Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
TencentARC
GitHub Repository: TencentARC/GFPGAN
Path: blob/master/inference_gfpgan.py
884 views
1
import argparse
2
import cv2
3
import glob
4
import numpy as np
5
import os
6
import torch
7
from basicsr.utils import imwrite
8
9
from gfpgan import GFPGANer
10
11
12
def main():
13
"""Inference demo for GFPGAN (for users).
14
"""
15
parser = argparse.ArgumentParser()
16
parser.add_argument(
17
'-i',
18
'--input',
19
type=str,
20
default='inputs/whole_imgs',
21
help='Input image or folder. Default: inputs/whole_imgs')
22
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder. Default: results')
23
# we use version to select models, which is more user-friendly
24
parser.add_argument(
25
'-v', '--version', type=str, default='1.3', help='GFPGAN model version. Option: 1 | 1.2 | 1.3. Default: 1.3')
26
parser.add_argument(
27
'-s', '--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2')
28
29
parser.add_argument(
30
'--bg_upsampler', type=str, default='realesrgan', help='background upsampler. Default: realesrgan')
31
parser.add_argument(
32
'--bg_tile',
33
type=int,
34
default=400,
35
help='Tile size for background sampler, 0 for no tile during testing. Default: 400')
36
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces')
37
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face')
38
parser.add_argument('--aligned', action='store_true', help='Input are aligned faces')
39
parser.add_argument(
40
'--ext',
41
type=str,
42
default='auto',
43
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto')
44
parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights.')
45
args = parser.parse_args()
46
47
args = parser.parse_args()
48
49
# ------------------------ input & output ------------------------
50
if args.input.endswith('/'):
51
args.input = args.input[:-1]
52
if os.path.isfile(args.input):
53
img_list = [args.input]
54
else:
55
img_list = sorted(glob.glob(os.path.join(args.input, '*')))
56
57
os.makedirs(args.output, exist_ok=True)
58
59
# ------------------------ set up background upsampler ------------------------
60
if args.bg_upsampler == 'realesrgan':
61
if not torch.cuda.is_available(): # CPU
62
import warnings
63
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
64
'If you really want to use it, please modify the corresponding codes.')
65
bg_upsampler = None
66
else:
67
from basicsr.archs.rrdbnet_arch import RRDBNet
68
from realesrgan import RealESRGANer
69
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
70
bg_upsampler = RealESRGANer(
71
scale=2,
72
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
73
model=model,
74
tile=args.bg_tile,
75
tile_pad=10,
76
pre_pad=0,
77
half=True) # need to set False in CPU mode
78
else:
79
bg_upsampler = None
80
81
# ------------------------ set up GFPGAN restorer ------------------------
82
if args.version == '1':
83
arch = 'original'
84
channel_multiplier = 1
85
model_name = 'GFPGANv1'
86
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth'
87
elif args.version == '1.2':
88
arch = 'clean'
89
channel_multiplier = 2
90
model_name = 'GFPGANCleanv1-NoCE-C2'
91
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth'
92
elif args.version == '1.3':
93
arch = 'clean'
94
channel_multiplier = 2
95
model_name = 'GFPGANv1.3'
96
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
97
elif args.version == '1.4':
98
arch = 'clean'
99
channel_multiplier = 2
100
model_name = 'GFPGANv1.4'
101
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'
102
elif args.version == 'RestoreFormer':
103
arch = 'RestoreFormer'
104
channel_multiplier = 2
105
model_name = 'RestoreFormer'
106
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'
107
else:
108
raise ValueError(f'Wrong model version {args.version}.')
109
110
# determine model paths
111
model_path = os.path.join('experiments/pretrained_models', model_name + '.pth')
112
if not os.path.isfile(model_path):
113
model_path = os.path.join('gfpgan/weights', model_name + '.pth')
114
if not os.path.isfile(model_path):
115
# download pre-trained models from url
116
model_path = url
117
118
restorer = GFPGANer(
119
model_path=model_path,
120
upscale=args.upscale,
121
arch=arch,
122
channel_multiplier=channel_multiplier,
123
bg_upsampler=bg_upsampler)
124
125
# ------------------------ restore ------------------------
126
for img_path in img_list:
127
# read image
128
img_name = os.path.basename(img_path)
129
print(f'Processing {img_name} ...')
130
basename, ext = os.path.splitext(img_name)
131
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
132
133
# restore faces and background if necessary
134
cropped_faces, restored_faces, restored_img = restorer.enhance(
135
input_img,
136
has_aligned=args.aligned,
137
only_center_face=args.only_center_face,
138
paste_back=True,
139
weight=args.weight)
140
141
# save faces
142
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)):
143
# save cropped face
144
save_crop_path = os.path.join(args.output, 'cropped_faces', f'{basename}_{idx:02d}.png')
145
imwrite(cropped_face, save_crop_path)
146
# save restored face
147
if args.suffix is not None:
148
save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png'
149
else:
150
save_face_name = f'{basename}_{idx:02d}.png'
151
save_restore_path = os.path.join(args.output, 'restored_faces', save_face_name)
152
imwrite(restored_face, save_restore_path)
153
# save comparison image
154
cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
155
imwrite(cmp_img, os.path.join(args.output, 'cmp', f'{basename}_{idx:02d}.png'))
156
157
# save restored img
158
if restored_img is not None:
159
if args.ext == 'auto':
160
extension = ext[1:]
161
else:
162
extension = args.ext
163
164
if args.suffix is not None:
165
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}_{args.suffix}.{extension}')
166
else:
167
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}.{extension}')
168
imwrite(restored_img, save_restore_path)
169
170
print(f'Results are in the [{args.output}] folder.')
171
172
173
if __name__ == '__main__':
174
main()
175
176