
174
175
}
176
177
}
178
}
179
180
return failures;
181
}
182
183
public static int testExpm1Case(double input,
184
double expected) {
185
return testExpm1CaseWithUlpDiff(input, expected, 1, null);
186
}
187
188
public static int testExpm1CaseWithUlpDiff(double input,
189
double expected,
190
double ulps,
191
boolean [] reachedLimit) {
192
int failures = 0;
193
double mathUlps = ulps, strictUlps = ulps;
194
double mathOutput;
195
double strictOutput;
196
197
if (reachedLimit != null) {
198
if (reachedLimit[0])
199
mathUlps = 0;
200
201
if (reachedLimit[1])
202
strictUlps = 0;
203
}
204
205
failures += Tests.testUlpDiffWithLowerBound("Math.expm1(double)",
206
input, mathOutput=Math.expm1(input),
207
expected, mathUlps, -1.0);
208
failures += Tests.testUlpDiffWithLowerBound("StrictMath.expm1(double)",
209
input, strictOutput=StrictMath.expm1(input),
210
expected, strictUlps, -1.0);
211
if (reachedLimit != null) {
212
reachedLimit[0] |= (mathOutput == -1.0);
213
reachedLimit[1] |= (strictOutput == -1.0);
214
}
215
216
return failures;
217
}
218
219
public static void main(String argv[]) {
220
int failures = 0;
221
222
failures += testExpm1();
223
224
if (failures > 0) {
225
System.err.println("Testing expm1 incurred "
226
+ failures + " failures.");
227
throw new RuntimeException();
228
}
229
}
230
}
231
232