Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/jdk/test/java/lang/Math/Log1pTests.java
38812 views
1
/*
2
* Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*/
23
24
/*
25
* @test
26
* @bug 4851638 4939441
27
* @summary Tests for {Math, StrictMath}.log1p
28
* @author Joseph D. Darcy
29
* @key randomness
30
*/
31
32
import sun.misc.DoubleConsts;
33
import sun.misc.FpUtils;
34
35
public class Log1pTests {
36
private Log1pTests(){}
37
38
static final double infinityD = Double.POSITIVE_INFINITY;
39
static final double NaNd = Double.NaN;
40
41
/**
42
* Formulation taken from HP-15C Advanced Functions Handbook, part
43
* number HP 0015-90011, p 181. This is accurate to a few ulps.
44
*/
45
static double hp15cLogp(double x) {
46
double u = 1.0 + x;
47
return (u==1.0? x : StrictMath.log(u)*x/(u-1) );
48
}
49
50
/*
51
* The Taylor expansion of ln(1 + x) for -1 < x <= 1 is:
52
*
53
* x - x^2/2 + x^3/3 - ... -(-x^j)/j
54
*
55
* Therefore, for small values of x, log1p(x) ~= x. For large
56
* values of x, log1p(x) ~= log(x).
57
*
58
* Also x/(x+1) < ln(1+x) < x
59
*/
60
61
static int testLog1p() {
62
int failures = 0;
63
64
double [][] testCases = {
65
{Double.NaN, NaNd},
66
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
67
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
68
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
69
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
70
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
71
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
72
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
73
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
74
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
75
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
76
{Double.NEGATIVE_INFINITY, NaNd},
77
{-8.0, NaNd},
78
{-1.0, -infinityD},
79
{-0.0, -0.0},
80
{+0.0, +0.0},
81
{infinityD, infinityD},
82
};
83
84
// Test special cases
85
for(int i = 0; i < testCases.length; i++) {
86
failures += testLog1pCaseWithUlpDiff(testCases[i][0],
87
testCases[i][1], 0);
88
}
89
90
// For |x| < 2^-54 log1p(x) ~= x
91
for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
92
double d = Math.scalb(2, i);
93
failures += testLog1pCase(d, d);
94
failures += testLog1pCase(-d, -d);
95
}
96
97
// For x > 2^53 log1p(x) ~= log(x)
98
for(int i = 53; i <= DoubleConsts.MAX_EXPONENT; i++) {
99
double d = Math.scalb(2, i);
100
failures += testLog1pCaseWithUlpDiff(d, StrictMath.log(d), 2.001);
101
}
102
103
// Construct random values with exponents ranging from -53 to
104
// 52 and compare against HP-15C formula.
105
java.util.Random rand = new java.util.Random();
106
for(int i = 0; i < 1000; i++) {
107
double d = rand.nextDouble();
108
109
d = Math.scalb(d, -53 - FpUtils.ilogb(d));
110
111
for(int j = -53; j <= 52; j++) {
112
failures += testLog1pCaseWithUlpDiff(d, hp15cLogp(d), 5);
113
114
d *= 2.0; // increase exponent by 1
115
}
116
}
117
118
// Test for monotonicity failures near values y-1 where y ~=
119
// e^x. Test two numbers before and two numbers after each
120
// chosen value; i.e.
121
//
122
// pcNeighbors[] =
123
// {nextDown(nextDown(pc)),
124
// nextDown(pc),
125
// pc,
126
// nextUp(pc),
127
// nextUp(nextUp(pc))}
128
//
129
// and we test that log1p(pcNeighbors[i]) <= log1p(pcNeighbors[i+1])
130
{
131
double pcNeighbors[] = new double[5];
132
double pcNeighborsLog1p[] = new double[5];
133
double pcNeighborsStrictLog1p[] = new double[5];
134
135
for(int i = -36; i <= 36; i++) {
136
double pc = StrictMath.pow(Math.E, i) - 1;
137
138
pcNeighbors[2] = pc;
139
pcNeighbors[1] = Math.nextDown(pc);
140
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
141
pcNeighbors[3] = Math.nextUp(pc);
142
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
143
144
for(int j = 0; j < pcNeighbors.length; j++) {
145
pcNeighborsLog1p[j] = Math.log1p(pcNeighbors[j]);
146
pcNeighborsStrictLog1p[j] = StrictMath.log1p(pcNeighbors[j]);
147
}
148
149
for(int j = 0; j < pcNeighborsLog1p.length-1; j++) {
150
if(pcNeighborsLog1p[j] > pcNeighborsLog1p[j+1] ) {
151
failures++;
152
System.err.println("Monotonicity failure for Math.log1p on " +
153
pcNeighbors[j] + " and " +
154
pcNeighbors[j+1] + "\n\treturned " +
155
pcNeighborsLog1p[j] + " and " +
156
pcNeighborsLog1p[j+1] );
157
}
158
159
if(pcNeighborsStrictLog1p[j] > pcNeighborsStrictLog1p[j+1] ) {
160
failures++;
161
System.err.println("Monotonicity failure for StrictMath.log1p on " +
162
pcNeighbors[j] + " and " +
163
pcNeighbors[j+1] + "\n\treturned " +
164
pcNeighborsStrictLog1p[j] + " and " +
165
pcNeighborsStrictLog1p[j+1] );
166
}
167
168
169
}
170
171
}
172
}
173
174
return failures;
175
}
176
177
public static int testLog1pCase(double input,
178
double expected) {
179
return testLog1pCaseWithUlpDiff(input, expected, 1);
180
}
181
182
public static int testLog1pCaseWithUlpDiff(double input,
183
double expected,
184
double ulps) {
185
int failures = 0;
186
failures += Tests.testUlpDiff("Math.lop1p(double",
187
input, Math.log1p(input),
188
expected, ulps);
189
failures += Tests.testUlpDiff("StrictMath.log1p(double",
190
input, StrictMath.log1p(input),
191
expected, ulps);
192
return failures;
193
}
194
195
public static void main(String argv[]) {
196
int failures = 0;
197
198
failures += testLog1p();
199
200
if (failures > 0) {
201
System.err.println("Testing log1p incurred "
202
+ failures + " failures.");
203
throw new RuntimeException();
204
}
205
}
206
}
207
208