Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
TencentARC
GitHub Repository: TencentARC/GFPGAN
Path: blob/master/gfpgan/archs/arcface_arch.py
884 views
1
import torch.nn as nn
2
from basicsr.utils.registry import ARCH_REGISTRY
3
4
5
def conv3x3(inplanes, outplanes, stride=1):
6
"""A simple wrapper for 3x3 convolution with padding.
7
8
Args:
9
inplanes (int): Channel number of inputs.
10
outplanes (int): Channel number of outputs.
11
stride (int): Stride in convolution. Default: 1.
12
"""
13
return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
14
15
16
class BasicBlock(nn.Module):
17
"""Basic residual block used in the ResNetArcFace architecture.
18
19
Args:
20
inplanes (int): Channel number of inputs.
21
planes (int): Channel number of outputs.
22
stride (int): Stride in convolution. Default: 1.
23
downsample (nn.Module): The downsample module. Default: None.
24
"""
25
expansion = 1 # output channel expansion ratio
26
27
def __init__(self, inplanes, planes, stride=1, downsample=None):
28
super(BasicBlock, self).__init__()
29
self.conv1 = conv3x3(inplanes, planes, stride)
30
self.bn1 = nn.BatchNorm2d(planes)
31
self.relu = nn.ReLU(inplace=True)
32
self.conv2 = conv3x3(planes, planes)
33
self.bn2 = nn.BatchNorm2d(planes)
34
self.downsample = downsample
35
self.stride = stride
36
37
def forward(self, x):
38
residual = x
39
40
out = self.conv1(x)
41
out = self.bn1(out)
42
out = self.relu(out)
43
44
out = self.conv2(out)
45
out = self.bn2(out)
46
47
if self.downsample is not None:
48
residual = self.downsample(x)
49
50
out += residual
51
out = self.relu(out)
52
53
return out
54
55
56
class IRBlock(nn.Module):
57
"""Improved residual block (IR Block) used in the ResNetArcFace architecture.
58
59
Args:
60
inplanes (int): Channel number of inputs.
61
planes (int): Channel number of outputs.
62
stride (int): Stride in convolution. Default: 1.
63
downsample (nn.Module): The downsample module. Default: None.
64
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
65
"""
66
expansion = 1 # output channel expansion ratio
67
68
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
69
super(IRBlock, self).__init__()
70
self.bn0 = nn.BatchNorm2d(inplanes)
71
self.conv1 = conv3x3(inplanes, inplanes)
72
self.bn1 = nn.BatchNorm2d(inplanes)
73
self.prelu = nn.PReLU()
74
self.conv2 = conv3x3(inplanes, planes, stride)
75
self.bn2 = nn.BatchNorm2d(planes)
76
self.downsample = downsample
77
self.stride = stride
78
self.use_se = use_se
79
if self.use_se:
80
self.se = SEBlock(planes)
81
82
def forward(self, x):
83
residual = x
84
out = self.bn0(x)
85
out = self.conv1(out)
86
out = self.bn1(out)
87
out = self.prelu(out)
88
89
out = self.conv2(out)
90
out = self.bn2(out)
91
if self.use_se:
92
out = self.se(out)
93
94
if self.downsample is not None:
95
residual = self.downsample(x)
96
97
out += residual
98
out = self.prelu(out)
99
100
return out
101
102
103
class Bottleneck(nn.Module):
104
"""Bottleneck block used in the ResNetArcFace architecture.
105
106
Args:
107
inplanes (int): Channel number of inputs.
108
planes (int): Channel number of outputs.
109
stride (int): Stride in convolution. Default: 1.
110
downsample (nn.Module): The downsample module. Default: None.
111
"""
112
expansion = 4 # output channel expansion ratio
113
114
def __init__(self, inplanes, planes, stride=1, downsample=None):
115
super(Bottleneck, self).__init__()
116
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
117
self.bn1 = nn.BatchNorm2d(planes)
118
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
119
self.bn2 = nn.BatchNorm2d(planes)
120
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
121
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
122
self.relu = nn.ReLU(inplace=True)
123
self.downsample = downsample
124
self.stride = stride
125
126
def forward(self, x):
127
residual = x
128
129
out = self.conv1(x)
130
out = self.bn1(out)
131
out = self.relu(out)
132
133
out = self.conv2(out)
134
out = self.bn2(out)
135
out = self.relu(out)
136
137
out = self.conv3(out)
138
out = self.bn3(out)
139
140
if self.downsample is not None:
141
residual = self.downsample(x)
142
143
out += residual
144
out = self.relu(out)
145
146
return out
147
148
149
class SEBlock(nn.Module):
150
"""The squeeze-and-excitation block (SEBlock) used in the IRBlock.
151
152
Args:
153
channel (int): Channel number of inputs.
154
reduction (int): Channel reduction ration. Default: 16.
155
"""
156
157
def __init__(self, channel, reduction=16):
158
super(SEBlock, self).__init__()
159
self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information
160
self.fc = nn.Sequential(
161
nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel),
162
nn.Sigmoid())
163
164
def forward(self, x):
165
b, c, _, _ = x.size()
166
y = self.avg_pool(x).view(b, c)
167
y = self.fc(y).view(b, c, 1, 1)
168
return x * y
169
170
171
@ARCH_REGISTRY.register()
172
class ResNetArcFace(nn.Module):
173
"""ArcFace with ResNet architectures.
174
175
Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
176
177
Args:
178
block (str): Block used in the ArcFace architecture.
179
layers (tuple(int)): Block numbers in each layer.
180
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
181
"""
182
183
def __init__(self, block, layers, use_se=True):
184
if block == 'IRBlock':
185
block = IRBlock
186
self.inplanes = 64
187
self.use_se = use_se
188
super(ResNetArcFace, self).__init__()
189
190
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
191
self.bn1 = nn.BatchNorm2d(64)
192
self.prelu = nn.PReLU()
193
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
194
self.layer1 = self._make_layer(block, 64, layers[0])
195
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
196
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
197
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
198
self.bn4 = nn.BatchNorm2d(512)
199
self.dropout = nn.Dropout()
200
self.fc5 = nn.Linear(512 * 8 * 8, 512)
201
self.bn5 = nn.BatchNorm1d(512)
202
203
# initialization
204
for m in self.modules():
205
if isinstance(m, nn.Conv2d):
206
nn.init.xavier_normal_(m.weight)
207
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
208
nn.init.constant_(m.weight, 1)
209
nn.init.constant_(m.bias, 0)
210
elif isinstance(m, nn.Linear):
211
nn.init.xavier_normal_(m.weight)
212
nn.init.constant_(m.bias, 0)
213
214
def _make_layer(self, block, planes, num_blocks, stride=1):
215
downsample = None
216
if stride != 1 or self.inplanes != planes * block.expansion:
217
downsample = nn.Sequential(
218
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
219
nn.BatchNorm2d(planes * block.expansion),
220
)
221
layers = []
222
layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
223
self.inplanes = planes
224
for _ in range(1, num_blocks):
225
layers.append(block(self.inplanes, planes, use_se=self.use_se))
226
227
return nn.Sequential(*layers)
228
229
def forward(self, x):
230
x = self.conv1(x)
231
x = self.bn1(x)
232
x = self.prelu(x)
233
x = self.maxpool(x)
234
235
x = self.layer1(x)
236
x = self.layer2(x)
237
x = self.layer3(x)
238
x = self.layer4(x)
239
x = self.bn4(x)
240
x = self.dropout(x)
241
x = x.view(x.size(0), -1)
242
x = self.fc5(x)
243
x = self.bn5(x)
244
245
return x
246
247