Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
TencentARC
GitHub Repository: TencentARC/GFPGAN
Path: blob/master/gfpgan/archs/gfpganv1_clean_arch.py
884 views
1
import math
2
import random
3
import torch
4
from basicsr.utils.registry import ARCH_REGISTRY
5
from torch import nn
6
from torch.nn import functional as F
7
8
from .stylegan2_clean_arch import StyleGAN2GeneratorClean
9
10
11
class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
12
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
13
14
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
15
16
Args:
17
out_size (int): The spatial size of outputs.
18
num_style_feat (int): Channel number of style features. Default: 512.
19
num_mlp (int): Layer number of MLP style layers. Default: 8.
20
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
21
narrow (float): The narrow ratio for channels. Default: 1.
22
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
23
"""
24
25
def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1, sft_half=False):
26
super(StyleGAN2GeneratorCSFT, self).__init__(
27
out_size,
28
num_style_feat=num_style_feat,
29
num_mlp=num_mlp,
30
channel_multiplier=channel_multiplier,
31
narrow=narrow)
32
self.sft_half = sft_half
33
34
def forward(self,
35
styles,
36
conditions,
37
input_is_latent=False,
38
noise=None,
39
randomize_noise=True,
40
truncation=1,
41
truncation_latent=None,
42
inject_index=None,
43
return_latents=False):
44
"""Forward function for StyleGAN2GeneratorCSFT.
45
46
Args:
47
styles (list[Tensor]): Sample codes of styles.
48
conditions (list[Tensor]): SFT conditions to generators.
49
input_is_latent (bool): Whether input is latent style. Default: False.
50
noise (Tensor | None): Input noise or None. Default: None.
51
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
52
truncation (float): The truncation ratio. Default: 1.
53
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
54
inject_index (int | None): The injection index for mixing noise. Default: None.
55
return_latents (bool): Whether to return style latents. Default: False.
56
"""
57
# style codes -> latents with Style MLP layer
58
if not input_is_latent:
59
styles = [self.style_mlp(s) for s in styles]
60
# noises
61
if noise is None:
62
if randomize_noise:
63
noise = [None] * self.num_layers # for each style conv layer
64
else: # use the stored noise
65
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
66
# style truncation
67
if truncation < 1:
68
style_truncation = []
69
for style in styles:
70
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
71
styles = style_truncation
72
# get style latents with injection
73
if len(styles) == 1:
74
inject_index = self.num_latent
75
76
if styles[0].ndim < 3:
77
# repeat latent code for all the layers
78
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
79
else: # used for encoder with different latent code for each layer
80
latent = styles[0]
81
elif len(styles) == 2: # mixing noises
82
if inject_index is None:
83
inject_index = random.randint(1, self.num_latent - 1)
84
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
85
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
86
latent = torch.cat([latent1, latent2], 1)
87
88
# main generation
89
out = self.constant_input(latent.shape[0])
90
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
91
skip = self.to_rgb1(out, latent[:, 1])
92
93
i = 1
94
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
95
noise[2::2], self.to_rgbs):
96
out = conv1(out, latent[:, i], noise=noise1)
97
98
# the conditions may have fewer levels
99
if i < len(conditions):
100
# SFT part to combine the conditions
101
if self.sft_half: # only apply SFT to half of the channels
102
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
103
out_sft = out_sft * conditions[i - 1] + conditions[i]
104
out = torch.cat([out_same, out_sft], dim=1)
105
else: # apply SFT to all the channels
106
out = out * conditions[i - 1] + conditions[i]
107
108
out = conv2(out, latent[:, i + 1], noise=noise2)
109
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
110
i += 2
111
112
image = skip
113
114
if return_latents:
115
return image, latent
116
else:
117
return image, None
118
119
120
class ResBlock(nn.Module):
121
"""Residual block with bilinear upsampling/downsampling.
122
123
Args:
124
in_channels (int): Channel number of the input.
125
out_channels (int): Channel number of the output.
126
mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
127
"""
128
129
def __init__(self, in_channels, out_channels, mode='down'):
130
super(ResBlock, self).__init__()
131
132
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
133
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
134
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
135
if mode == 'down':
136
self.scale_factor = 0.5
137
elif mode == 'up':
138
self.scale_factor = 2
139
140
def forward(self, x):
141
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
142
# upsample/downsample
143
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
144
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
145
# skip
146
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
147
skip = self.skip(x)
148
out = out + skip
149
return out
150
151
152
@ARCH_REGISTRY.register()
153
class GFPGANv1Clean(nn.Module):
154
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
155
156
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
157
158
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
159
160
Args:
161
out_size (int): The spatial size of outputs.
162
num_style_feat (int): Channel number of style features. Default: 512.
163
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
164
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
165
fix_decoder (bool): Whether to fix the decoder. Default: True.
166
167
num_mlp (int): Layer number of MLP style layers. Default: 8.
168
input_is_latent (bool): Whether input is latent style. Default: False.
169
different_w (bool): Whether to use different latent w for different layers. Default: False.
170
narrow (float): The narrow ratio for channels. Default: 1.
171
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
172
"""
173
174
def __init__(
175
self,
176
out_size,
177
num_style_feat=512,
178
channel_multiplier=1,
179
decoder_load_path=None,
180
fix_decoder=True,
181
# for stylegan decoder
182
num_mlp=8,
183
input_is_latent=False,
184
different_w=False,
185
narrow=1,
186
sft_half=False):
187
188
super(GFPGANv1Clean, self).__init__()
189
self.input_is_latent = input_is_latent
190
self.different_w = different_w
191
self.num_style_feat = num_style_feat
192
193
unet_narrow = narrow * 0.5 # by default, use a half of input channels
194
channels = {
195
'4': int(512 * unet_narrow),
196
'8': int(512 * unet_narrow),
197
'16': int(512 * unet_narrow),
198
'32': int(512 * unet_narrow),
199
'64': int(256 * channel_multiplier * unet_narrow),
200
'128': int(128 * channel_multiplier * unet_narrow),
201
'256': int(64 * channel_multiplier * unet_narrow),
202
'512': int(32 * channel_multiplier * unet_narrow),
203
'1024': int(16 * channel_multiplier * unet_narrow)
204
}
205
206
self.log_size = int(math.log(out_size, 2))
207
first_out_size = 2**(int(math.log(out_size, 2)))
208
209
self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1)
210
211
# downsample
212
in_channels = channels[f'{first_out_size}']
213
self.conv_body_down = nn.ModuleList()
214
for i in range(self.log_size, 2, -1):
215
out_channels = channels[f'{2**(i - 1)}']
216
self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
217
in_channels = out_channels
218
219
self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
220
221
# upsample
222
in_channels = channels['4']
223
self.conv_body_up = nn.ModuleList()
224
for i in range(3, self.log_size + 1):
225
out_channels = channels[f'{2**i}']
226
self.conv_body_up.append(ResBlock(in_channels, out_channels, mode='up'))
227
in_channels = out_channels
228
229
# to RGB
230
self.toRGB = nn.ModuleList()
231
for i in range(3, self.log_size + 1):
232
self.toRGB.append(nn.Conv2d(channels[f'{2**i}'], 3, 1))
233
234
if different_w:
235
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
236
else:
237
linear_out_channel = num_style_feat
238
239
self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
240
241
# the decoder: stylegan2 generator with SFT modulations
242
self.stylegan_decoder = StyleGAN2GeneratorCSFT(
243
out_size=out_size,
244
num_style_feat=num_style_feat,
245
num_mlp=num_mlp,
246
channel_multiplier=channel_multiplier,
247
narrow=narrow,
248
sft_half=sft_half)
249
250
# load pre-trained stylegan2 model if necessary
251
if decoder_load_path:
252
self.stylegan_decoder.load_state_dict(
253
torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
254
# fix decoder without updating params
255
if fix_decoder:
256
for _, param in self.stylegan_decoder.named_parameters():
257
param.requires_grad = False
258
259
# for SFT modulations (scale and shift)
260
self.condition_scale = nn.ModuleList()
261
self.condition_shift = nn.ModuleList()
262
for i in range(3, self.log_size + 1):
263
out_channels = channels[f'{2**i}']
264
if sft_half:
265
sft_out_channels = out_channels
266
else:
267
sft_out_channels = out_channels * 2
268
self.condition_scale.append(
269
nn.Sequential(
270
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
271
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
272
self.condition_shift.append(
273
nn.Sequential(
274
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
275
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
276
277
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs):
278
"""Forward function for GFPGANv1Clean.
279
280
Args:
281
x (Tensor): Input images.
282
return_latents (bool): Whether to return style latents. Default: False.
283
return_rgb (bool): Whether return intermediate rgb images. Default: True.
284
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
285
"""
286
conditions = []
287
unet_skips = []
288
out_rgbs = []
289
290
# encoder
291
feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
292
for i in range(self.log_size - 2):
293
feat = self.conv_body_down[i](feat)
294
unet_skips.insert(0, feat)
295
feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
296
297
# style code
298
style_code = self.final_linear(feat.view(feat.size(0), -1))
299
if self.different_w:
300
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
301
302
# decode
303
for i in range(self.log_size - 2):
304
# add unet skip
305
feat = feat + unet_skips[i]
306
# ResUpLayer
307
feat = self.conv_body_up[i](feat)
308
# generate scale and shift for SFT layers
309
scale = self.condition_scale[i](feat)
310
conditions.append(scale.clone())
311
shift = self.condition_shift[i](feat)
312
conditions.append(shift.clone())
313
# generate rgb images
314
if return_rgb:
315
out_rgbs.append(self.toRGB[i](feat))
316
317
# decoder
318
image, _ = self.stylegan_decoder([style_code],
319
conditions,
320
return_latents=return_latents,
321
input_is_latent=self.input_is_latent,
322
randomize_noise=randomize_noise)
323
324
return image, out_rgbs
325
326